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Abstract: Methods of causal inference are used to estimate treatment effectiveness for non-randomized study
designs. The propensity score (i.e., the probability that a subject receives the study treatment conditioned
on a set of variables related to treatment and/or outcome) is often used with matching or sample weighting
techniques to, ideally, eliminate bias in the estimates of treatment effect due to treatment decisions. If
multiple treatments are available, the propensity score is a function of the adjustment set and the set of
possible treatments. This paper develops a compound model that separates the treatment decision into a
binary decision: treat or don’t treat; and a potential treatment decision: choose the treatment that would
be given if the subject is treated. It is applicable if the treatment set is finite, treatments are given at one
time point, and the outcome is observed at a fixed time point. This representation can reduce bias when
not all treatments are available to all patients. Multiple treatment stabilized marginal structural weights
were calculated with this approach, and the method was applied to an observational study to evaluate the
effectiveness of different neutralizing monoclonal antibodies to treat infection with various severe acute

respiratory syndrome coronavirus 2 variants.

Keywords: Observational studies, causal inference, marginal structural models, multiple treatment types,
monoclonal antibodies, COVID-19

1 Introduction

Large health data sets may include structured and unstructured clinical data, indicators of social determinants
of health, genomics, and data from wearable sensors. Analysis of these data will contribute to enhanced
understanding of health and disease [1]. The US Food and Drug Administration (FDA) continues to expand
the use of real-world evidence (RWE), obtained from applying valid inference methods to real-world data,
in making regulatory decisions [7]. Estimating treatment effectiveness using data from a non-interventional
study, such as an observational study (OBS), requires that variables influencing both treatment decisions
and outcomes be controlled to avoid biasing the study conclusions.

Propensity score (PS) methods can be used to control confounding [4, 10, 23]. The PS is often presented
as the conditional probability of the outcomes of a binary decision: treat or don’t treat [22]. Robins [20]
defines a PS for general treatment and observation processes; Imbens [13] defines the generalized propensity
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score (GPS), which allows multiple treatments, and Imai and van Dyk [12] define the propensity function
that allows multivariate treatments that can be continuous, categorical, or ordinal. Estimation of causal
effects with multiple treatments are surveyed in Lopez and Gutman [16]. Methods to estimate the binary
propensity score (BPS) are reviewed in Austin and Stuart [23] and Austin [4].

Marginal structural models (MSMs) use sample-weighted logistic regression and other approaches [20] to
estimate treatment effects where the independent variables of the regression model are treatment and effect
modifiers of interest, and the sample weights are derived from the BPS or GPS [14, 17, 20, 21, 25]. Sample
weighting equalizes the distribution of covariates across different treatment groups. This approach avoids
the interpolation and numerical issues often encountered when using regression approaches with a large
number of covariates [19]. Using stabilized weights in the MSM reduces the dynamic range in comparison
with unstabilized weights [10], and augmented weights provide robustness to model mismatch [17]. Hernan
et al. found good agreement between treatment effect estimated using MSMs and treatment effect estimated
from randomized controlled trials (RCTs) [9]. MSMs have been used to estimate the effects of multiple time
varying exposures [5, 8, 11].

This paper shows that, for a discrete treatment set in which one option is don’t treat, the GPS can be
computed with a BPS, defined as the probability of receiving any treatment, and a potential treatment
selection model (PTSM), defined as the probability of receiving each non-null treatment conditioned on the
subject being treated, if treatment is given at one time point and outcome is assessed at another single time
point. This approach simplifies the computation of multiple treatment MSM weights. Standard methods,
[23], may be used to compute the BPS, and the PTSM may be a function of fewer variables than the BPS.
All patients may be eligible for non-null treatment; however, all treatments may not be available to all
patients. Confounding can occur if the GPS positivity constraint, [10], is violated. In this case, unconfounded
estimates can be obtained by partitioning the population into subsets that have a positive probability of
receiving every treatment in a subset of potential treatments. This approach was used to estimate the
effects of various neutralizing monoclonal antibodies (nMAbs) to treat COVID-19, and sample results are
presented.

