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Abstract 

 
 
Functional near-infrared spectroscopy (fNIRS) and its interaction with machine learning (ML) 
is a popular research topic for the diagnostic classification of clinical disorders due to the 
lack of robust and objective biomarkers. This review provides an overview of research on 
psychiatric diseases by using fNIRS and ML. Article search was carried out and 45 studies 
were evaluated by considering their sample sizes, used features, ML methodology, and 
reported accuracy. To our best knowledge, this is the first review that reports diagnostic ML 
applications using fNIRS. We found that there has been an increasing trend to perform ML 
applications on fNIRS-based biomarker research since 2010. The most studied populations 
are schizophrenia (n=12), attention deficit and hyperactivity disorder (n=7), and autism 
spectrum disorder (n=6) are the most studied populations. There is a significant negative 
correlation between sample size (>20) and accuracy values. Support vector machine (SVM) 
and deep learning (DL) approaches were the most popular classifier approaches (SVM = 20) 
(DL = 10). Eight of these studies recruited a number of participants more than 100 for 
classification. Change in oxy-hemoglobin (∆HbO) based features were used more than 
change in deoxy-hemoglobin-based ones and the most popular ∆HbO-based features were 
mean ∆HbO (n=11) and ∆HbO-based functional connections (n=11). Using ML on fNIRS data 
might be a promising approach to reveal specific biomarkers for diagnostic classification.  
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1. Introduction 

 
Subjective assessment criteria for psychiatric and neurological disorders are commonly used 
in clinics for diagnostic purposes. Questionnaires, self-reports, and clinical interviews are 
commonly used however, due to the subject-dependent nature of these measures that have 
always been considered a flaw in clinics (Pies, 2007). Diagnostic decisions are generally 
evaluated with objective measures such as laboratory tests or neuroimaging approaches. At 
this point, the usage of functional neuroimaging approaches as diagnostic tools is still widely 
being discussed (Henderson et al., 2020). Functional Magnetic Resonance Imaging (fMRI), 
Electroencephalography (EEG), Magnetoencephalography (MEG), Positron Emission 
Tomography (PET) and Functional Near Infrared Spectroscopy (fNIRS) are the most common 
functional neuroimaging approaches that are used to disclose potential biomarkers to 
discriminate psychiatric or neurological disorders having common symptoms or these 
disorders from healthy individuals (Nour et al., 2022).  
 
As number of population-based neuroimaging datasets is getting increased over the years, 
due to its high-dimensional nature, researchers utilized machine learning (ML) methods for 
more advanced and individual-level analyses such as classification of disorders, prediction of 
clinical scores, or clustering of new subpopulations. ML applications in medicine gained great 
importance in recent years (Ahsan et al., 2022) and also in functional neuroimaging research 
(Bondi et al., 2023; de Filippis et al., 2019; Duffy et al., 2019; Rathore et al., 2017; Santana et 
al., 2022). Because, compared to conventional statistical approaches such as t-test, ANOVA, 
Kruskal-Wallis, or Friedman test, ML provides us with individual-level answers rather than 
average sense. This is quite remarkable in medicine. As we stated above (i) Many 
diseases/disorders/syndromes have common symptoms that make them complicated to 
distinguish each other by considering a single variable (ii) While diagnosing them, self-
reporting of patients which is the conventional approach and also gold-standard for 
diagnosis of many disorders, might provide unreliable results due to having the potential to 
be easily manipulated. Therefore, there is a great necessity to reveal robust and objective 
biomarkers that provide individual accurate diagnosis (iii) In general, vast majority of 
behavioral and neuroimaging studies that focus on differences between patients and healthy 
individuals show these differences in average sense. However, these differences might not 
be valid for some individual cases due to huge variability across participants. At this point, 
the combination of neuroimaging approaches and ML techniques plays an important role in 
providing us some answers related to individual diagnoses rather than populations (Nenning 
& Langs, 2022). Previous reviews that cover a combination of ML techniques for the 
prediction of several diseases by using EEG (Craik et al., 2019), fMRI (de Filippis et al., 2019; 
Nakano et al., 2020) and PET (Duffy et al., 2019) showed that neuroimaging techniques and 
ML might have a future on individual diagnostic decisions.  
 
Among these functional neuroimaging techniques, fNIRS is relatively new and promising 
approach due to its advantages (Baskak, 2018; Ehlis et al., 2014; Irani et al., 2007) and it has 
almost a contemporary history with artificial intelligence applications in medicine. However, 
due to lack of data and computational cost, ML usage in fNIRS studies was limited until 
recent years. After overcoming these limitations, ML usage has increased greatly through 
the last decade among fNIRS researchers. Compared to other neuroimaging modalities such 
as fMRI and PET, it is less expensive, portable, easy to apply and has more tolerance to 



motion artifacts. When compared to EEG, it has higher spatial resolution that allows the 
researchers to focus on a specific region of interest (ROI). In addition to these advantages, it 
also provides information about concentration changes of oxy-hemoglobin (ΔHbO), deoxy-

hemoglobin (ΔHb) and total-hemoglobin (ΔHbT= ΔHbO + ΔHb) by using at least two 
different wavelengths. These advantages feature fNIRS as a potential alternative tool for the 
diagnosis of psychiatric diseases. It has widely been preferred by researchers and clinicians 
from many different fields such as infant development, cognition, anesthesia, motor control 
and psychiatric disorders (see review (Boas et al., 2014)).  
 
Integrated fNIRS and ML systems should consist several systematic components as it is 
shown in Figure 1. A specific task or a resting-state procedure is conducted for data 
acquisition via a multi or single-channel fNIRS system. After data acquisition, a pre-
processing step is carried out. In pre-processing step, several types of artifacts such as 
physiological noise (heartbeat, respiration, Mayer waves (Fekete et al., 2011a)), motion 
artifacts and very low-frequency noise (<0.1 Hz) need to be filtered out. For this purpose, 
band-pass filtering, signal detrending and motion artifact algorithms (Brigadoi et al., 2014) 
are used. Having carefully filtered the data, feature extraction is carried out. Feature 
extraction step directly affects the performance of classifiers. Due to this reason, a priori 
knowledge in either temporal or spatial behavior of hemodynamic response might be 
essential. Depending on the type of data (resting-state or task), extracted feature types 
might be different. Feature selection should also be carried out if the number of features is 
high. This may lead to a dimensionality problem which may cause an overfitting or 
underfitting problem. In this step, there are several algorithms that might be used such as 
Principal Component Analysis (PCA), Least Absolute Shrinkage and Selection Operator 
(LASSO), t-test and Recursive Feature Elimination (RFE). Cross-validation types (Hold-Out, 
Leave-one-out (LOOCV) and K-fold) are generally selected depending on the amount of data 
and expected computational cost. In some studies, hyperparameter optimization techniques 
such as grid-search, random-search or Bayesian are used to improve the performance of 
classifiers or predictors. For classification or prediction, methods such as Support Vector 
Machine (SVM), K-nearest neighborhood (KNN), linear discriminant analysis (LDA), Gaussian 
process classifier (GPC), Random Forest (RaF), Linear regression (LR) and Convolutional 
Neural Network (CNN) as a deep learning model are used.  
 

----- Add Figure 1 Here---- 
 
Our primary objective to review fNIRS-based ML studies is to provide a general overview the 
potential of fNIRS and ML to assess psychiatric disorders and provide an insight to 
researchers about to the classification strategies, potential features to related disorders. We 
also discussed potential problems usage of fNIRS for diagnostic purpose and suggest 
questions for further studies. This review includes a general overview of these applications 
on clinical populations. To our best knowledge, this is the first review that covers machine 
learning studies diagnosing psychiatric disorders using fNIRS. There is a recent review 
focusing on deep learning applications using fNIRS data including cortical analysis, 
preprocessing, BCI and diagnostic applications (Eastmond et al., 2022). However, as we 
stated above we also discussed the features that can be considered as potential biomarkers. 
 
 



 
2. Materials and Methods 

 
2.1. Identification 

The present study was performed according to the “Preferred Reporting Items for 
Systematic reviews and Meta-Analyses” (PRISMA) statement (Page et al., 2021), shown as a 
schema in Figure 2. The search procedure was initiated by using Web of Science and 
PubMed databases. We used the keywords (“Functional Near Infrared Spectroscopy” OR 
“Near Infrared Spectroscopy” OR “Diffuse Optical Imaging”) AND (“Machine Learning” OR 
“Prediction” OR “Classification”) that describe in Table 1 in detail. Original research papers 
published from starting 2010 until end of December 2022 were included. A total of 1552 
(Pubmed: 852, Web of Science:705) search results that were published in Science Citation 
Indexing and Science Citation Indexing-Expanded, were reached. After removing the 
duplicate results, 1500 articles were left. Articles Conference proceedings and reviews 
excluding, 1459 articles were left. We also excluded the clinical state based studies 
(classification of pain, stress, anxiety conditions), non-clinical studies, brain-computer 
interface (BCI) studies and studies closely related to BCI such as motor and mental 
arithmetic tasks since it has been extensively reviewed by Naseer and Hong (Naseer & Hong, 
2015). Among these studies, we also excluded the studies that either the accuracy value was 
not clearly reported or had accuracy values lower than %60.  
  
 

----- Add Figure 2 Here---- 
 

----- Add Table 1 Here---- 
 

2.2. Screening and Inclusion 
 
We scanned and reported 45 articles that were suitable for our context. All included studies 
are summarized in Table 2. Extracted data types from publications were first author and year 
of the publication, populations, objective of the study, experiment type (task/resting), used 
fNIRS system, region of interest with 10-20 position if available, sample size, used features to 
train and test the model, used machine learning algorithm, cross-validation technique, 
hyperparameter optimization type, obtained the highest accuracy, other classification scores 
and comments related to the study. Studies were grouped according to the focused clinical 
population. For some studies, two different populations were studied such as Schizophrenia 
(SCZ), Bipolar Disorder (BP) vs Healthy Controls (HC) (Eken et al., 2022), Alzheimer’s Disease 
(AD), Mild Cognitive Impairment (MCI) and HC (E. Kim et al., 2021; J. Kim et al., 2022) and 
two different group of SCZ (Azechi et al., 2010). These studies were included twice for each 
clinical population and in total 49 studies were considered. In addition this, we added a 
narrative review of included studies for every disorder separately and added graphical 
information to discuss critical points in the literature. 
 

2.3. Statistical Analysis 
 
All statistical analyses and graphical representations were performed by using R (v4.1.2; R 
Core Team 2021). We performed Shapiro- Wilk test to control whether the data is normally 



distributed or not and applied correlation and correlation analysis between sample size and 
accuracy values. 
 

3. Results 

 

According to distribution of number of studies, for the last 13 years, using ML in fNIRS based 
clinical studies has an increasing trend. On the other hand, vast majority of these fNIRS 
based ML studies focused on SCZ (n=12), ADHD(n=7), ASD (n=6), MDD (n=5), MCI (n=4) and 
AD (n=3) populations. We also included studies and labeled as “other” from many different 
clinical populations such as Amyotrophic Lateral Sclerosis (ALS), Bipolar disorder (BP), 
Fibromyalgia (FM), Parkinson’s Disease (PD) Somatic Symptom Disorder (SSD), Stuttering, 
Traumatic Brain Injury (TBI) and Migraine. From 2010 to 2018, only four populations (SCZ, 
ADHD, TBI and stuttering) were studied. However, after 2019, more populations were also 
studied. Number of the studies per population for every year is shown in Figure 3. 
 

