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Abstract 

Heart failure management is challenging due to the complex and heterogenous nature of its pathophysiology which 

makes the conventional treatments based on the “one size fits all” ideology not suitable. Coupling the longitudinal 

medical data with novel deep learning and network-based analytics will enable identifying the distinct patient 

phenotypic characteristics to help individualize the treatment regimen through the accurate prediction of the 

physiological response. In this study, we develop a graph representation learning framework that integrates the 

heterogeneous clinical events in the electronic health records (EHR) as graph format data, in which the patient-

specific patterns and features are naturally infused for personalized predictions of lab test response. The framework 

includes a novel Graph Transformer Network that is equipped with a self-attention mechanism to model the underlying 

spatial interdependencies among the clinical events characterizing the cardiac physiological interactions in the heart 

failure treatment and a graph neural network (GNN) layer to incorporate the explicit temporality of each clinical 

event, that would help summarize the therapeutic effects induced on the physiological variables, and subsequently on 

the patient’s health status as the heart failure condition progresses over time. We introduce a global attention mask 

that is computed based on event co-occurrences and is aggregated across all patient records to enhance the guidance 

of neighbor selection in graph representation learning. We test the feasibility of our model through detailed 

quantitative and qualitative evaluations on observational EHR data.  

 

Introduction 

Heart failure (HF) is a complex clinical syndrome resulting from either structural or functional cardiac impairment in 

the capacity of ventricles to fill up with or eject blood1 and is associated with significant morbidity, mortality and 

health care expenditures worldwide2,3. Heart failure is not a singular disease but is rather characterized by a broad 

spectrum of etiologies and pathophysiologies leading to heterogeneous patient subgroups3,4. This phenotypic diversity 

ensues variability in the treatment outcomes across patients, thus imposing a great challenge on effective intervention 

administration in curing heart failure.  

 

The key to resolving this disease heterogeneity is in identifying the patient subgroups underlying the physiological 

deviations (i.e., phenotypes)5,6,7. This notion intuitively portrays the real-world clinical prognosis workflow – the 

physician first performs diagnostic tests to quantify the phenotypical observations related to the patient that would 

help them make a potential diagnosis8 and then tracks the disease prognosis through the patient’s response to treatment. 

The conventional approaches to heart failure management, however, have been inadequate in contemplating the 

phenotypic heterogeneity of this complex disease as treatment is extrapolated based on the average population, 

inducing suboptimal patient care and quality of life. Apparently, heart failure has the prospect of benefitting from 

stratified management strategies (i.e., precision medicine) that would ensure targeted treatment and prevention for 

each heart failure subgroup, while considering the individual differences among patients.  

 

Although the general focus of precision medicine has been on omics-type “big data”, in particular genomics data, 

nevertheless, in the case of heart failure the genomic-centric approach is not ideal owing to its limited genetic 

components and associated environmental triggers in most instances7,9. In the recent past, Electronic Health Records 

(EHR) have contributed to generating enormous volumes of time-based phenotypic data that is characterized as 

intrinsically “big” due to its complexity (i.e., variety) and the bulk of heterogeneous information available per patient 
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(i.e., volume), that is much greater in amount compared to any other patient databases10. The power of precision 

medicine lies in sieving through this EHR data to mine the patients’ health-related patterns and features that would 

enable the stratification of the heart failure cohort into therapeutically homogeneous patient subgroups. In order to 

make sense of this longitudinal data and successfully establish the patient patterns into actionable insights, it is of 

critical importance to harness advanced analytics such as deep learning for improved prognostication of treatment 

outcomes.    

 

In physiological response prediction, regression analysis on a biomarker is performed as an indicator of the patient’s 

pharmacological response to a therapeutic intervention. If there exists a close association between a biomarker and a 

hard clinical endpoint (e.g., mortality, hospitalization) reflected through the changes in the biomarker measurements 

following treatment, it suffices to substitute the hard end point with the biomarker as a surrogate endpoint11. Blood 

pressure (BP) provides a non-invasive measurement of cardiac function and as supported by several studies, serves as 

a physiological biomarker that has been shown to have a consistent relationship with cardiovascular mortality and 

morbidity12,13. According to large cohort studies and randomized controlled trials, blood pressure is regarded as a valid 

surrogate endpoint as high blood pressure was found to be a risk factor for cardiovascular events, with a reduced level 

of blood pressure diluting the risk of such adverse outcomes12,14,15,16. Therefore, predicting the prognostic value of 

blood pressure as the drug response could possibly uncover the differences in the pathophysiological mechanisms 

defining the heterogeneous prognosis of heart failure to help guide the appropriate therapies to the patient subgroups; 

thus could serve as a valuable tool to cross-check the physician’s decision making in the intervention administration. 