2 A Representation of a Subclass of Multiple treatment Models

Assume a discrete set of treatments that includes the option to not treat. The representation describes
treatment selection as a two—stage process: determine whether to treat or not treat; and select the treatment,
excluding no treatment, to be provided if the subject is treated. This allows for the computation of the
GPS from a BPS and a PTSM.

Assume a discrete set of treatments, T = {to,...,tm}, where tg signifies no treatment, and let X’ be
the space of subject covariates. The generalized treatment model (GTM) is a random variable

A: X — T,
and the GPS is the probability density,
plt,z) = pr(A(z)=t)
= pr(tlz).

Define a binary treatment model (BTM) by

. 0 : ZfA(:E) =1
Ar(r) = { 1 : otherwise. @)
The GPS, p, induces a BPS
pi(a) = 1-plto,a)
= pr(di(z) =1). (2)
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The positivity constraint on p(z,t) ( 0 < p(z,t) < 1 for all z,t) [12] implies that 0 < p;(z) < 1. Let A;1(A)
and p1(A) denote the BTM and BPS, respectively, derived from the GTM A.
Let 71 = {t1,...,tm}. Given the GTM, A, and the GPS, p(z,t), define the PTSM, T1(A) : X — T1 by

pr(Ti(z) =t;) = ]%

= pr(A(z) =tj|Ai(z) = 1).
Givena BTM a: X — {0,1} and a PTSM 7 : X — {t1,..., ¢y} define the GPS by
pr(a(z) =1)pr(r(x)=t;) : 1f7>0
oty = { @ =@ =) 1> "
pr(a(z) =0) : ifj=0.
Let p(a, 7) denote the GPS derived from (o, 7), and let A(a, 7) be the corresponding treatment model.

Theorem 1. A GTM A : X — T such that T = {to, - ,tm}, where ty is the option to not treat, is
equivalent to a BTM, Ay : X — {0,1}, and a PTSM, T1 : X — {t1,...,tm}.

Proof. Let a and 7 be a BTM and PTSM, respectively. Then, A1 (p(a, 7)) = «, and T1(p(a, 7)) = 7. Let A
be a GTM. Then A(A1(A),T1(A)) = A.
O

3 Marginal Structural Model Weights for Multiple Treatments

Assume an independent set of N samples {(y;,;,2;,v;) | 1 < j < N}, where y; is the outcome, t; = A(z;) €
T and v; is a vector of effect modifiers of interest. The samples can be expressed as {(y;,a;,t;,zj,v5) | 1 <
j < N} where a; € {0,1} and t; € 7. Note that, if a; = 0, ¢; is interpreted as the potential treatment if
subject j were to receive a treatment; ¢; may be hidden or may be obtained as a sample from 7; drawn
from the distribution p(T1|4; = 1, ).

Theorem 2. Stabilized marginal structural model weights can be calculated from the BPM, Ay, and the
PTSM, Ty, as

pri(aj;,tjlv;) . o
1_ prl(aj|:vj1,vjj)p;1(zj\m]-’ruj) Zf aj = 17
SW; = e (4)
J pri(a;lv;) f —
pri(a;lz;,v;) vag =5

Proof. Let A = A(A1,T1) be the corresponding GTM from Theorem 1. The stabilized MSM weights are,
[8, 20],

SW, — pr(tjlo;) (5)
pr(tjlz;,v;)

It suffices to show that SW; = Sle. Assume a; = 0. a; =0 <= t; = to, and therefore, in this case,
SW; =8 W}. Assume a; = 1. We show that the numerators and denominators of SW1 and SW are equal.
From equation (3),

pri(ajlzy, vi)pritjles, v) = r(z5,05,t5)

pr(tjlz;,vy).

prtilvy) = /Pr(tj7$j|vj)dxj

- / pr(t; |5, 05)pr (25)di;

/pf’l(aj,tj|9€javj)PT(9Uj)dej

= pri (aj, tj |1)j).
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A proof of Theorem 2 using importance sampling is presented in Appendix B.