----- Add Table 2 Here ---- 
 

---- Add Figure 3 Here ---- 
 
 

3.1. Attention Deficit and Hyperactivity Disorder (ADHD) 
 
Among seven ADHD based classification studies, five of them focused on ADHD vs HC 
classification. Except for the studies that focused on only frontal region such as Güven and 
her colleagues (Güven et al., 2020) and Yasumura and her colleagues (Yasumura et al., 
2017), all these studies focused on frontal and temporal region for classification. SVM is the 
most popular algorithm for ADHD / HC classification (n=5), except for two studies all studies 
used mean ∆HbO as feature, vast majority of studies used cross-validation method as LOOCV 
(n=4). 
 
Vast majority of these studies have generally low sample sizes (min-max: 17-50) except for 
Yasumura and colleagues (Yasumura et al., 2017). This study is a multi-center study 
performed to validate the reliability of a classifier. It includes the highest number of subjects 
(Training data; ADHD: 108, HC: 108. Validation data; ADHD: 62, HC: 37) among all ADHD 
classification studies using fNIRS. fNIRS data that was acquired from PFC via a reverse Stroop 
task from different centers were used as input data with behavioral and physiological 
features. 86.25 % accuracy was found by using Radial Basis Function (RBF)-SVM and reverse 
stoop task-induced PFC activation was suggested as a critical biomarker for ADHD diagnosis. 
Accuracy values for other studies varies between  77.20 % - 86.00 % which could not exceed 
Yasumura and colleagues’ study despite their low sample sizes (Crippa et al., 2017; Gu et al., 
2018; Güven et al., 2020; Ishii-Takahashi et al., 2015). On the other hand, in these studies, 
mean ∆HbO is the most popular feature for the classification in ADHD and also provides 
86.25 % (Yasumura et al., 2017), 86.00 % (Gu et al., 2018) and 81.00 % (Ishii-Takahashi et al., 
2015) accuracies which are the highest accuracies across all ADHD / HC classification studies. 
It can be interpreted that fronto-temporal region might provide critical biomarkers to 
distinguish ADHD and HC groups. However, more studies that follows similar procedures 
from experimental design to machine learning steps are needed. 



 
In addition to this, two fNIRS studies focused on ADHD / ASD classification. One of those 
studies focused on hemodynamic biomarkers in the occipital region induced by a face-
familiarity task, however, their sample size is relatively quite small (N=17, ADHD=9, ASD=8) 
compared to other ADHD classification studies  and they found 84 % accuracy by using 
SVM(Ichikawa et al., 2014). The other study focused on the question that hemodynamic 
response after MPH medication and found 82 % accuracy after pooling results of six 
different classifiers (Simple, AND, OR, LDA, quadratic discriminant analysis, SVM) (Sutoko et 
al., 2019). Due to two different concepts of experiments and classification approaches, it is 
difficult to perform a comparison between the studies. 
 

3.2. Alzheimer’s Disease (AD) 
 
Among all AD (n=3) classification studies, Ho and colleagues’ study is the one the highest 
number of participants and they proposed a deep learning framework for sub-population 
classification of AD (T. K. K. Ho et al., 2022). 140 subjects including 53 HC, 28 asymptomatic 
AD, 50 prodromal AD and 9 AD dementia attended an fNIRS session focusing on prefrontal 
cortex. Highest accuracy was found as 90% ± 1.2%. Kim and colleagues also conducted a 
study to predict AD stages (J. Kim et al., 2022). 168 subjects ( 70 HC, 42 MCI, 21 Mild AD, and 
35 moderate AD) were recruited and RF was used as classifier. 94.4 % accuracy was found to 
classify AD. Another study that tried to classify AD, MCI and HC subjects was conducted by 
Kim and colleagues (E. Kim et al., 2021). In this study, 60 participants ( 18 AD, 11 MCI and 31 
HC) were recruited and PFC based FC of ∆HbO values were used as input of artificial neural 
network (ANN) classifier to classify disease state highest accuracy was found as 93.7%.  
 
It is difficult to perform a direct comparison between studies due to the variability of sample 
size, different feature types and different classifiers. More studies are needed to make 
proper interpretation. 
 

3.3. Autism Spectrum Disorder (ASD) 
 
All reported ASD classification studies were done by using a similar dataset except for the 
study Dahan and colleagues performed (Dahan et al., 2020). 26 ASD patients were attended 
to the study to classify Autism Spectrum Quotient (AQ) patients according to their severity. 
The highest accuracy that was reached in this study was reported as 96.3% when RF was 
used as a classifier.  
 
Rest of the studies were carried out by using the same dataset. In this dataset, 47 children 
(Typical developing  (TD)=22, ASD = 25) were recruited and an 8 min of resting-state 
measurement from bilateral temporal regions was performed. In the first study (Xu et al., 
2019), a convolutional neural network (CNN) with a gate-recurrent unit (GRU) was trained 
and tested via hold-out cross-validation and 92.2 % accuracy with 85 % sensitivity and 99.4 % 
specificity was found. Second study was performed by Cheng and colleagues (Cheng et al., 
2019). In addition to the features used in the previous study, a specific frequency of interest 
for both ∆HbO (0.02 Hz) and ∆Hb (0.0267 & 0.0333 Hz) in TC was also added as a feature and 
used as an input for an SVM classifier. With this new feature set, 92.7 % accuracy was found. 



The major difference between the two groups was reported as in the frequency band of 
0.02-0.03 Hz. However, only a 0.5 % increase in accuracy was observed. 
 
Sample entropy as a feature was also tested on the same dataset (Xu, Hua, et al., 2020). 
Using k-means classification, 97.6 % accuracy was found. After performing machine learning 
studies, two deep learning studies on similar data were recently reported (Xu et al., 2019; 
Xu, Liu, et al., 2020). In the other study (Xu, Liu, et al., 2020), CNN and long-short term 
memory (LSTM) were trained and tested via hold-out cross-validation and 95.7 % accuracy 
was reported. Another study that tries the diagnosis of ASD patients was conducted by Li 
and colleagues (C. Li et al., 2023).  This study proposes a CNN-based algorithm by using 
resting-state fNIRS signals of 25 ASD children and 22 HC children. 12 channels located on 
frontal and temporal regions recorded NIRS signals by using FOIRE 3000 continuous NIRS 
system. Maximum accuracy that reported in this study is 94%.  
 
Compared to deep learning approaches, a clustering based algorithm, k-means 
outperformed previously reported machine learning and deep learning results. This 
performance might also be due to the sample entropy which seems to be a potential 
biomarker to distinguish ASD and HC. 
 

3.4. Mild Cognitive Impairment (MCI) 
 
Among the four studies, three of them were published by the data using the same 
population (24 participants, MCI:15, HC :9). First study on MCI classification was performed 
by Yang and colleagues (Yang et al., 2019). 24 participants (15 MCI: 9 HC) were recruited for 
this study and statistical features of ∆HbO and ∆Hb, activation t-maps and channel by 
channel correlation-maps were extracted. %90.62 accuracy were found by using 
convolutional neural network (CNN) and t-maps. Same group also performed another DL 
study that used and in addition to statistical features they also used ∆HbO spatio-temporal 
maps (D. Yang & Hong, 2020). Highest accuracy that was reached in this study was 98.61%. 
Last study by using the same population focused on transfer learning based classification of 
MCI and by using connectivity maps they found 97.01 % accuracy (Yang & Hong, 2021). This 
dataset has a low sample size to classify MCI and it is hard to interpret a general overview 
related to populations and applied methods. 
 
In addition to this dataset, two studies include MCI populations in addition to AD population. 
First of these studies focused on FC of ∆HbO and tried to classify the MCI population (E. Kim 
et al., 2021).60 participants( 18 AD, 11 MCI and 31 HC) were recruited and by using an 
artificial neural network (ANN) classifier they found 99.3 % accuracy for MCI classification. In 
the second study, 168 participants (70 HC, 42 MCI, 21 Mild AD, and 35 moderate AD) were 
recruited and 92.6% accuracy was found for MCI classification by using ∆HbO time series and 
random forest (RF) algorithm (J. Kim et al., 2022). 
 

3.5. Major Depressive Disorder (MDD) 
 
For MDD / HC classification, five studies have been reported. In the first study, 31 
participants (14 HC and 17 MDD) were recruited and ten statistical features were extracted 
from ∆HbO of DLPFC and VLPFC and five of those features (∆HbO variance from left DLPFC, 



mean ∆HbO from left VLPFC, FWHM of ∆HbO from medial PFC, mean ∆HbO from right VLPFC 
and Kurtosis of ∆HbO from right DLPFC) gave the highest accuracy for both XG Boost 
classifiers as 92.6 % (Zhu et al., 2020). 
 
Similar statistical features are also used by Chao and colleagues (Chao et al., 2021) and they 
recruited 32 participants (16 MDD and 16 HC). By using statistical-based features with four 
vector-based features such as Cerebral Blood Volume (∆CBV), Cerebral Oxygen Change 
(∆COE), angle K (∆COE/∆CBV) and cascade forward neural network (CFNN), highest accuracy 
was achieved by using RNN and was found 99.86% by using only vector-based features. Also, 
this study claimed that AUC and angle K of fNIRS signals recorded from the prefrontal cortex 
(PFC) are specific neurological biomarkers for detecting MDD. Wang and colleagues 
recruited 96 subjects for MDD / HC classification (Wang et al., 2021) however, there is a 
great imbalance between classes (79 MDD and 17 HC subjects). Highest accuracy of 90% was 
achieved by using AlexNet model and correlation maps as input. 
 
Highest number of participants were attended to the studies Li and colleagues (n=363, 
MDD=177, HC = 186) (Z. Li et al., 2022) and Ho and colleagues (n=133, MDD = 65, HC=68) (C. 
S. Ho et al., 2022). In both studies, verbal fluency task (VFT), which is a popular task in MDD 
research to reveal potential differences between MDD and HC groups (Henry & Crawford, 
2005) were used. In both studies, SVM classifier were used and extracted features were 
integral and centroid values for Li and colleagues and FC of ∆HbO and ∆Hb for Ho and 
colleagues. When compared the results of both studies, Li and colleagues found higher 
accuracy (75.6 %) than Ho and colleagues (73%). 
 
On the other hand, when we analyzed the sample size and accuracy relationship for only 
MDD studies, there is a negative non-significant correlation is observed (r=-0.8, p=0.1). Due 
to the less number of studies, further studies are needed to clarify whether there is a 
significant trend between sample size and accuracy. 
 