The adoption of computer-assisted outcome prediction in the form of deep learning models holds great promise in 

providing sufficient computational and statistical power to understand and interpret the role of biomarkers in deriving 

prognostic insights and identifying the phenotypes towards enhancing tailored therapeutic strategies in heart failure 

management. 

 

In spite of the fact that traditional deep learning models such as multilayer perceptron (MLP), convolutional neural 

network (CNN) and recurrent neural network (RNN) have yielded remarkable performance in treatment outcome 

prediction tasks17-21, they fail to embody the complex topological structure of the non-euclidean data22,23. The 

physiological lab measurements in EHR form multivariate time-series data, which is present in a non-euclidean space 

as defined by the temporal and spatial dependencies24,25 among the clinical events. On one hand, the sequential 

measurements recorded over different visits for each clinical event could evolve over time to accurately monitor heart 

failure severity and progression, manifesting an inherent temporality in EHR. On the other hand, the synergistic 

interactions among different clinical events in the causal pathway of heart failure pathophysiology portray the spatial 

dynamics. This spatial-temporal structure of physiological recordings in EHR exists as an irregular grid due to the 

diverse and arbitrary linkages among the clinical events, which can be naturally formalized as graph data. Generalizing 

deep learning on graph-structured data offers the combined benefit of harnessing the data-driven capability of deep 

learning techniques to effectively model the intrinsic relationships among the nodes in the graph. Graph representation 

learning is such a paradigm that encodes the graph through projection to a low-dimensional vector space while 

maximally preserving the graph topology and node properties and has witnessed enormous success in various 

biomedical applications23,26. The utility of graph representation learning in treatment outcome prediction is currently 

in its infancy. A recent work27 performed lab test response prediction by first using Transformers to encode the 

longitudinal diagnosis and medication information in the patient's EHR. It then uses Graph Attention Networks (GAT) 

to encode the similarity among the patients and the lab interaction-based external knowledge. The representations are 

finally concatenated together with the patient's past lab test response information to get the patient representation. 

However, a major limitation of this work is that the Transformer-encoded sequential representation and the GAT-

encoded graph representation are learned separately and then combined, which could cause important information loss 

along the spatial domain.  

 

To directly forecast the changing of the physiological biomarker which is critical to facilitate physicians in decision-

making for HF patients, we propose an end-to-end graph-based unified framework that learns the patient 

representation by jointly modeling the underlying spatial and temporal patterns in the EHR and optimizes it for blood 

pressure forecast. First, to model the historical physiological information in the patient’s EHR, we construct a 

knowledge graph relating the heterogeneous clinical events in the medical history through temporal connectivity and 

timestamp features. We then propose a Transformer-based Graph Neural Network model to propagate and exchange 

patient-specific information across neighboring nodes to simultaneously learn the spatial and temporal interactions in 

the graph structure to support personalized response predictions.   
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Methods 

Data Collection and Preparation: 

The study cohort was obtained from Mayo Clinic’s United Data Platform (UDP), a data warehouse that contains, 

consolidates, and standardizes all clinical data collected within the institution. We identify patients with Heart Failure 

conditions using the diagnosis codes listed in Table 1. With each patient record corresponding to a single visit, we 

utilize the demographics, diagnosis, lab test and medication information to create the HF dataset. We evaluate the 

pharmacological effect of five categories/classes of drugs - Angiotensin-converting-enzyme inhibitors (ACEI), Beta 

Blocker (BB), Angiotensin II receptor blockers (ARB), Statin and Loop Diuretic (LD) - and create the dataset for each 

separately by using the corresponding medication codes to retrieve the relevant patient records. Refer to Table 2 for 

the medications belonging to each category and Table 3 for the data statistics per category. We use Npat in the rest of 

the paper to denote the total number of patients in each dataset.  