Using equation (4) requires that pri(a;|z;,v;)pri(t;|z;,v;) > 0. Assume that X is the covariate space of
all treatment-eligible patients. Because not all treatment-eligible patients may be eligible for all treatments,
to avoid confounding, X is partitioned into maximal subsets so that for each subset, S, C X in the
partition, there is an associated subset of treatments, T'(Sy) C 71, such that for each z € X, and ¢ € T'(Sk),
p(T =t|X = z) > 0. Estimated effects of treatments in T'(Sj) are valid only on S, and confounding can
occur if the positivity constraint is violated (see Appendix A). The effect of a treatment available to multiple
subsets in the partition may differ on these subsets.

4 Application to the Evaluation of nMAbs for the Treatment of
COVID-19

The MITRE Corporation and four health systems, sponsored by the US Department of Health and Human
Services Administration for Strategic Preparedness and Response, completed an OBS of the effectiveness
of nMAbs for treating COVID-19 in accordance with FDA emergency use authorizations (EUAs). The
data consisted of over 160,000 deidentified patient records of more than 70 covariates from patients with a
positive COVID-19 laboratory test, of whom over 25,000 received nMAbs. The study covered the 15-month
time period November 2020-January 2022. A detailed description of the study may be found in [2], and
additional results on the effect of social determinants of health on nMAbs utilization and efficacy are
described in [3].

nMADbs effectiveness was evaluated using MSMs. Let © = {X1,- -+, Xk} be the partition of the sample
covariate space, X, defined as follows. For each = € X, define S; = {t € T1 | p(¢t|z) > 0}. Index the set of
subsets {S;} by {S | 1 <k < K}, and define X, = {x € X | Sz = Sk }. Let my = ||Sk||. A € {0,1} is the
binary variable indicating no-treatment/treatment, ¢;;, is the binary variable indicating use of treatment
t;, and g is the logit link function. The MSMs used to evaluate different treatments effectiveness were the
weighted logistic regression models,

g (E(YA|T1,k)) = aok + a1iAti + -+ + Qe Al i, (6)

where the weights were computed from equation (4).

The statistical analysis pipeline included multiple imputation using the R package mice, [24], BPS
estimation, modeling of treatment selection probabilities, calculation of MSM weights, and the fitting of
the weighted logistic regression models using the Sandwich package [26, 27]. PS modeling was done using
random forest, gradient boosted trees, and logistic regression over a set of hyperparameters. A logistic
regression model produced the best covariate balance and was used for further analysis. Effects estimated
using different imputed data sets were combined to obtain overall effect estimates and standard deviations
using Rubin’s Rules [15].

The treatment selection model was based on treatment type utilization frequency, which varied over
the study period. Patient index date (PID), defined as the date of positive diagnosis, was one of the subject
covariates used in the PS model. To protect subject privacy, PID was quantized to one month, and in
certain instances, randomly perturbed. Figure 1 shows the percentage of each nMAD type among treated
patients across the health systems as a function of study month (SM). The treatment selection model was
p(trlr) = p(tk|SM), where p(tx|SM) was approximated by the sample fractions shown in Figure 1.

The study period was partitioned into several epochs matching the dominant variants—pre-Delta:
November 2020—-June 2021; Delta: July 2021-November 2021; Delta/Omicron: December 2021; and Omicron:
January 2022. Treatments available during part of a study phase were assumed to be available at any time
during the phase. Thus, the partitioning of the covariate space required by the positivity constraint was
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assumed to be consistent with the study phases. Figures 2 and 3 show which treatments were evaluated
during each phase of the study.

The study evaluated the outcomes, emergency department (ED) visits, hospitalizations, deaths, and
deaths or hospitalizations within 14 and 30 days after PID. The estimated probabilities of these outcomes
and 95% confidence intervals for non-treated patients and patients treated with each of the nMAbs available
during each phase are shown in Figures 2 and 3. These probabilities were calculated from the MSMs given
in equation 6.