 

3.6. Schizophrenia (SCZ) 
 
SCZ is the most studied population using fNIRS and ML approaches. In addition to 
conventional experimental studies since the first study published in 1994 (Okada et al., 
1994), eleven machine learning studies have been performed by utilizing fNIRS since 2010. 
The vast majority of those studies focused on the prefrontal cortex (PFC) based on 
differences between two populations, most popular features was mean ∆HbO (n=5) and FC 
of ∆HbO (n=4) and most popular ML algorithm is SVM (n=8). There is not significant 
correlation between sample sizes and accuracy values for SCZ studies (r=0.11, p=0.74). 
Among 11 studies only 5 of them were able to recruit more than 100 participants (Azechi et 
al., 2010; Ji et al., 2020; Z. Li et al., 2015; Xia et al., 2022; J. Yang et al., 2020).  
 
Among these four studies, the first study was performed by recruiting 120 participants (SCZ 
=60, HC =60) and 60 of them (30 HC, 30 SCZ) were used for training and testing a LDA 
classifier and the remaining participants (30 HC, 30 SCZ) were used for validation the LDA 
classifier (Azechi et al., 2010). Classification results by using only frontal mean ∆HbO showed 
a 78.3 % accuracy for the first group and for the second testing group, 65 % accuracy was 



observed. Li and colleagues recruited 240 participants (SCZ=120, HC=120) (Z. Li et al., 2015) 
and four different classifiers (LDA, SVM, KNN, GPC) were trained using the frontal mean 
∆HbO. The highest accuracy was found by using Radial Basis Function (RBF) SVM (83.37 %). Ji 
and colleagues were able to recruit 300 (SCZ=200, HC=100) participants in their study (Ji et 
al., 2020) and utilized FC of ∆HbO for classification. They found 89.67 % accuracy in their 
study. Also, Yang and colleagues recruited 200 participants (SCZ=100, HC=100) and utilized 
FC strength of ∆HbO for classification like previous study (J. Yang et al., 2020) and they found 
84.67 % accuracy. Xia and colleagues recruited 200 participants (SCZ=100, HC=100) and by 
using wavelet based features of ∆HbO and SVM, they found 87.00 % accuracy (Xia et al., 
2022).  Among these studies Ji and colleagues were able to find highest accuracy despite 
having a higher sample size. However, in general SVM based studies has higher accuracy 
compared to other classifiers (K-means, LDA, DL and other classifiers) (t(5)=4.838, p=0.010) 
despite not having statistically significant difference between their sample sizes (t(5)=1.693, 
p=0.131). In addition to efficiency of SVM, studies utilizing FC of ∆HbO provided greater 
accuracy than studies utilizing mean ∆HbO. Therefore, SVM and FC of ∆HbO might be an 
effective combination to accurately classify SCZ. 
 
On the other hand, Hahn and colleagues recruited 80 participants (SCZ =40, HC=40), used 
whole ∆HbO response from fronto-temporal region and performed a classification study 
utilizing a probabilistic method (Hahn et al., 2013) and 76% accuracy was found. Chuang et 
al. also focused on PFC-based biomarkers in SCZ and tried to classify them using a k-means 
approach (Chuang et al., 2014). 99 participants (SCZ =53, HC=46) were recruited and mean 
∆HbO was used as feature and highest accuracy was found as 71.72 % by using 6 channels 
located on left IFG (5 of them) and right IFG (one of them). PFC oriented specific channel 
selection approach was also used by Einalou and colleagues (Einalou et al., 2016). 27 
participants (SCZ:16, HC :11) were recruited and by using wavelet transform, 0.003-0.11 Hz 
frequencies were found critical for classification and genetic algorithm was used to select 
channels in PFC. Using SVM, they found 83.59 % accuracy. Another wavelet based SCZ 
classification study was performed by Dadgostar and colleagues (Dadgostar et al., 2018). 27 
participants (HC=11, SCZ =16) were recruited and frontal ∆HbO wavelet-based energy values 
for 0-0.108 Hz were extracted using WBD for 16 channels and channel selection was 
performed by using a genetic algorithm and this input was given an RBF-SVM classifier. 87.31 
% accuracy was reported by using only 6 channels. In addition to wavelet based features, 
Chou and colleagues utilized integral and centroid values of HbO response for classification 
(Chou et al., 2021). From 67 participants (33 first episode SCZ and 34 HC) integral and 
centroid values of oxyhemoglobin changes were computed from fNIRS signals during a VFT 
task. SVM and DNN were used as classifiers. DNN reached better accuracy than SVM, with 
79.9% while SVM accuracy was 68.8%. 
 
fNIRS-based functional connectivity was also considered as a biomarker in SCZ discrimination 
(Song et al., 2017). 76 participants (SCZ =42, HC=34) were recruited and activity from the 
frontotemporal region was recorded. After creating connectivity matrices for ∆HbO, ∆Hb 
and ∆HbT, eigenvectors extracted from the degree of node, clustering coefficient, local 
efficiency and global efficiency of three concentration changes were extracted as features 
and given as input to RBF – SVM classifier. Higher accuracies were reported by using ∆HbO 
and ∆Hb (85.5 %) compared to ∆HbT (80.3 %). In another connectivity based classification 
study, Eken and colleagues utilized dynamic functional connectivity of ∆HbO to classify SCZ 



(Eken et al., 2022). 83 participants (23 SCZ, 30 BP and 30 HC) attended to fNIRS recording 
session during reading the mind in the eyes (RMET) task. By using SVM, highest accuracy was 
found as 82.5 %.  
 

3.7. Other Populations 
 
Nine studies were included in this group focusing on populations from Amyotrophic Lateral 
Sclerosis (ALS), Bipolar disorder (BP), Traumatic Brain Injury (TBI), Tinnitus, Stuttering, 
Somatic Symptom Disorder (SSD), Migraine, Parkinson’s Disease (PD), Fibromyalgia (FM) and 
impulsivity. Sample size varies between 18-71 and found accuracy values were between 
62.64 - 100 %. Among these studies, vast majority of studies utilized SVM (n=5) as classifier, 
K-fold (n=7) as cross-validation approach and used statistical features of ∆HbO (n=3) and FC 
of ∆HbO (n=3) and only two studies performed hyperparameter optimization for 
classification. 

 
For ALS classification, Deligani and colleagues performed a classification by using peak value 
and AUC of ∆HbO and SVM as classifier.(Deligani et al., 2021). 18 participants (9 ALS, 9 HC) 
were recruited and 62.64% accuracy was found by using only fNIRS-based features. Eken and 
colleagues (Eken et al., 2022) also performed a classification to classify Bipolar disorder by 
recruiting 60 participants (30 BP and 30 HC) and FC of ∆HbO was used as feature. Highest 
accuracy was found by using SVM algorithm as 82.5 %. Karamzadeh and colleagues 
performed TBI classification by recruiting 61 participants (TBI =30, HC =31) (Karamzadeh et 
al., 2016). Statistical features of ∆HbO were extracted and, the highest accuracy was found 
as 84 % by using AUC, DFT coefficients and FWHM of ∆HbO activity and decision tree 
classifier. Shoustarian and colleagues published a Tinnitus classification study by recruiting 
46 participants (Tinnitus =25, HC = 21) (Shoushtarian et al., 2020). FC of ∆HbO and ∆Hb were 
used as features and highest accuracy was found as 78.3% by using NB classifier. Hosseini 
and colleagues performed a stuttering classification study by recruiting 32 children 
(stuttering :16, HC:16) (Hosseini et al., 2018). Statistical features were extracted from ∆HbO 
and highest accuracy was found by using SVM as 87.5 %.  
 
Eken and colleagues performed the first classification study on SSD population (Eken et al., 
2019). 40 participants (HC=21, SSD = 19) were recruited FC of ∆HbO was used as feature 82 
% accuracy was found by using SVM classifier. Chen and colleagues conducted a study to 
classify migraine levels (Chen et al., 2022). 34 participants (13 HC, 9 chronic migraine 
patients  (CM), 12 medication-overuse headache patients (MOH)) were attended to this 
study. Time domain feature extraction methods were performed on HbO and HHb signals in 
addition to total hemoglobin (HbT) and oxygen exchange (COE). Quantitative Discriminant 
Analysis (QDA) was used for classification and 90.9% accuracy was found for migraine / HC 
classification. 
 
PD classification study using fNIRS and EEG was conducted by Abtahi and colleagues (Abtahi 
et al., 2020). 18 participants (PD:9, HC:9) were recruited and by using only mean ∆HbO, 
81.23 % accuracy were found by utilizing SVM classifier. Gokcay and colleagues performed a 
FM classification study using likelihood-based decision level fusion approach of several 
classifiers (Gokcay et al., 2019). 36 participants (19 FM and 17 HC) were recruited and SVM, 
K-nearest neighborhood (KNN), and Linear Discriminant Analysis (LDA) with different 



parameters were trained and tested. After fusing the decision, 100 % accuracy was found. 
Erdogan and colleagues proposed a computer-based decision support approach for 
impulsivity classification (Erdogan et al., 2021) 71 participants (38 impulsive adolescents and 
33 HC) were attended to this study and connectivity-based features were extracted from 
fNIRS signals and 61.6 % accuracy was found by using SVM classifier. 
 

3.8. Sample Size and Accuracy 
 
Effect of sample size on accuracy was shown in Figure 4. Among these included studies only 
8 of them has more than 100 samples. 14 of these studies has sample sizes between 50 and 
100 and the rest of the studies has sample size lower than 50. To find the statistical 
relationship between sample size and accuracy, first we checked whether our sample size 
and accuracy values were normally distributed and found that while our sample size data 
was not normally distributed (W=0.685, p=5.904*10-9), accuracy values data was normally 
distributed (W=0.965, p=0.15). We performed Spearman’s rank correlation to understand 
the relationship between the sample size and accuracy and found that there is no significant 
correlation between them (r=-0.24, p=0.09). However, when we exclude the studies that 
have lower sample size than 20, we found a negative significant correlation between the 
sample size and accuracy (r=-0.38, p=0.009).  
 
When we perform the correlation analysis for the populations SCZ, ADHD, ASD, MDD and 
MCI separately, we found that there is no significant correlation between accuracy and 
sample size for ADHD (r=-0.018, p=0.97), ASD (r=-0.39, p=0.44), MCI (r=-0.22, p=0.72), SCZ 
(r=0.11, p=0.74) and MDD (r =-0.8, p=0.13). 
 
 

3.9. Classifiers 

 
Many different machine learning algorithms were used in fNIRS studies. Majority of fNIRS 
studies uses SVM (n=20), DL (n=10) methods and LDA (n=4) as classifiers. Distribution of 
classifiers and used populations are shown in Figure 5.a. SVM is an effective algorithm for 
low sample size and provides notable accuracy values even in high sample sizes and accuracy 
values were found between 61.60% - 92.70 % in studies published between Since 2014 to 
2022. SVM classifier was used in study to classify populations ADHD(n=3), ADHD/ASD (n=1), 
ASD(n=1), ALS(n=1), MDD(n=2), PD(n=1), SCZ(n=7), SSD(n=1), ST(n=1) and impulsivity(n=1). 
In studies that uses SVM, sample size varies between 17 and 363. 
 