 

Table 1. Diagnosis codes associated with HF 

 

 ICD Codes 

ICD-9 

 

398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 

404.13, 404.91, 404.93, 428.0, 428.1, 428.20, 428.21, 

428.22, 428.23, 428.30, 428.31, 428.32, 428.33, 428.40, 

428.41, 428.42, 428.43, 428.9 

ICD-10 I09.81, I11.0, I13.0, I13.2, I50.1, I50.20, I50.21, I50.22, 

I50.23, I50.30, I50.31, I50.32, I50.33, I50.40, I50.41, 

I50.42, I50.43, I50.810, I50.811, I50.812, I50.813, 

I50.814, I50.82, I50.83, I50.84, I50.89, I50.9 

 

 

Table 2. HF drug category and medications 

 

Category Medication Name 

ACEI 

 

Benazepril, Lotensin, Captopril, Enalapril, Vasotec, 

Fosinopril, Lisinopril, Prinivil, Zestril, Moexipril, 

Perindopril, Quinapril, Accupril, Ramipril, Altace, 

Trandolapril 

Beta 

Blocker 

Acebutolol, Atenolol, Tenormin, Bisoprolol, Zebeta, 

Metoprolol, Lopressor, Toprol XL, Nadolol, Corgard, 

Nebivolol, Bystolic, Propranolol, Inderal, InnoPran XL 

ARB Azilsartan, Edarbi, Candesartan, Atacand, Eprosartan, 

Irbesartan, Avapro, Losartan, Cozaar, Olmesartan, 

Benicar, Telmisartan, Micardis, Valsartan, Diovan 

Statin Atorvastatin, Lipitor, Lovastatin, Altoprev, Pitavastatin, 

Livalo, Zypitamag, Pravastatin, Pravachol, 

Rosuvastatin, Crestor, Ezallor, Simvastatin, Zocor 

Loop 

Diuretic 

Chlorothiazide, Chlorthalidone, Hydrochlorothiazide, 

Indapamide, Metolazone, Bumetanide, Bumex, 

Ethacrynic acid, Edecrin, Furosemide, Lasix, 

Torsemide, Soaanz, Amiloride, Midamor, Eplerenone, 

Inspra, Spironolactone, Aldactone, Carospir, 

Triamterene, Dyrenium 
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Table 3. Statistics of the datasets for the five HF drug categories 

 

 # of patients, Npat avg. # of visits per patient avg. # of nodes 

ACEI 1916 3.15 3.45 

Beta Blocker 2823 3.69 3.86 

ARB 3702 7.69 6.85 

Statin 8540 7.24 6.76 

Loop Diuretic 3702 7.68 6.84 

 

Problem Statement: 

In this retrospective observational study, we predict the patient’s drug response as measured by the BP lab test (i.e., 

DBP) based on the longitudinal patient history in EHR. The patient history can be perceived as a collection of EHR 

records associated with heart failure conditions that can be represented as a sequence of time-ordered visits, while 

each visit is comprised of a list of clinical concepts essentially summarizing the prognostic and interventional events 

involved in heart failure management. Formally, let P = (V1, V2, …., VT) denote the EHR records of a single patient 

with total T visits, where Vi = (c1
i, c2

i, …., c|vi|
i) is a visit in P arranged by the time of occurrence and cj

i = (ej
i, vj

i, tj
i) 

is a clinical event in Vi composed of a tuple of the type of event ej
i ϵ E, the observed value of the event vj

i and the 

timestamp of the event tj
i ϵ Ɍ*

+. Here, E corresponds to the unique set of clinical events, vj
i is either a categorical value 

or a numerical measurement depending on the type of event and Ɍ*
+ is the set of positive real numbers. Given the 

patient’s EHR sequence P containing the time-varying heterogeneous phenotypic events from E, the goal of this study 

is to forecast the value of the hemodynamic event BP lab test, Ŷ, in the future time step (i.e., visit) via learning a 

graph-based mapping function ƒ : P → Ŷ.  
 