Bamlanivimab alone was used only from November 2020 through March 2021, and therefore bam-
lanivimab efficacy is comparable only with treatments given during this time period. The results suggest
that patients treated with casirivimab-imdevimab, bamlanivimab-etesevimab, and sotrovimab had similar
14— and 30— day hospitalization rates during the Delta and Delta/Omicron phases, and that patients treated
with casirivimab-imdevimab had lower 14— and 30— day hospitalization rates than did patients treated with
bamlanivimab-etesevimab or sotrovimab during the Omicron phase.

5 Discussion

This paper shows that if the treatment set is discrete, the treatment is given at one time point, and the
outcome is observed at a fixed time point, then the multiple treatment PS can be expressed as a BPS and
a potential treatment model. The BPS is a function of the study covariates and can be computed using
standard methods. Marginal structural model weights were derived from this representation. Two proofs
were given: one was derived from MSM weights for the GPS, equation (5); and the other, in Appendix B,
was derived from importance sampling. Appendix C provides confirmation of these results by comparing
effect estimates of a simulated RCT and an OBS. The estimates obtained from the OBS and RCT were
equal up to estimation error, and the results from the RCT generally had lower standard error than the
results from the OBS. The extension of the binary propensity potential treatment model to more general
treatment and outcome scenarios could be investigated.

Confounding can occur in multitreatment studies if not all patients are eligible to receive all treatments.
To avoid this, the study population was partitioned so that, for each subset in the partition, there is a
subset of treatments such that each subject in the partition subset has a non-zero probability of receiving
any treatment in the associated treatment subset. Treatment effectiveness is estimated for each subset
in the partition. A treatment associated with multiple subsets of the covariate partition may differ in
effectiveness on the subsets, and relative effectiveness of two or more treatments may also differ on these
subsets. Appendix A provides an example of this confounding.

Multivariate logistic regression is a common way to estimate a categorical treatment PS [12]. This
approach will produce a non-zero probability of treating every patient with any treatment, which, when
not true, can lead to biased estimates. Separate modeling of the propensity to treat from the potential
treatment selection provides a more flexible and, potentially, more accurate approach.

The method was used for a large observational study. The BPS was fit to data over the entire study
period, whereas the potential treatment model was separately estimated for each phase of the pandemic
during the study period, as defined by the dominant variant. The study phases did not coincide exactly
with the availability of treatments, which could contribute to bias in the effect estimates. Study month was
the only independent variable used in the potential treatment model. Health system was also considered
and found not to be significant. Other explanatory variables were not considered due to time constraints.
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Fig. 1: The changing frequency of clinical use of different nMAbs from November 2020 (study month
1) through January 2022 (study month 15) in the data set.
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Fig. 2: Probability of study 14-day outcomes for patients not treated with nMAbDb and treated with
different types of nMAbs during the four pandemic phases.
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Fig. 3: Probability of study 30-day outcomes for patients not treated with nMAb and treated with
different types of nMAbs during the four pandemic phases.
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Appendices

A Demonstration of Confounding if p(t|z) =0

The following example shows how estimates of treatment effect for different treatment types can be biased
if the positivity constraint is violated. Assume two time periods and two treatments, ¢; and t2. Untreated is
denoted by tg. Assume that the probability that a subject appears in interval 2 is twice the probability
that a subject appears in interval 1. The probabilities of a subject receiving no treatment or the treatments
and the probabilities of the adverse outcome, p;(Y = 1), for the two time intervals, j = 1,2, and for the
combined interval, j = C, are given in Table 1. Treatment 1 is given in interval 1 but not in interval 2,
whereas treatment 2 is given in both intervals. The disease becomes more contagious and more virulent in
interval 2 as compared with interval 1. This table also presents the odds ratios of the adverse outcomes,
comparing treated versus non-treated patients, for each of the time periods and for the combined time
period. One sees that, in time interval 1, treatments 1 and 2 are of equal effectiveness, with odds ratios of
0.11. The odds ratio for treatment 2 in interval 2 is 0.08—note that the probability of the adverse outcome
increases for both untreated and those given treatment 2 in interval 2 as compared with interval 1. The
combined odds ratio is also shown in the table. From the combined odds ratios, treatment 1 is more effective
than treatment 2, whereas they are of equal effectiveness in interval 1, and treatment 1 is not used against
the more virulent strain in interval 2. The combined odds ratio for treatment 1 is confounded by comparing
treatment effectiveness of the treated population in interval 1 with untreated patients from interval 2, a
period of time during which treatment 1 was not available.