On the other hand, second greatest classifier group is DL based methods. DL based methods 
require big data due to tuning the weights of methods during training session. However, in 
recent years data augmentation methods (adding gaussian noise, spikes, trend) on time 
series were used to increase the number of training samples after separating the validation 
and test datasets (Iglesias et al., 2023). DL based classifiers were applied to populations 
AD(n=1), ASD (n=3), MDD(n=2), MCI(n=3), SCZ (n=1) and accuracy values vary between 79.9 
% - 98.61 %. 
 

----Add Figure 4 Sample Size accuracy vs populations and classifiers--- 
 



 
3.10. Feature Engineering 

 
In this review, feature types can be grouped under three different categories; time series 
based features such as mean ∆HbO and statistical features such as mean, std, kurtosis, 
skewness, slope and functional connectivity-based features. Most popular features in these 
studies were functional connectivity by using ∆HbO (n=11), mean ∆HbO (n=11) and 
statistical features such as std. dev, variance, skewness which are generally used in BCI 
studies (n=8). Distribution of features with respect to populations are shown in Figure 5.b. 
Connectivity-based features have also emerged as another alternative input for ML 
algorithms. Due to its nature, resting-state-based classification studies using fNIRS utilize 
these features (Cheng et al., 2019; J. Li et al., 2016; Xu et al., 2019; Xu, Liu, et al., 2020). In 
addition to this, some task-based studies also use connectivity-based features (Eken et al., 
2019; Gokcay et al., 2019; Song et al., 2017; Yang et al., 2019).  
 

--- Add Figure 5 Here--- 
 

3.11. Optimizing Hyperparameters 

 

Hyperparameter optimization were performed only for 16 studies. In Figure 6.a. number of 
studies that applied parameter optimization with respect to classifiers are shown. To 
improve the performance of classifiers, optimizing hyperparameters using different 
approaches is an option. Vast majority of parameter-optimized classification studies used 
Grid-search parameter optimization (Z. Li et al., 2015; Yang et al., 2019; Yasumura et al., 
2017) and  Bayesian optimization (Eken et al., 2019; Hosseini et al., 2018). The grid-search 
algorithm creates all combinations of parameters and trains the classifier by using these 
parameters. After training all, it gives the optimum parameter set that provides the lowest 
validation error. Grid- search is computationally expensive both for time and space. Also, as 
the number of parameters increases, computational complexity becomes high. On the other 
hand, Bayesian optimization is a sequential iterative optimization process that aims to find 
the global optimum set of parameters using minimum iterations. Compared to grid search, it 
uses less training time but, considers fewer options. For deep learning studies, Adam 
(adaptive moment estimation) optimizer is the most popular method for parameter 
optimization and is generally preferred in several fNIRS-based deep learning studies (Xu, Liu, 
et al., 2020; Yang et al., 2019). 
 

3.12. Cross-Validation (CV) Techniques 

 

Most applied cross-validation types are k-fold cross-validation (n=18), leave-one-out cross 
validation (n=12) and hold-out cross validation (n=11) and Nested Cross-validation (n=6) In 
Figure 6.b. number of studies that applied cross-validation with respect to classifiers and 
cross-validation type are shown. We found that K-fold CV is the most popular CV method. In 
this method, observations are divided into K number of training and test folds that both 
training and test folds were stratified. For every fold, a classifier is trained by using training 
fold and tested by using test fold. This is done by K times. After having a classification score 
from every classifier, all these scores were averaged. It is ideal for moderate-sized 
(e.g.�� � 50 � 100		 datasets. However, for larger datasets, it causes computational 



complexity. In this review, we saw that studies that have various number of samples used K-
fold cross validation (min-max : 17 – 315).  
 
In LOOCV, only a single observation from data is used for the test and the rest is used for 
training. This operation was done for every observation. Therefore, you have n test scores 
and then the average score is estimated. It provides less bias since all data is used for 
testing. However, for the same reason, variation is high in scores. Also, for larger samples 
(e.g. > 100-1000) computational cost is high. For 12 studies that used LOOCV, sample sizes 
were between 40-300 and the accuracy values were between 71.72 – 99.30 %. 
 
For hold-out CV, data is separated as training and test set. Percentages vary around for 
training 60-90 % and test 10-40 %. Training and testing are done only once. This is ideal for a 
large dataset that requires more computational power and time. However, results are highly 
biased due to less generalization because training and testing samples might not represent 
the whole data. In this review, 11 studies that used hold-out CV have sample sizes lower 
than 100. These studies have generally higher accuracies (min 65 % - max 97.6  %). Also, 
among these 11 studies, 4 of them used deep learning which requires more data compared 
to conventional ML methods to adjust its weights depending on its size. 
 
For some studies, nested CV is also used (Crippa et al., 2017; Eken et al., 2019). Nested CV 
consists of two nested loops. The outer loop is always for generalization of ML models and 
the inner loop is either for hyperparameter optimization or rarely feature selection 
(Parvandeh et al., 2020). It is used for having an unbiased estimate of classification scores. 
To optimize classification results with unbiased results, nested CV is a highly reliable 
approach. We have 6 studies that used Nested CV which have sample sizes between 40 - 363 
and accuracy values were between 73-82.5 %. 
 

--- Add Figure 6 Here--- 
 

4. Discussion 

 
In this review, we analyzed the studies focusing of diagnostic ML applications by using fNIRS 
data. Compared to fMRI and EEG, few number of studies were published on diagnostic ML 
applications by using fNIRS. While several systematic reviews for diagnostic classification of 
SCZ (de Filippis et al., 2019; Shim et al., 2016) or ASD (Santana et al., 2022) were published 
by using fMRI or EEG, to our best knowledge this is the first review that focuses on 
diagnostic classification of disorders by using fNIRS and ML. Due to having similar features, 
fNIRS also shares the similar problems with other neuroimaging modalities.  
 

4.1. Sample Size 
 
Sample size is a chronic problem not only in conventional neuroimaging studies but also for 
ML applications. Among reviewed studies, only 8 of 45 studies have sample size greater than 
100. In a recent review that covers 200 papers on diagnostic ML applications by using fMRI 
revealed that majority of these studies have sample size less than 150 (Arbabshirani et al., 
2017). In a recent review it was reported that 300 neuroimaging studies published between 
2017 and 2018, have sample size around 23-24 (Szucs & Ioannidis, 2020). Low sample size in 



neuroimaging studies led to several problems in replicability (Turner et al., 2018), cause high 
variance (Mumford, 2012) and low sample size with circular analysis cause higher 
classification accuracies which is possibly a misleading signature for diseases such as ADHD 
(Pulini et al., 2019). Also, applied cross-validation will cause a large error bias when the 
sample size is low (Varoquaux, 2018). Previous studies reported that low sample size-based 
classification studies reach higher accuracy when higher sample sizes lead lower accuracies 
(Schnack & Kahn, 2016).   
 
To overcome sample size problem, first we think that fNIRS databases needs to be created. 
OpenfNIRS (https://openfnirs.org/data/), NITRC (https://www.nitrc.org/projects/fnirsdata/) 
were the only initiatives that allows sharing fNIRS data among researchers until now. 
However, few number of datasets are available in these databases and vast majority of 
these datasets include motion artifacts to test motion artifact correction methods. More 
specific population based databases needs to be created. Compared to fNIRS, there are 
several fMRI and MRI databases such as Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(Jack et al., 2008), openfMRI (Poldrack et al., 2013; Poldrack & Gorgolewski, 2017). 
Databases allow the researchers to reach big datasets and train and test their models. Like 
databases, more multi-center data collection should also be performed to generalize the 
performance of ML for diagnostic purposes. Until now, only one ML based multi-center 
studies were reported for ADHD (Yasumura et al., 2017).  
 
Another problem related to sample size is data standardization. It is a great necessity to 
standardize some critical procedures such as anatomical positioning on common templates 
such as MNI (Tsuzuki et al., 2007). At this point, either utilizing MRI data of subjects or using 
3D digitizers can be considered valid options to perform an accurate channel localization 
(Tsuzuki & Dan, 2014). Also, to assess regional biomarkers for every individual, cortical ROIs 
should be precisely defined and corresponding coordinates of this ROI should be reported. 
Some toolboxes provide anatomical information of channels by using MRI or 3D optode 
coordinate data such as AtlasViewer (Aasted et al., 2015), NIRS-SPM (Ye et al., 2009), 
NAP(Fekete et al., 2011a, 2011b) and fOLD (Zimeo Morais et al., 2018). This also will gain 
insight into further studies particularly comparing the results. For big datasets, datasets with 
a standard near-infrared data format .snirf (https://github.com/fNIRS/snirf) that includes 
spatial information are necessary. Many systems (NIRx, Kernel, Cortivision, Gowerlabs, 
Artinis) allows the researchers to export data in .snirf format. Therefore, not only the ML 
based classification or prediction studies related to specific disorders but also meta-analyses 
might be realized. 
 
In this review, we found that there is a negative correlation between sample size and 
accuracy. A similar result was previously reported another review which focuses on deep 
learning studies on psychiatric populations using neuroimaging approaches (Quaak et al., 
2021). Sample size has a great effect on classifier performance and higher sample sizes may 
include disease inhomogeneity therefore they can represent the whole population 
(Arbabshirani et al., 2017). After having enormous amount of high-quality data with accurate 
and precise spatial information, it will be possible to develop more accurate ML models for 
diagnostic purposes. a very common problem in low sample size and high dimension 
datasets is; they tend to cause overfitting if a proper feature selection is not done (Pereira et 
al., 2009). 



 

4.2. Selected Features 
 
For ML studies, the vast majority of the studies reported performance results by utilizing 
∆HbO. However, notable number studies also considers about ∆Hb as a critical feature 
source (Cheng et al., 2019; Chiarelli et al., 2021; Crippa et al., 2017; J. Li et al., 2016; Parent 
et al., 2019; Song et al., 2017; Sutoko et al., 2019; Xu et al., 2019; Xu, Hua, et al., 2020; Xu, 
Liu, et al., 2020; Xu et al., 2021; Yang et al., 2019; D. Yang et al., 2020). While selecting 
features for model training, ∆HbO based features are preferred for fNIRS analysis due to its 
high SNR compared to ∆Hb (Homae et al., 2010; Montero-Hernandez et al., 2018; Niu et al., 
2011; Zhang et al., 2010). It is also preferred in BCI studies (Naseer & Hong, 2015). However, 
some surprising results can be encountered such as finding higher accuracy by using ∆Hb 
than using ∆HbO (Crippa et al., 2017; Xu et al., 2019). This is a controversial issue. Although 
there are some exceptional cases (Strangman et al., 2002), common agreement is that 
decrease in ∆Hb is highly correlated with blood-oxygenation-level-dependent (BOLD) signal 
(Mehnert et al., 2013; Steinbrink et al., 2006). ∆HbO has a generally larger amplitude than 
∆Hb (Franceschini et al., 2000; Hirth et al., 1996; Shtoyerman et al., 2000). Due to this, ∆Hb 
is easily affected by optical measurement errors (Strangman et al., 2002) which possibly 
might create false positive results in either conventional statistical analysis or machine 
learning results. However, on the other hand, recent evidence showed that ∆Hb is less 
sensitive to extra-cerebral physiological noise interference and is found positively correlated  
to BOLD signal (Gervain et al., 2011; Mehnert et al., 2013; Steinbrink et al., 2006). There is 
no general consensus about the answer of the question which chromophore (∆HbO or ∆Hb) 
represents true hemodynamic behavior than the other. Due to this, we suggest that both 
signals should be considered as potential feature sources. In some cases, depending on the 
measure, ∆Hb might provide better classification accuracies compared to ∆HbO (Crippa et 
al., 2017; Eken, 2021).  
 