Graph Construction: 

In order to mimic the intricacies of the patient’s complex treatment process, we create a distinct health network for 

each patient by transforming the patient-specific events in the EHR sequence P to a knowledge graph G = (V, E, A, 

X), where V is the set of vertices, E is the set of edges connecting the vertices, A is the adjacency matrix and X is the 

node feature matrix. We first consider clinical events derived from three data sources in EHR to form the nodes V in 

G: demographics Demographics ϵ {age, gender}, lab tests Lab ϵ {DBP, SBP, SVR} and diagnosis Comorbidity ϵ 

{hypertension, hyperlipidemia, shortness of breath, atrial fibrillation, cancer, diabetes mellitus, dyslipidemia}. Here, 

DBP, SBP and SVR refer to the hemodynamic variables, diastolic blood pressure, systolic blood pressure, and 

systematic vascular resistance respectively, and Comorbidity denotes the seven comorbidities with the highest 

frequency in our dataset. We propose graph construction from two different perspectives – single data source and 

multi-data source – so as to assess the individual and collaborative informativeness of the data sources in predicting 

HF treatment outcomes. That is, each data source is leveraged in isolation for single-data source graph construction, 

while all the variables across the three data sources contribute as nodes in the multi-data source graph, as depicted in 

Figure 1. To account for the spatial and temporal dependencies within the multivariate physiological recordings in 

EHR, we define nodes with respect to each event as well as the chronology of the event. The chronology of the event 

signifies how the value of the phenotypic variable varies over the visits. Formally speaking, given the sequential 

observations associated with a particular clinical event C = {ct | t ϵ {1,2,..T}, ct ϵ Demographics or ct ϵ Lab or ct ϵ 

Comorbidity} for the single data source and C = {ct | t ϵ {1,2,..T}, ct ϵ Demographics U ct ϵ Lab U ct ϵ Comorbidity} 

for multi-data source, where T denotes the total visits in the patient’s EHR and U is the union operation, we introduce 

a new node in G for the event at each time step t, as depicted in Figure 1. We further explicitly incorporate the temporal 

aspect of EHR such that two clinical events form an edge e ϵ E if they appear consecutively in the time-ordered 

sequence associated with the event. However, instead of considering the direct future event as the only neighbor in 

accordance with the temporal directionality of the sequence, we include all the future events as the one-hop 

neighborhood to capture long-term dependencies. Additionally, we embrace an undirected topology for the sake of 

bidirectional propagation of the past and future event information, endorsed based on less favorable preliminary results 

with directed connectivity and previous findings28,29. The adjacency matrix A ϵ R|V| x |V| summarizes this temporal 

graph structure knowledge whereby its (i,j)-th entry is 1 if e(i,j) ϵ E, otherwise it is a 0. From the aforementioned, 

without loss of generality, recall that each event can be defined as a tuple ct = (et, vt, tt). We use this nuanced 

information to annotate event-specific features in the graph. First, we designate the event type et (e.g., SBP) as the 

node name and subscript it by the time step it occurred in. Second, the event value vt is assigned as the node feature, 

indicative of the patient’s prognostic state. Specifically, for the variables in the data sources Demographics and Lab 
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we consider the raw EHR features and then apply MinMax normalization. While for Comorbidity, we represent the 

node feature by applying the Term Frequency-Inverse Document Frequency (Tf-idf). Since the base model of the 

proposed approach in this study is a Transformer which by design is invariant to sequence order30, we draw on the 

timestamp of the event tt to infuse positional information into the graph structure. The timestamp is normalized and 

added to the event value vt as the position-aware node feature matrix X ϵ R|V| x 1. Note that any missing time-stamped 

events in the patient’s EHR will not appear in the graph G. As a result, mapping the original multivariate EHR 

sequence to a graph structure facilitates in seamlessly tackling the prevalent missingness issue surrounding 

multivariate sequence problems without having to resort to data imputation.  

 

       
                    

                 (a) Single data source                                                            (b) Multi-data source                                                                        

 

Figure 1. Graph Construction. Note that the exhaustive connections are not displayed.  