Tab. 1: lllustration of confounding when p(t|z) =0

Approved for Public Release; Distribution Unlimited. Public Release Case Number 22-3452

Treat | pi(t) | p2() | m(Y =1) | pp(Y=1) | pc(Y =1) | OR1 | ORy | ORc

‘ to 0.34 0.34 0.5 0.75 0.67
t1 0.33 0 0.1 NA 0.1 0.11 NA 0.06
‘ to 0.33 0.66 0.1 0.2 0.17 0.11 0.08 0.1
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B An Alternate Derivation of STW!

Robins [20] defines marginal structural models for general treatment and response time dependent processes,
where the response process includes the outcome process of interest and the process of other recorded
variables. Examples include treatment processes such that the treatment is given at multiple discrete time
points and outcome process that are measured at a fixed time or are failure time process. He shows, using
influence functions, that weighting observation by the inverse of a subject’s probability of having had his
observed treatment history allows for the estimation of causal effects from non-randomized observations. A
simpler proof using importance sampling that is applicable to the case of one of several possible treatments,
including the null treatment, given at a single time point and a fixed time to outcome is presented.
Assume an independent set of N samples {(y;,t;,2;) | 1 < j < N}, where y; is the outcome, and
t; = A(z;) € T. The samples can be expressed as {(y;,a;,tj,2;) | 1 < j < N} where a; € {0,1} and
t; € Ti. If aj = 0, t; is interpreted as the potential treatment. Assume that there is a discrete set L and a
mapping ¢ : X — L such that p(t; | z;) = p(t; | ¢(x;))—that is, t; ~ y(y,). Let Y denote the outcome
random variable if all patients have exposure A = 4, for i =0, 1.
The observations can be used to estimate causal effects if the following assumptions hold:
A1Y[JA|(X,T).
A2p(AlX)p(T|X) > 0.
A.3 The outcome of one individual is independent of the treatment assignment of any other.

From assumption A.1, within strata of (X,T) treated and untreated patients are exchangeable [25], and
from assumption A.3., outcomes of different patients are independent. Thus, the expected value of the
causal variables can be computed from observations, according to

EYYT) = Y E(Y|A=1,T,2)f(x), (7)

and
E(Y°T) = E®9

- Z E(Y|A=0,2)f(z). (8)

Importance sampling [6] states that if {z;} is a sample drawn from probability density function f, and g

is a probability density function such that g(x) = 0 if f(z) = 0, then {?E'Zg zj} is a sample drawn from g.
This result is used to transform samples drawn from f(a = 1,¢;,z) and f(a = 0,z) to samples drawn from
f(z) so that A.1 holds for the weighted samples.

Let Sle © (aj,t;,2;) denote the sample (aj,t;,x;) counted with multiplicity Sle. Let a, € {0,1}
and t, € {t1,...,tam}. If ao = 1, define So = {(aj,tj,2;)| aj = ao,t; = to}, and if a, = 0, define
So = {(aj,tj, ;)| aj = ao}. Let Ny =|S,|. Let I, be the indicator function for S, defined by I,(j) =1 if
(aj,tj,x;) € Sy, and I,(j) = 0, otherwise.

Define

w® So = {SW} © (aj,tj,2)|I,(j) = 1}. 9)

Lemma 1. w® S, is a sample from p(z).