We also found that mean ∆HbO, FC of ∆HbO and statistical features were the most utilized 
features extracted from ∆HbO time series. A recent study comparing the performances of 
different features for MCI classification, found that, mean ∆HbO yielded higher accuracy 
than FC of ∆HbO (Xia et al., 2022). This is the only study that we were able to find such a 
comparison for a similar clinical group. However, this may change depending on the 
population, used algorithm, cross-validation type and many other factors. To interpret more 
generalizable results, more feature type comparison oriented studies are needed on specific 
clinical population datasets.  
 

4.3. Cross-Validation and Hyperparameter Optimization 
 
Cross-validation (CV) is a highly critical procedure for model generalization. After training the 
model, it should be tested on a separate different dataset or preferably validated and tested 
by using different datasets. However, due to data scarce which is often observed in 
neuroimaging studies, this generally might not be feasible. Only few studies applied an 
external dataset from a different cohort or site to test the model (Azechi et al., 2010; 
Hosseini et al., 2018; Yasumura et al., 2017). While determining the which CV type is used in 
studies, there are two aspects that needs to be considered bias/variance problem and model 
performance. In this review, three main CV technique are used. Leave-one-out cross 



validation (LOOCV), Hold-Out CV and K-fold CV. In LOOCV, only a single observation from 
data is used for test and the rest is used training. This operation was done for every 
observation. Therefore, you have n test scores and then average score is estimated. It 
provides less bias since all data is used for testing. However, for the same reason, variation is 
high in scores. Also, for larger samples (e.g. > 100-1000) computational cost is high. For hold-
out CV, data is separated as training and test set. Percentages vary around for training 60-90 
% and test 10-40 %. Training and testing are done only once. This is ideal for large dataset 
which requires more computational power and time. However, results are highly biased due 
to less generalization because training and testing sample might not represent the whole 
data. 
 
Another popular CV method is Nested CV. It is generally preferred to perform either 
automatic feature selection or hyperparameter optimization (Arbabshirani et al., 2017). 
Among reviewed studies, studies that used nested CV (n=6) found accuracy values between 
73-82.5 %. In these studies, vast majority of studies used SVM (Crippa et al., 2017; Eken et 
al., 2022; Eken et al., 2019; C. S. Ho et al., 2022; Z. Li et al., 2022). Vabalas and colleagues 
revealed that  k-fold showed strongly biased performance with small sample sizes and 
nested CV produced robust and unbiased performance regardless of sample size (Vabalas et 
al., 2019). Nested CV is a computationally intense approach because it includes two nested 
loops and the pseudocode of nested CV is; 
 

• Divide the dataset into k folds, 

• For each fold k_out=1….k: this is the outer loop for the generalization of classifier for to the selected 

hyperparameter 

o “Test_out” is the fold k_out, “Train_out” is the data except for other “Test_out” in fold k_out. 

o Divide the “Train_out” data into 10 folds 

o For each fold k_in2=1….k: this is the inner loop for the hyperparameter optimization. 

� By using “Train_out” data, “Test _in2” is the fold k_in2,  

� “Train_in2” is the data except for “Test_in2”. 

� Divide the “Train_in2” into 5 folds 

� Use “Train_in2”  with each hyperparameter that was defined and evaluate it by using 

“Test_in2” and save the performance metrics. 

o Check the average score of each parameters over k-folds and choose the best one. 

• Train the model with the best parameters by using “Train_out” and test it by using “Test_out”. Save 

the scores. 

• Find the average scores by using all k folds. 

 
On the other hand, hyperparameter optimization approaches was utilized to improve model 
performances in only 16 studies. In some studies, without applying nested cross validation 
hyperparameter optimization was carried out by following k-fold cross validation (Yasumura 
et al., 2017). For DL studies, almost all of the studies utilized hyperparameter optimization. 
When hyperparameter optimization was not carried out, hyperparameters of classification 
algorithms (e.g. regularization parameter (C) of SVM, distance type of K-nearest 
neighbourhood) were randomly selected in other studies without justification and this bias 
might have affected performance of models. 
 
To optimize hyperparameters for classifiers, grid-search, random-search and Bayesian search 
are the most popular optimization algorithms. In this review, among the all optimization 
algorithm vast majority of the studies uses grid-search optimization (Güven et al., 2020; Ji et 
al., 2020; E. Kim et al., 2021; Z. Li et al., 2015; Xia et al., 2022; Yasumura et al., 2017; Zhu et 



al., 2020) and Bayesian optimization (Eken et al., 2022; Eken et al., 2019; Hosseini et al., 
2018). Among these algorithms, grid-search are computationally expensive due to the fact 
that as number of hyperparameters increases, number of trained models increases. 
However, it provides the best result among the all trained models depending on the given 
hyperparameter search space. For random-search, only a randomly selected part of given 
hyperparameters are searched. This approach is much faster than grid-search however, it 
does not guarantee the best result. Compared to grid-search and random-search, Bayesian 
search is an iterative method which selects its parameter set by considering the previous 
round score instead of randomly selecting a parameter set as random-search did or 
searching whole parameter set combinations as grid-search did. We suggest that if the aim is 
to obtain the best accuracy result regardless of its training time, grid-search is a better 
choice due to providing the best performance. 
 

4.4. Limitations 
 
There are several limitations in this review. First, compared to other neuroimaging 
modalities, few number of studies are reported. Several reviews were published related to 
diagnostic abilities of functional neuroimaging techniques such as fMRI (Arbabshirani et al., 
2017; Bondi et al., 2023; Santana et al., 2022), EEG (Shim et al., 2016), PET (Duffy et al., 
2019) and their interaction to machine learning approaches.  
 
Studies generally reports multiple results, we extracted the best results among the results in 
a study. While reporting the studies, we basically focused on accuracy as the performance 
metric. While analyzing the studies, we generally focused on sample sizes, feature 
engineering and ML performance. However, there are also several critical factors that needs 
to be considered such as experimental design, focused ROI and data pre-processing pipelines 
of fNIRS signals. A recent study that compares different pre-processing approaches revealed 
that ignoring removal of task-evoked physiological noise led to different statistical results 
(Pfeifer et al., 2017). Also, a recent review showed that there is a high variability among pre-
processing methods carried out in fNIRS studies (Pinti et al., 2018). These factors should also 
be considered in future reviews. 
 

5. Conclusion 

 

To our best knowledge, this study is the first review that focuses on diagnostic ML 
applications of fNIRS. fNIRS has been continuously gaining importance in neuroscience 
research due to its notable advantages compared to other modalities. On the other hand, its 
translation to clinics as a diagnostic tool is a highly critical research field. Nowadays, as we 
are experiencing AI age, its interaction to fNIRS is inevitable. While it is still in early stages, 
there are several promising results that were reported by utilizing this cooperation.  
 
It is a widely known fact that fNIRS has several challenges such as data standardization, lack 
of data, and preprocessing problems. However, despite these pitfalls, there is a growing 
interest to understand the potential biomarkers to be used as discriminative parameters for 
different populations via fNIRS by utilizing ML approaches. In case of overcoming these 
problems mentioned above, ML diagnosis by utilizing fNIRS data for diagnostic purpose will 
have two benefits; 1) A critical decision support system for diagnosis without considering 



any subjective measure, 2) Suggesting potential biomarkers on cortical-regions for specific 
disorders that previously were not considered for diagnosis and compared to fMRI, these 
biomarkers might be more easier to reach. 
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Figure Captions: 
 
 
Figure 1. A general pipeline for classification or prediction of a clinical disease or disorder. 
fNIRS: Functional Near Infrared Spectroscopy, ΔHbO : Oxy-hemoglobin concentration 
change, ΔHb: Deoxy-hemoglobin concentration change, PCA : Principcal Component 
Analysis, LASSO: Least Absolute Shrinkage and Selection Operator, RFE : Recursive Feature 
Elimination, LOOCV: Leave-one-out cross validation, SVM: Support Vector Machine, KNN: K- 
nearest neighborhood, LDA: Linear Discriminant Analysis, GPC: Gaussian process classifier, 
CNN: Convolutional Neural Network. 
 
Figure 2. PRISMA flow chart that was followed in this review. 
 
Figure 3. Number of fNIRS-based machine learning studies that includes clinical populations 
since 2010. 
 
Figure 4. Accuracy values vs Sample size distribution with respect to classifiers and 
populations. DL: Deep Learning, LDA: Linear Discriminant Analysis, NB: Naïve Bayes, RF: 
Random Forest, SVM: Support Vector Machine, AD: Alzheimer’s Disease, ADHD: Attention 
Deficit and Hyperactivity Disorder, ASD: Autism Spectrum Disorder, BP : Bipolar Disorder, 
MCI: Mild Cognitive Impairment, MDD: Major Depressive Disorder, SCZ: Schiophrenia 
 
Figure 5. a) Distribution of number of studies with respect to classifiers and populations. b) 
Distribution of number of studies with respect to features and populations. DL: Deep 
Learning, LDA: Linear Discriminant Analysis, NB: Naïve Bayes, RF: Random Forest, SVM: 
Support Vector Machine, AD: Alzheimer’s Disease, ADHD: Attention Deficit and Hyperactivity 
Disorder, ASD: Autism Spectrum Disorder, BP : Bipolar Disorder, MCI: Mild Cognitive 
Impairment, MDD: Major Depressive Disorder, SCZ: Schiophrenia. HbO : Oxy-hemoglobin 
concentration change (HbO, Hb: Deoxyhemoglobin concentration change. RS: Resting State. 
 



Figure 6. a) Hyperparameter optimization of classifiers and b) Applied cross-validation types 
to classifiers. . DL: Deep Learning, LDA: Linear Discriminant Analysis, NB: Naïve Bayes, RF: 
Random Forest, SVM: Support Vector Machine, Y: Optimized, N: Not optimized. LOOCV: 
Leave-one-subject-out cross-validation, Nested CV: Nested Cross-Validation 















Table 1: Utilized databases and search terms 

 

Database Name Searching words 

Pubmed (classification[Title/Abstract] OR machine 

learning[Title/Abstract] OR 

prediction[Title/Abstract]) AND (functional near 

infrared spectroscopy[Title/Abstract] OR near 

infrared spectroscopy[Title/Abstract] OR diffuse 

optical imaging[Title/Abstract]) 

Web of Science (TI=(classification OR machine learning OR 

prediction)) AND TI=(functional near-infrared 

spectroscopy OR near-infrared spectroscopy OR 

diffuse optical imaging) 



First Author 
(Year) 

Populations Objective 

Experim
ent Type 
(Task / 

Resting) 

Used 
System 

Region of 
Interest 
(10-20 

position if 
available) 

Sample Size 
Used 

Features 

Machine 
Learning 
Algorithm 

Cross-
Validation 
Technique 

Classifier 
Hyperparameter 

Optimization 
(� / X) 

Highest 
Accuracy 

Other Measures 

Ishii-
Takahashi 
et al (2015) 

ADHD / HC 

To find a robust 

biomarker that 

reveals the 

effects of MPH 
on ADHD 

children 

SST 

Hitachi 

ETG-4000 
(52 

channels, 

17 source, 

16 
detectors) 

Bilateral IFC 
including 

frontal 

temporal lobe 

(T3-Fpz-T4) 

N(ADHD)=30, 

N (HC)=20 
Mean ΔHbO 

in L and R IFC 
LDA LOOCV X 81 % 

Sens. : %81, 

Spe. : %80 

Crippa et al 
2017 

ADHD / HC 

To classify 

ADHD and HC 

by utilizing 

multi-domain 
measures 

including fNIRS 

Visuo-

spatial N-

back 

working 
memory 

task 

DYNOT 

(32 

channels, 

8 source, 
24 

detectors) 

Bilateral 

Fronto-

temporal 

areas 
(centered F3-

F4) 

N(ADHD) =22, 

N(HC) = 22 

Principal 

components 

of Z scored 

ΔHb and 

ΔHbO data 

with Clinical 
data. 