 

Model Overview: 

With the constructed patient knowledge graph, we then customize the Graph Neural Network (GNN) model to map 

the health network to a low dimensional vector, that would encapsulate the patient-specific phenotypic features 

discriminative for personalized decision making. The vanilla GNN relies on message passing for node representation 

learning by iteratively propagating and gathering messages from adjacent nodes (i.e., neighborhood aggregation step), 

then using this information alongside its own features to refine its representation (i.e., updating step). However, a 

GNN considers all the neighbors to equally contribute to the representation update, which could downplay the actual 

significance of some variables in relation to the clinical outcome. We compensate for this limitation by exploiting the 

Transformer’s self-attention mechanism to prioritize the neighborhood. Provided the input feature matrix X of all the 

nodes in G, self-attention first projects it to the query, key and value spaces, Q = XWq, K = XWk, V = XWv, using the 

trainable weight matrices Wq, Wk and WV respectively. Then scaled dot product is employed to compute the attention 

as,  

Z = Softmax(
Q𝐾𝑇

√𝑑
) V 

 

where d is the dimensionality of the attention head and is used in the scaling factor for numerical stability. Here, Z ϵ 

R|V| x d holds the output node representations generated by the self-attention as the weighted sum of the linearly 

transformed input nodes’ features. In addition, Transformer’s self-attention repeats this mechanism in parallel several 

times (i.e., multi-head attention) to jointly learn from different representation subspaces. We call this model a Graph 

Transformer.   

 

The original Transformer has memory and computation overhead quadratic to the graph cardinality |V|, which could 

be problematic in training larger patient knowledge graphs, so we adopt a sampling strategy30. Contrary to computing 

the pairwise attention score with respect to every node n ϵ V, we only sample a subset of the nodes as the neighborhood 

for each node and feed it as the input matrix into the self-attention component.  
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The self-attention is crucial for physiological response prediction as it is a key component in accurately modeling the 

implicit structure of the latent spatial relationships among the clinical events in EHR. However, recall that there is 

also an explicit structure of the input graph G described by the adjacency matrix A which stores the temporal event 

connections. As the Transformer naturally assumes any graph as fully connected, self-attention would not be able to 

recognize this explicit temporal structure. To tackle this, we augment a GNN layer on top of the Graph Transformer, 

which models the temporality inductive bias by inputting the adjacency matrix A. This way the proposed framework 

is capable of embedding the spatial-temporal patterns in G at once.    

 

Z′ = GNN(A, Z) 

 

Finally, we readout the output node representations Z′ into a single vector representing the patient’s health profile by 

summation. This graph vector is then passed through a linear layer to forecast the BP level in the future visit, Ŷ.   

 

Global Attention Mask: 

With the aim of stratifying HF treatment into homogeneous patient subgroups with predictable responses, we 

synthesize the distinct patient knowledge graph with prognostic patterns analyzed across the entire HF cohort through 

the guidance of a global attention mask. The influence of global dependencies in the outcome prediction will ensure 

that the patient similarities across the phenotypic spectrum are assimilated with their individual clinical variations to 

realize more informed HF management. The global attention mask achieves this by building a binary event co-

occurrence matrix, M ϵ R|V| x |V|, drawn from all the patients’ records in the EHR. This is to say, if two clinical events 

appear together in any record, we set the corresponding entry in M to 1, otherwise, it is set to 0. We then use this event 

co-occurrence matrix to redefine self-attention with the attention mask function Mask, as notated below,  

 

Z = Softmax(
𝑀𝑎𝑠𝑘(Q𝐾)

√𝑑
) V 

 

Mask(QK) =          1,  M[i,j] = 1 

                              

                             -∞, otherwise 

 

where i and j are the positions in the query and key respectively. Concretely, this mask function guides the selection 

of neighbors for attention computation by allowing only the co-occurred events to be attended, else ignoring the input 

position. This way, a more robust node representation is learned based on the knowledge aggregated from both the 

patient’s and other patients’ EHR profiles, possibly suggestive of actual physiological correlations in HF 

pathophysiology, rather than merely relying on randomly sampled nodes as neighbors.  

         

Optimization and Evaluation Metrics: 

Given the ground truth BP measurement recorded in the last visit of the patient, Ƴ, we use the mean squared error 

(MSE) as the objective function: 

 

LMSE = 
1

𝑁𝑝𝑎𝑡
∑ (Ƴ − Ŷ)2
𝑁𝑝𝑎𝑡
𝑛=1  

 

We use Adam32 optimizer to minimize the loss function.  