Proof. Case 1: ap, = 1. {(@0,t0,x;)} is a sample from

P(ao,to,x)
p(ao,to)
plaolto, ©)p(to, )
p(am to)
p(ao|x)p(to|x)p($)
p(ao: to) .

p(z|a07to) =
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Importance sampling implies that each sample from the pseudo population, (ao,t,,z;), is a sample

from

plaoto)  plaolw)p(te|z)p(z)
p(ao\i)p(to\iﬂ) p(amto)
= p(2).

w;p(xlao, to) =

Case 2: ap = 0. {(ao,2;)} is a sample from

p(ao, x)
p(ao)
plao|z)p(x)
p(ao)

p(zlao)

Importance sampling implies that each sample from the pseudo population, (a.,x;), is a sample from

plao)  plaolz)p(x)

wab(rlae) =) < pleo)
= pa).
Theorem 3. Under the assumptions A.1-A.8
R
Jim - ; Lo(j)w;Yj = E (Y%lt,). (10)

Proof. This follows from equations 7 and 8 and Lemma 1.
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C Simulation Comparing MSM Weighting and Random
Treatment Assighment

A simulation was conducted to experimentally verify that effect estimates obtained using the MSM weighting
derived above under non-random treatment assignment, referred to as the OBS, agree, within estimation
error, with effect estimates obtained without weighting under random treatment assignment, referred to
as the RCT. The simulation was carried out using MATLAB [18]. The simulation assumes two binary
covariates, (X1, X2), two binary treatment types, T; and T%, where T; = 1 indicates treatment with drug j,
and a binary treatment variable, A, such that A = 0,1 indicates no—treatment and treatment, respectively.
The total sample size was 100,000.

C.1 Covariate Model

Samples of the correlated binary covariates (X1, Xo) were obtained from samples of a normal random vector

(Z1, Z2) having mean (0,0) and covariance matrix I' = (é%f) Thresholds 7 and 75 were determined to

satisfy the equations: p(Z1 < 71) = 0.67, and p(Z2 < 12) = 0.25. Samples of (X, X2) were obtained by
thresholding samples of (Z1, Zs2) according to X; = 1 if Z; > 7; and 0, otherwise, for i = 1, 2.

C.2 Outcome Model

Let g be the logit function. The outcome, Y, was binary, and modeled as

g(E(Y)) = ap+ a1 X1+ aeXo + a3 X1 Xo + ag ATy + a5 ATo + agAX1 Ty
+  arAX 1Ty + agAXoT) + agAXoTs + a9 AT1 X1 Xo + a1 AT X1 Xo. (11)

Table 2 lists the values of the coefficients, and Table 3 lists the log odds, probabilities, and odds ratios
of Y = 1 for all combinations of the input variables. The outcome probabilities were selected and the
coefficients were obtained by solving a system of equations.

Tab. 2: Coefficients of the output model

| Index [ 0 1 2 3 4 5 6 7 8 9 10 1|
| Value | -2.944 | 0.747 | 1.210 | -0.399 | -1.651 | -1.651 | 0.903 | -0.044 | -0.507 | -0.799 | 1.124 | 0.936 |

C.3 Treatment Assignment

The RCT was simulated by randomly assigning each subject to one of three study arms: no treatment (A=
0), treatment with drug 1 (T} = 1), or treatment with drug 2 (T2 = 1). The simulation of the OBS was
done by assigning a subject to the treatment group (A = 1) or the non-treatment group (A = 0) using the
following propensity model:

g(E(A‘Xl,XQ)) =—-11+ X1 +2X5. (12)
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Tab. 3: Log odds, probabilities, and odds ratios of the outcome model conditioned on the input values.

