Predicting COVID-19 case status from self-reported symptoms and behaviors using data from a massive online survey
Mashrin Srivastava, Alex Reinhart, Robin Mejia
doi: https://doi.org/10.1101/2023.02.03.23285405
Mashrin Srivastava
1Machine Learning Department, Carnegie Mellon University
Alex Reinhart
2Department of Statistics & Data Science, Carnegie Mellon University
Robin Mejia
2Department of Statistics & Data Science, Carnegie Mellon University

Article usage
Posted February 07, 2023.
Predicting COVID-19 case status from self-reported symptoms and behaviors using data from a massive online survey
Mashrin Srivastava, Alex Reinhart, Robin Mejia
medRxiv 2023.02.03.23285405; doi: https://doi.org/10.1101/2023.02.03.23285405
Subject Area
Subject Areas
- Addiction Medicine (280)
- Allergy and Immunology (579)
- Anesthesia (139)
- Cardiovascular Medicine (1946)
- Dermatology (184)
- Emergency Medicine (333)
- Epidemiology (11102)
- Gastroenterology (624)
- Genetic and Genomic Medicine (3168)
- Geriatric Medicine (308)
- Health Economics (561)
- Health Informatics (2042)
- Health Policy (863)
- Hematology (310)
- HIV/AIDS (682)
- Medical Education (317)
- Medical Ethics (92)
- Nephrology (334)
- Neurology (2986)
- Nursing (164)
- Nutrition (463)
- Oncology (1552)
- Ophthalmology (477)
- Orthopedics (185)
- Otolaryngology (266)
- Pain Medicine (202)
- Palliative Medicine (57)
- Pathology (403)
- Pediatrics (912)
- Primary Care Research (355)
- Public and Global Health (5591)
- Radiology and Imaging (1093)
- Respiratory Medicine (759)
- Rheumatology (338)
- Sports Medicine (289)
- Surgery (343)
- Toxicology (48)
- Transplantation (159)
- Urology (132)