SVM 
10-fold 

nested CV 
X 

ΔHb : 78% 

ΔHbO : 57% 

ΔHb + ΔHbO : 

72% 

ΔHb sens. : 72% 

ΔHb spe. : 82% 

ΔHbO sens. : 48% 

ΔHbO spe. : 67% 

ΔHbO + ΔHb sens. 

: 73% 

ΔHbO + ΔHb spe. 

: 68% 

Yasumura  
et al 2017 ADHD / HC 

ADHD patient 

classification 

from different 

centers in 

Japan. 

Reverse 

Stroop 

Task 

OEG-16, 

Spectratech 

Co. 

Bilateral 
PFC (centered 

Fpz, covered 

F7 and F8) 

Training Data 

N(ADHD)=108 

N(HC)=108, 

 

Validation Data 

 

N(ADHD)=62 

N(HC)=37, 

 

Mean ΔHbO 

of R & L PFC, 

Reverse 

Stroop Task 

performance 

values 

 

RBF-SVM 3-fold CV � 86.25 % 

Sens. : 88.71 % 

Spe. : 83.78 % 

AUC : 89.8 % 

Gu et al 
2018 

ADHD / HC 

ADHD 

classification via 

a working 

memory task. 

N-back 

Working 

memory 

task 

Hitachi 

ETG-4000 

(52 

channels, 

17 source, 

16 

detectors) 

Bilateral 
Fronto-

temporal lobe 

(centered Fpz, 

covered T3-
T4) 

N(ADHD) =20, 

N(HC) = 20 

Mean ΔHbO 

signal from 

Bilateral 

DLPFC, 
Inferior MFC, 

R posterior 

PFC, 

R Temporal 
cortex 

SVM 

(MVPA) 
LOOCV X 86.00 % 

Sens. : 84.00 % 

Spe. : 88.00 % 

AUC : 93.7 % 

Güven et al 
2020 

ADHD / HC 

ADHD 

classification by 

using fNIRS and 
EEG 

Auditory 
“oddball” 

paradigm 

fNIR Imager 

1100 (16 
channels, 4 

sources 10 

detectors) 

Prefrontal 

region 

N(ADHD) =23, 

N(HC) = 21 

Integral 

value of 

ΔHbO, 
Lempel-Ziv 

and Fractal 

dimension 

complexity 
values from 

EEG and ERP 

latency / 

amplitude 
values. 

SVM, MLP, 

Naïve Bayes 

Leave one-
subject- 

out CV 
� 

Naïve Bayes : 
79.54 % (EEG 

based features), 

93.18 % (EEG-

fNIRS based 
features), 77.27 

% (fNIRS based 

features) 

Sens (Naïve 

Bayes, EEG) : 

78.26 % 
Sens ( Naïve 

Bayes , fNIRS) : 

73.91 % 

Sens ( Naïve 
Bayes , EEG + 

fNIRS):  95.65 % 

 

Spe (Naïve Bayes, 
EEG) : 80.95 % 

Spe (Naïve Bayes, 

fNIRS) : 80.95 % 

Spe ( Naïve Bayes 



, EEG + fNIRS): 
90.47 % 

Ichikawa et 
al (2014) ADHD / ASD 

To distinguish 

children with 
ADHD and ASD 

using the HDR 

to a familiar 

face. 

Face 

familiarit
y 

(Subject’s 

mother 

face) task 

Hitachi ETG 

– 4000 
(24 

channels, 

10 source, 

8 detector) 

Bilateral 

Temporo-

occipital lobe 

(centered T5-

T6) 

N(ADHD)=9, 

N(ASD)=8 

Mean Z-

scores of 
hemodynami

c responses 

from each 

channel 

SVM 5-fold CV X 84 % - 

Sutoko et al 
2019 ADHD / ASD 

ADHD 

classification by 

using fNIRS 
obtained after 

MPH 

medication 

Go / No-
Go Task 

Hitachi 

ETG-4000 

(22 
channels, 8 

source, 7 

detectors) 

Fronto-

temporal 

region 
including 

inferior 

parietal lobe 

N(ADHD)=21, 
N(ASD)=11 

ΔHbO and 

ΔHb 

activation of 

R MFG, R 

angular and 

R PreCG for 

post MPH-

medication 

Simple, 
AND, OR, 

LDA, 

quadratic 

discriminan
t analysis, 

SVM 

LOOCV X 

82.00 % 

(By calculating 

pooled variance 

among all 
classifiers) 

Sens. : 93.00 % 
Spe. : 86.00 % 

Kim et al 
2021 

MCI/ AD/HC     

Classifying 

MCI/AD/HC 

groups using 

fNIRS 

Working 

memory  

NIRIST 
24 source  

32 detector 

Prefrontal 

cortex 

N(AD) = 18 
N(MCI) = 11 

N(HC) = 31        

Functional 
connectivity 

using ∆HbO 

ANN LOOCV � 

AD vs HC: 

94.4% 

MCI vs HC: 

99.3% 

- 

Ho et al. 
2022 

AD/HC 

Classification of 

control subjects 

and different 
variant of AD 

Oddball 

1 back 

memory 
VFT 

Custom 

made 

Prefrontal 

cortex 

N(HC) = 53 

N(asymptomatİ

c AD) = 28 

N (Prodormal 

AD) = 50 

N(AD 

Demantia) = 9 

∆HbO, ∆Hb, 

∆HbT time 

series 

CNN-LSTM 5-fold � 90% ± 1.2 - 

Kim et 
al.2022 

MCI/AD/HC 

Classification of 
AD by using 

NIRS signals 

from the 

olfactory task  

Olfactory N.CER Co 
Prefrontal 

cortex 

N(HC) = 70,  

N( MCI) = 42,  

N (Mild AD) = 

21 

  N(moderate 

AD) =35 

∆HbO, ∆Hb 

time series 

Random 

Forest 
10-fold x 

AD: 94.00 % ± 

3.40 

MCI : 92.06 % ± 

3.06 

Prec: 94.86 ± 2.36 

Recall:   93.33 ± 

4.51  

Cheng et al 
2019 ASD / HC 

Re-analysis of 

data collected 

in Li et al., 
2016. by using 

different 

features 

8min of 

resting 

state 

FOIRE-3000 

Shimadzu 

(44 

channels,1

6 sources, 

16 

detectors) 

Bilateral 

Temporal 

Lobe 

(T3-T4 

centered) 

N(ASD)=25, 
N(HC)=22 

Power values 

of ΔHbO (in 

0.02 Hz) and 

ΔHb (0.0267 

& 0.033 Hz) 

in right 

hemisphere 

Linear SVM 

1000-runs 

for 50% to 
50% Hold- 

out CV 

X 92.7 % 
Sens. : 90.2 % 
Spe. : 95.1 % 

Xu et al 
2019 ASD / HC 

Classification of 

ASD using fNIRS 

and deep 
learning 

approaches 

(CNN and GRU) 

8 min of 

resting-

state 
collected 

from IFG 

and TG 

FOIRE-3000 
Shimadzu 

(44 

channels,1

6 sources, 
16 

detectors) 

Bilateral IFG 

and Temporal 

Lobe 

(T7-T8 
centered) 

N(ASD)=25, 
N(HC)=22 

Raw resting 

state data 

(ΔHbO & 

ΔHb). 

CNN, KNN, 

SVM, LDA, 

RF, LR 

Hold-out 
validation 

(28 

participant 

was used 
for 

training) 

X 92.2% 
Sens. : 85. % 
Spe. : 99.4 % 

Xu et al 
2020 ASD / HC 

Classification of 

ASD using fNIRS 
and deep 

learning 

approaches 

(CNN and 

8min of 

resting 

state 

FOIRE-3000 

Shimadzu 
(44 

channels,1

6 sources, 

16 

Bilateral IFG 

and Temporal 

Lobe 

(T7-T8 

centered) 

N(ASD)=25, 

N(HC)=22 

Raw resting 

state data 

(ΔHbO & 

ΔHb) 

LSTM and 

CNN 

Hold-out 
(70% 

training, 

30% test) 

� 95.7 % 
Sens. : 97.1 % 

Spe. : 94.3 % 



LSTM) detectors) 

Xu et al 
2020 ASD / HC 

Classification of 
ASD using fNIRS 

and Sample 

entropy as a 

potential 
biomarker 

8min of 

resting 
state 

FOIRE-3000 

Shimadzu 

(44 

channels,1
6 sources, 

16 

detectors) 

Bilateral IFG 

and Temporal 

Lobe 
(T7-T8 

centered) 

N(ASD)=25, 

N(HC)=22 

Sample 

entropy 
K-means 

Hold-out 

(60% 

training, 

40% test) – 
100,500 

and 1000 

times 

X 97.6 % - 

Dahan et al 
2020 

ASD 

Classification 
ASD patients 

according to 

disorder 

severity 

Synchron

ization 

task 

Brite 23 

Artinis 
Medical 

Systems 

23 Channel N(ASD) = 26 Complexity  SVM, RF 
5-fold CV 
LOOCV 

X 96.3%  

Li et al. 
2023 

ASD/HC 
Classification of 

ASD children 

Resting 

state 

FOIRE-3000 

(44 

channels,1

6 sources, 
16 

detectors) 

12  channels 

on temporal 

and frontal 
lobes 

N(ASD)=25, 

N(HC)=22 

Multi scale 

entropy on 

HbO and Hb 

CNN 10-fold CV x 94%  

Deligani et 
al 2021 ALS/HC 

Classification of 

ALS patients 

from control 
group using 

fNIRS 

Visuo-

mental 
Task 

NIRScout 

Channels,8 

Detectors, 

7 

Pre/Frontal, 

central 

,temporal, 
parietal,  

Occipital 

N(ALS) = 9 

N(HC) = 9 

Peak and 

AUC of HbO 
SVM 

50% 
training 

and 50% 

test, 5-fold 

cross 
validation 

x 

87.51% 

For hybrid 

model 

(EEG + fNIRS) 