A | Xy | Xo | Th | T2 | Log odds | Probability | Odds ratio
0 0 0 0 0 -2.9444 0.05 NA
0 1 0 0 0 -2.1972 0.1 NA
0 0 1 0 0 -1.7346 0.15 NA
0 1 1 0 0 -1.3863 0.2 NA

1 0 0 1 0 -4.5951 0.01 0.1919
1 1 0 1 0 -2.9444 0.05 0.4737
1 0 1 1 0 -3.8918 0.02 0.1156
1 1 1 1 0 -1.5163 0.18 0.8780
1 0 0 0 1 -4.5951 0.01 0.1919
1 1 0 0 1 -3.8918 0.02 0.1837
1 0 1 0 1 -4.1846 0.015 0.0863
1 1 1 0 1 -2.9444 0.05 0.2105

C.4 Selection of Treatment Type

For the simulation of the OBS, an additional choice of treatment type was made according to the following
protocol. Let P; ;, i,7 = 0,1, be the probability of selecting 77 when X; = ¢ and X3 = j. The OBS
treatment selection used Pyg = 0.5, Pp1 = 0.4, and P19 =0 = P1;1.

C.5 Equalization of the Distribution of the Population Covariates

Lemma 1 of Appendix B asserts that the distribution of (X1, X2) of the weighted samples is independent
of study arm: untreated, treated with 77, or treated with T5. This was demonstrated by applying the x?2
test for independence to the initial count data and to the weighted count data shown in Tables 4 and 5,
respectively. The p-values of the test applied to these tables were < 2.2 x 10716 and 0.271, respectively.

Tab. 4: Unweighted population counts of OBS data with X1 = 0. The p-value of the x? test of independence is less than
2,2 x 10716

‘ Unweighted counts: A =0 | Unweighted counts: 77 = 1 | Unweighted counts: 75 =1 ‘
X2=0 61,375 10,230 10,160
X =1 5,174 5,173 18,235

Tab. 5: Weighted population counts of the observational data with X; = 0. The p-value of the x? test of independence is
0.271.

‘ Weighted counts: A =0 | Weighted counts: 77 =1 | Weighted counts: 7T, =1 ‘
Xo=0 54,440 12,576 14,735
X2 =1 11,912 2,830 3,316

C.6 Comparison of MSM and RCT Effect Estimates

Treatment effects were estimated by fitting the simulated RCT data to unweighted logistic regression models
and the simulated observational data to weighted logistic regression models using weights calculated from
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equation (4). Treatment effects are reported as log odds ratios and 95% confidence intervals obtained from

the coefficients of these models. If X; = 0, the average treatment effects (ATE), over the values of X, T4,
and T5 and the effects of T} and T, for Xo = 0 and 1 are given in table 6. For X; = 1 the ATE for Ty
over the values of X5 and the effects of T5 for each value of X5 are given in table 7. The 95% confidence

intervals are seen to overlap in all cases. The standard errors of the OBS estimates are generally larger than
the standard errors of the RCT estimates.

Tab. 6: Treatment effects reported as log odds ratios and 95% confidence intervals: X7 = 0. The two study designs used

independent data sets each consisting of 100,000 samples drawn from the same population.

RCT: Log odds ratio (95% confidence intervals)

OBS: Log odds ratio (95% confidence intervals) ‘

T

P

T

Ty \

-1.78 (-1.89,-1.67)

-1.93 (-2.04,-1.81)

-1.88 (-2.03,-1.73)

-1.82 (-1.96,-1.68)

‘ ATE

-1.59 (-1.72,-1.46)

-1.73 (-1.87,-1.60)

-1.71 (-1.90.-1.53)

-1.51 (-1.66,-1.35)

-2.18 (-2.38,-1.99)

-2.35 (-2.56,-2.14)

-2.26 (-2.53,-1.98)

-2.59 (-2.88,-2.29) \

Tab. 7: Treatment effects reported as log odds ratios and 95% confidence intervals: X1 = 1. Note that only treatment 2 is
available on the OBS. The two study designs used independent data sets each consisting of 100,000 samples drawn from
the same population.

RCT: Log odds ratio (95% confidence intervals)

OBS: Log odds ratio (95% confidence intervals)

-1.61 (-1.67,-1.55)

-1.67 (-1.76,-1.59)

-1.72 (-1.80,-1.64)

-1.57 (-1.65,-1.48)

|
-1.63 (-1.68,-1.57) \
|
|

-1.58 (-1.66,-1.50)
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