Sens.:82.13% 

Spe.:87.26% 

Zhu et al 
2020 

MDD / HC 

Classification of 
Major 

Depressive 

Disorder using 

fNIRS 

Grasp 

and 

release 
test 

BIOPAC, 
fNIR 

Imager-100 

(4 sources, 

10 
detectors, 

16 

channels) 

Bilateral 

prefrontal 

cortex 

N(MDD)=14, 

N(HC)=17 

Mean, 

variance, 

activity start 
time, left 

slope, right 

slope, 

kurtosis, 
skewness, 

AUC, FWHM 

and Peak 

amplitude of 

ΔHbO 

XGBoost 

and RF 

Hold-out 
validation 

(90% 

training, 

10% test) 

� 

XGBoost: 92.6 

% 

RF : 91.1 % 

XGBoost Sens. : 

84.8 % 

XGBoost Spe. : 

71.7 % 
RF Sens. : 82.3 % 

RF Spe. : 91.0 % 

Chao et al 
2021 

MDD / HC 

Classification of 

Major 

Depresive 

Disorder using 

fNIRS 

Emotiona

l sound 

test 

NIRScout 

22 channels  

Prefrontal 

cortex 

N(MDD) = 16 

N(MDD) = 16 

Mean, 

standard 

deviation, 

AUC and 

slope from 

ΔHbO, 

Cerebral 

Blood 

Volume, 

Cerebral 
Oxygen 

Exchange, 

Change of 

hemoglobin 
indices 

MNN, 

FNN,CFNN 

and RNN 

 X RNN : 99.86%  



Wang et al 
2021 

MDD/HC 

Classification of 
Major 

Depresive 

Disorder using 

fNIRS 

Before 

task 

silent/ on 

task/afte

r task 

silent        

De 

53 

channels, 

16 

emitting, 

16 reciving 

Pre-frontal 

cortex 

N(MDD) = 79 

N(HC) = 17 

Total, Peak, 
Valley, 

Average, 

Variance,  
Integral, 

Linear, 

Quadratic 

term, Power 
spectrum, 

Wavelet 

coefficient 

RestNet18, 

AlexNet, 

GBDT, SVM 

Hold out X 

RestNet18:76% 

SVM,GBT: 83% 

AlexNet: 90% 

(when use 

correlation 

coefficient) 

 

 

Precision: 91% 

F1-score: 88% 

Recall: 90% 

Li et al. 
2022 

MDD/HC 

Classification of 

Major 
Depresive 

Disorder using 

fNIRS 

VFT 

Hitachi 

ETG-4000 

(52 
channels, 

17 source, 

16 

detectors) 

bilateral 
prefrontal 

cortex, 

frontopolar 

cortex, and 
the anterior 

regions of the 

superior and 

middle 
temporal 

cortices 

N (MDD) = 177 

N( HC) = 186 

Time domain 

features 

Decision 

tree 

DA 

KNN 

Naïve bayes 

SVM 

Nested CV X 
For SVM : 

75.%±4.7%        

Senstivitiy: 75.0% 

Specificity: 81.4% 

Ho et al. 
2022 

MDD/HC 

Classification of 
Major 

Depresive 

Disorder using 

fNIRS 

VFT 

Hitachi 

ETG-4000 
(52 

channels, 

17 source, 

16 
detectors) 

Fronto-

temporal 

region 

N(MDD) = 65 

N(HC) = 69 

14 Time 
domain 

features 

FC of ∆HbO 

and ∆Hb 

SVM Nested CV X 73% 

Sens:64.52% ± 

17.22 

Spe: 73.33% ± 

21.21 

Gokcay et al 
2019 

FM / HC 

Classification of 
Fibromyalgia 

disease using a 

maximum-

likelihood 
based decision 

level fusion 

framework. 

Finger 

tapping 

task, 
Transcut

aneous 

electrical 

nerve 
stimulati

on task, 

Painful 

stimulati
on task 

Hitachi 

ETG-4000 

(24 
channels) 

Somatosensor

y Cortex, 

Motor Cortex, 

Inferior and 
Superior 

Parietal Lobe 

N(FM)=19, 

N(HC)=16 

Functional 

Connectivity, 

HDR, Clinical 
data 

SVM, KNN, 

LDA 

10-fold CV 

and 20-fold 

CV 

X 

After fusing  the 

classifiers; 

100% 

Maximum Sens. : 

100 % 

Maximum Spe. : 
100% 

Yang et al 
2019 

MCI / HC 

Early 

identification of 
MCI from PFC 

using fNIRS 

N-back, 

Verbal 

Fluency, 

Stroop 

task 

NIRSIT, 

OBELAB 

Inc. (24 

source, 32 

detectors, 

204 

channels 

available 

only 48 of 

them were 

used) 

Prefrontal 

cortex (Fpz 

centered) 

N(MCI)=15, 
N(HC)=9 

From L, M 

and R PFC, 

mean, slope, 
peak, 

skewness 

and kurtosis 

of ΔHbO & 

ΔHb with t-

map and 
correlation 

maps of all 

channels in 

LDA, CNN 

10-fold CV 

for LDA 
 

 

LDA : X 
CNN : � 

LDA Acc. : 76.67 
% 

(using N-back 

and stroop 

task) 
 

CNN Acc. : 

90.62 % 

(using t-maps of 
N-back task) 

- 



these 
locations 

Yang et al 
2021 MCI / HC 

Same as  Yang 

et al 2019 

Resting 

state 

NIRIST 

24 source  
32 detector 

Forehead 

Prefrontal 
(FPz) 

N(MCI)=15, 

N(HC)=9 

Mean, 

Standard 
deviation 

and Variance 

of ΔHbO & 

ΔHb 

CNN 5-fold CV X 97.01% - 

Yang et al 
2020 MCI / HC 

Same as  Yang 

et al 2019 

N-back, 

Verbal 

Fluency, 

Stroop 

task 

NIRIST 

24 source  

32 detector 

Forehead 

Prefrontal 

(FPz) 

N(MCI)=15, 

N(HC)=9 

Statistical 

Features of 

ΔHbO & ΔHb 

CNN 5-fold CV � 98.61 %  - 

Abtahi et al 
2020 PD / HC 

Classification of 
Parkinson 

Disease using 

fNIRS, EEG and 

Body sensor 
data. 

8 tasks 

was 

performe

d 

RH FT 

LH FT 

RH Flip 

RA 

Moveme

nt 

LH Flip 

LA 

Moveme

nt 

RiF 

Stomping 

LF 

Stomping 

 

NIRx Inc. 

NIRScout (8 

source, 8 

detector,18 

channels) 

Mainly motor 

cortex and 

surrounding 

regions 

N(PD)=9, 

N(HC)=9 

EEG : Power 

in bands 

Theta, Alpha, 
Beta, 

fNIRS : mean 

averaged 

HbO2 for 
each channel 

& Sensor 

data 

SVM 

(Linear, 

Polynomial 

and RBF 

kernel) 

Hold-out 

(60% 

training, 

%40 

testing) 

X 

fNIRS : 81.23 % 
EEG : 92.79 % 

fNIRS + EEG : 

92.27 % 

fNIRS + EEG + 
Sensor: 93.40 % 

- 

Azechi et al 
2010 SCZ / HC 

Classifying SCZ 

using fNIRS 
based features. 

Verbal 

Fluency 

Task, 
Tower of 

Hanoi 

task, 

Sternber
g task, 

Stroop 

task 

Hamamats

u NIRO-200 

Frontal region 
from 

Prefrontal 

cortex to 

Inferior 
Frontal Gyrus 

(Fp1-Fp2 

centered, F7-

F8 referenced) 

First group 

N(SCZ)=30, 
N(HC)=30 

 

Second group 

N(SCZ)=30, 
N(HC)=30 

 

Mean ΔHbO 

and Task 

performance 

data 

LDA 

After 
training 

classifier by 

using first 

group 
data,secon

d group 

was also 

classified. 

X 

 

 
First group 

(Mean ΔHbO) : 

78.3 % 
 

Second group 

(Mean ΔHbO): 

65 % 

First group Sen. 

(Mean ΔHbO) : 

80% 

First group Spe. 

(Mean ΔHbO) : 

76,6% 

 

Second group 

Sen. (Mean 

ΔHbO) : 96,7% 

Second group 

Spe. (Mean 

ΔHbO) : 33,3% 

 

Hahn et al 
2013 

SCZ / HC 

Classification of 

SCZ using a 

probabilistic 
approrach. 

N-back 

task 

 

 
Hitachi 

ETG-4000 

(52 

channels, 
17 source, 

Fronto-

temporal 

(Fp1-Fp2, T3-
T4 referenced) 

N(SCZ)=40, 

N(HC)=40 

Block 

averaged 

ΔHbO 

response 

GPC LOOCV X 76% 

Sen. :80 % 

Spe. : 72.5 % 

PPV : 73.8 % 
NPV: 76.3 % 



16 
detectors, 

22 channels 

of them 
were used) 

 

 

Chuang et al 
2014 

SCZ / HC 

Classifying 

Schizophrenia 

and healthy 

controls mainly 

focusing on PFC 

Verbal 

Fluency 

Task 

Hitachi 

ETG-4000 

(52 

channels, 

17 source, 

16 

detectors) 

Bilateral 

Prefrontal 

cortex and 

Temporal 
Lobe 

(Centered Fz, 

Fp1-Fp2, T3-

T4 referenced) 

N(SCZ)=53, 
N(HC)=46 

Mean ΔHbO, 
K-means 
classifier 

LOOCV X 

Acc. : 68.69 % 
(using 52 

channels) 

Acc. : 71.72 % 

(using 6 
channels that 

were identified 

using 

Kolmogorov-
Smirnov Test) 

Using 52 channels 

Sens : 85% 

Spe. : 50% 

 
Using 6 channels 

Sens : 77% 

Spe. : 65% 

 

Li et al 2015 SCZ / HC 

Comparison of 

classifier 

performance 

using fNIRS 

while classifying 

schizophrenia 

Verbal 
Fluency 

Task 

Hitachi 

ETG-4000 

(52 
channels, 

17 source, 

16 

detectors) 

Fronto-

temporal 

region (Fz 

centered, Fp1-

Fp2,T3-T4 

referenced) 

N(SCZ)=120, 

N(HC)=120 

Mean ΔHbO 

from 

different 

channels 

LDA, SVM, 

KNN & GPC 
LOOCV � 

SVM Acc. : 

83.37 % 
- 

Einalou et al 
2016 SCZ / HC 

Classification of 

schizophrenia 

using selective 

channels and 
functional 

connectivity 

pattern 

Stroop 

task 

NIROXCOPE 

301 (16 

channels, 4 
sources, 10 

channels) 

Frontal region 
N(SCZ)=16, 

N(HC)=11 

ΔHbO 

Wavelet 

based energy 
values for 

specific 

frequency (0-

0.108 Hz) 

SVM 7-fold CV X 83.59 % 
Sen. : 88.71 % 

Spe. : 74.57 % 

Song et al 
2017 

SCZ / HC 

Classification of 
schizophrenia 

using fNIRS 

based 

connectivity 

One-back 

working 

memory 

task 

Hitachi 

ETG-4000 
(52 

channels, 

17 source, 

16 
detectors) 

Fronto-

temporal 

region (Fz 

centered, Fp1-

Fp2, T3-T4 

referenced) 

N(SCZ)=42, 

N(HC)=34 

Eigenvectors 

extracted 

from degree 

of node, 
clustering 

coefficient, 

local 

efficiency 
and global 

efficiency of 

ΔHbO, ΔHb 

and ΔHbT 

connectivity 

matrices 

RBF-SVM LOOCV X 

ΔHbO : 85.5 % 

 

ΔHb : 85.5 % 

 

ΔHbT : 80.3 % 

ΔHbO Sens.: 92.8 

% 

ΔHbO Spe. : 76.5 
% 

 

ΔHb Sens.: 92.8 % 

ΔHb Spe. : 76.5 % 

 

ΔHbT Sens.: 92.8 

% 

ΔHbT Spe. : 64.7 

% 

Dadgostar 
et al 2018 

SCZ / HC 

Classification of 

schizophrenia 

using selective 

channels in 

frontal regions 

Stroop 

task 

NIROXCOPE 

301 (16 

channels, 4 

sources, 10 

channels) 

Frontal region 
N(SCZ)=16, 

N(HC)=11 

ΔHbO 

Wavelet 

based energy 

values for 
specific 

frequency (0-

0.108 Hz) 

RBF-SVM 7-fold CV X 

Using 6 
channels : 

87.31 % 

 

Using 16 

channels: 74.31 

% 

Using 6 channels 
Sens. : 91.11 % 

Spe. : 79.70 % 

 

Using 16 channels 

Sens. : 76.71 % 

Spe. : 69.80 % 



Ji  et al 2020 SCZ / HC 

Classification of 

Schizophrenia 

using seed 

based 

functional 

connectivity 

Verbal 

Fluency 
Task 

Hitachi 
ETG-4000 

(52 

channels, 
17 source, 

16 

detectors) 

Fronto-

Temporal 

(Fp1, Fp2, Fz, 
T3 and T4 

centered) 

N (SCZ) = 200, 

N (HC)  = 100 

Seed- Based 

Functional 
Connectivity 

RBF- SVM LOOCV � 89.67 % 
Sens. : 93.00 % 

Spe. : 86.00 % 

J.Yang et al. 
2020 SCZ/HC 

Classification of  
Schizophrenia 

and control 

subjects 

Verbal 

fluency 

Task 

Hitachi  
ETG-4000 

52 

Channels 

Bilateral 

prefrontal and 

temporal 

N(SCZ) = 100 

N(HC) =  100 

Functional 

connectivity 

LDA 
GPC 

KNN 

SVM 

LOOCV 
& 

10 and 20 

fold cv 

X 
For SVM: 

84.67% 

Sens: 92% 

Spe: 70% 

Chou et al 
2021 SCZ / HC 

Classification of 

First-Episode 

Schizophrenia 

using Deep and 

Machine 

Learning 

Verbal 

Fluency 

Task 

Hitachi 
ETG-4000 

(52 

channels, 

17 source, 
16 

detectors) 

Fronto-

Temporal 

(Fp1, Fp2, Fz, 

T3 and T4 
centered) 

N(SCZ)=33 

N(HC)=34 

Integral and 

centroid 

values of 

hemodynami
c response 

SVM, Deep 

Neural 

Network 

7-fold CV 
DNN :� 

SVM : X 

SVM:  

Acc. : 68.6 %,  

 

DNN  
Acc. : 79.7 %,  

SVM  
Sens. : 70.1 %, 

Spe :64.6 % 

 

DNN  
Sens. : 88.8 %, 

Spe. :74.9 % 

Xia et al 
2022 

SCZ / HC 

Classification of 

SCZ patients by 
using ML and 

following a 

channel 

optimization 
approach 

Verbal 

Fluency 

Task 

Hitachi 

ETG-4000 
(52 

channels, 

17 source, 

16 
detectors) 

Fronto-

temporal 

N(SCZ)=100 

N(HC)=100 

Mean ΔHbO, 

Wavelet and  

FC of ΔHbO 

SVM 10-fold CV � 
Wavelet ΔHbO 

SVM: 87.00 % 

Sensitivity : %91.7 

Specificity : %77.3 

Eken et al. 
2022 

SCZ/BP/HC 

Classification of 

HC/BP and SCZ 

subjects 

RMET 

Hitachi 

ETG-4000 
(52 

channels, 

17 source, 

16 
detectors) 

Fronto-

temporal 

N(SCZ) = 23; 

N(BP)= 30; 

N(HC) = 30 

Dynamic 

Functional 

Connectivity 

SVM, LDA, 

KNN 
10-fold CV � 

BP & HC  

LDA: 79%±6.4% 

SZC & BP 

SVM 

:75.5%±6.6% 

SCZ & HC: 

SVM: 

82.5%±5.1% 

BP & HC: 

Sens: 78.3%±8.9% 

Spe: 80%±6.9% 
SCZ & BP: 

Sens:83.3%±8.6% 

Spe:66.6%±9.9% 

SCZ & HC: 
Sens: 83.3%±8.6% 

Spe:81.6%±7.6% 

Eken et al 
2019 

SSD / HC 
Classifying SSD 

by using fNIRS. 

Painful 

stimulati

on task 

with 

brush 

stimulati

on. 

Hitachi 

ETG-4000 

(52 

channels, 

17 source, 

16 

detectors) 

Somatosensor

y, Motor, 

Parietal, 

Temporal, 

Posterior 

Frontal region 

 

N(SSD)=19, 

N(HC)=21 

Correlation 

coefficients 
obtained 

from 

dynamic 

functional 
connectivity 

for three 

different 

stimulus 

LDA & SVM 
10-fold 

Nested CV 
� %82 

Sens.: 85% 

Spe.: 81% 

Hosseini et 
al 2018 

ST / HC / RST 

Classifying 

children with 

stuttering using 

fNIRS 

Speech 
producti

on task 

TechEn 

CW6 (6 

source, 10 

detector, 

18 

channels) 

Inferior 

Frontal Gyrus, 

Superior 

Temporal 

Gyrus, Pre 

Central Gyrus 

N(ST1) = 16, 

N(HC)=16, 
N(RST)=14 

(additional test 

group) 

Statistical 

features, 

Morphologic

al features, 
NAUS, Hjorth 

mobility, 

Hjorth 
Activity, 

Bicorrelation, 

SVM, KNN, 

decision 
tree, 

ensemble, 

LDA 

5-fold CV � 
Acc. SVM: 87.5 

% 

Sens. SVM : 85 % 

Spe. SVM : 90 % 



 

 

Table 1. fNIRS studies that utilizes Machine Learning for clinical populations. Acc. : Accuracy, ADHD : Attention Deficit and Hyperactivity Disorder, ASD : Autism Spectrum Disorder, AUC : 

Area under curve, BP : Bipolar Disorder, CNN : Convolutional Neural Network, CV: Cross Validation, DFT: Discrete Fourier Transform, DLPFC : Dorsolateral Pre Frontal Cortex, EEG: 

Electroencephalography, FM: Fibromyalgia, FWHM : Full Width Half Maximum, GPC : Gaussian Process Classifier, HC: Healthy controls, HDR : Hemodynamic response, IFC: Inferior Frontal 

Cortex, IP : Impulsive disorder, KNN : K-nearest neighborhood, L : Left,  LA : Left Arm, LDA: Linear Discriminant Analysis, LF : Left Foot, LH : Left Hand, LOOCV : Leave-one-out cross validation, 

LR : Linear Regression, LSTM: Long-short term memory, Max. : Maximum, MCI : Mild Cognitive Impairment, MDD : Major Depressive Disorder, MFG: Middle Frontal Gyrus, MFC : Medial 

Frontal Cortex, MI : Primary Motor Cortex, Min. : Minimum, MLP : Multi-Layer Perceptron, MPH : Methylphenidate, MVPA : Multi-Voxel Pattern Analysis, NA: Not available, NAUS : 

Normalized Area Under Signal, NPV : Negative Predictive Value, PFC: Pre-frontal Cortex, PPV : Positive Predictive Value, PreCG: Pre Central Gyrus, R: Right, RA : Right Arm, RF : Random 

Forest, RBF : Radial Basis Function, RiF: Right Foot, RH : Right Hand, RST : Recovered from Stuttering, QDA : Quantitative Discriminant Analysis, SCZ : Schizophrenia, Sens. : Sensitivity, SI: 

Somatosensory Cortex, SMA : Supplementary Motor Area, Spe. : Specificity, SSD : Somatic Symptom Disorder, SST: Stop Signal Task, ST : Stuttering group, ST1 & 2: Stuttering group 1 & 2, 

SVM : Support Vector Machine, TBI : Traumatic Brain Injury, ΔHb : Deoxy-hemoglobin, ΔHbO : Oxy-hemoglobin. 

Variance. 

Karamzadeh 
et al 2016 TBI / HC 

Classification of 

TBI using fNIRS 

Event-
related 

complexi

ty task 

fNIR 

Devices LLC 
(16 

channels, 4 

source, 10 

detectors) 

Pre frontal 

cortex 

N(TBI)=30, 

N(HC)=31 

Mean, 
Variance, left 

slope, right 

slope, 

kurtosis, 
skewness, 

AUC, FWHM, 

peak 

amplitude, 
activity start 

time, DFT 

coefficients 

of ΔHbO 

activity curve 

 

LDA, 

Decision 
Tree & SVM 

1000-fold 

CV 
X 

Using features 

AUC, DFT 

coefficients and 

FWHM of ΔHbO 

: 84% 

Using features 

AUC, DFT 
coefficients and 

FWHM of ΔHbO 

Sens.: 85% 

Spe.: 84% 

Shoustarian 
et al. 2020 

Tinnitus/HC 

Classification 

and Prediction 

of Tinnitus 

Visual, 

Auditory 

and 

Resting 

state 

NIRScout  
N(Tinnitus )= 25 

N(HC) = 21 

Functional 

connectivity 

NB, KNN, 

ANN, Rule 

introductio

n 

10-fold CV X 

Classification 

Acc: 78.3% 

Prediction  

Acc:87.32% 

Classification: 
Sens:72.33% 

Spe:64.25% 

Prediction: 

Sens:51.23% 
Spe.:95.12% 

Erdogan et 
al 2021 

IP      / HC       

Classification of 

impulsive and 

control groups   

Stroop 

task 
ARGES 

Prefrontal 

cortex 

N(IP) = 38 

N(HC) = 33 

Functional 

connectivity 

and behavior 
features 

SVM, ANN 10-fold CV X 

ANN : above 

90% 

SVM: 92.2% 

 

Chen et 
2022 Migraine /HC 

Classification of 

migraine and 

HC 

  Mental 

Arithmetic 
Custom 
made 

Frontal and 
Prefrontal 

N(Migraine) 

=21 
N(HC) = 13 

 

Statistical 
Features 

LDA, QDA 
LOOCV 

Hold out 
X QDA : %90.9 

For CM: 

Spe: 75% 

Sens: 100% 
For MOH: 

Spe: 100% 

Sens: 75% 