 

We evaluate the effectiveness of the model using the mean absolute error (MAE), mean squared error (MSE) and root 

mean squared error (RMSE), with computations as below, 

 

MAE = 
1

𝑁𝑝𝑎𝑡
∑ |Ƴ − Ŷ|
𝑁𝑝𝑎𝑡
𝑛=1  

 

MSE = 
1

𝑁𝑝𝑎𝑡
∑ (Ƴ − Ŷ)2
𝑁𝑝𝑎𝑡
𝑛=1  

 

RMSE = √
1

𝑁𝑝𝑎𝑡
∑ (Ƴ − Ŷ)2
𝑁𝑝𝑎𝑡
𝑛=1  
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Experimental Setup 

For the model evaluation, we adopt the 10-fold cross validation technique. In every fold, 9 equal-sized disjoint subsets 

are trained for 50 epochs and tested on the remaining held-out subset. The average of the performances on the 10 held-

out subsets is reported as the model’s final prediction performance. We set the batch size during training to 4 and use 

a learning rate of 5e-4.   

 

Experiments 

We divide the conducted experiments into three parts to investigate the graph-based framework’s drug response 

prediction performance in HF treatment from a holistic perspective. In the first part, we focus on the proposed model’s 

design and demonstrate its capability through comparisons on four grounds – data source, baseline models, ablation 

study and the number of steps to forecast. In the second part, we assess the model’s predictive power on the individual 

drug categories and their combinations besides. In the last part, we shed light on the treatment response differences 

between the HF subtypes quantitatively and qualitatively. For the set of experiments in Part 1 Evaluation, we assess 

only the ACEI medications as the representative drug category as Part 2 Evaluation covers the comparisons among 

all the drug categories.  

 

Part 1 Evaluation: 

The data source corresponds to the type of input data from EHR used to construct the patient knowledge graph and is 

an important evaluation criterion as it could elucidate insights into the source-specific clinical events’ contributions 

in the drug response characterizing the patient profiles in HF treatment. Figures 2 - 4 top left subplots report this 

performance comparison between the three single data sources – Demographics, Lab and Comorbidity – which 

includes the subset of variables specific to the data source as the predictors, and the multi-data source (i.e., ALL) 

which includes all the variables. Note that for the single data sources we also incorporate the DBP variables in the 

past visits for the graph construction as it is predicted as the outcome of interest. Among the three single data sources, 

Lab performs the best across all the metrics followed by Comorbidity, with Demographics performing the worst. The 

Lab tests DBP, SBP and SVR are considered as risk factors imperative in HF prognosis33 and are routinely monitored 

as part of the EHR, so the good results are not surprising. The HF cohort predominantly consists of older patients (e.g., 

74 was the most prevalent age in our ACEI cohort), who are also more likely to have multiple comorbidities34, such 

as hypertension, diabetes mellitus, atrial fibrillation, and hyperlipidemia, which further contribute to the heterogeneity 

of HF35. So, using the Comorbidity information is beneficial as indicated by its satisfactory performance and 

identifying the combinations of the comorbidities corresponding to the different phenogroups as a next step could lead 

to targeted HF treatment. Most Demographics information include static variables (e.g., gender) which could remain 

time-invariant throughout the treatment course and hence do not provide discriminative features in the temporal 

modeling of drug response prediction. This could attribute to the Demographics data source performing the worst. 

Generally, the single data sources are seen to perform better than the multi-data source (ALL), with a performance 

gap of around 4.9% in RMSE against the best-performing data source Lab. For the subsequent performance 

comparisons, we use the best-performing data source, Lab, as the input data.  

 

We compare the proposed model’s performance with the following deep learning models as the baselines: multi-layer 

perceptron (MLP), long short-term memory model (LSTM)36, stacked LSTM (S-LSTM) with 2 LSTM layers, 

bidirectional LSTM (Bi-LSTM)37, CNN-LSTM consisting of a CNN layer38 and an LSTM layer, ensemble LSTM (E-

LSTM) that combines predictions based on Stacked Generalization39 and Transformer40, depicted in Figures 2-4 top 

right subplots. Overall, our proposed model is able to consistently outperform all the baselines significantly. This 

corroborates representing the multivariate physiological findings in EHR as graph-structured data, as otherwise all the 

baselines directly used the sequential information and failed to effectively model the per-variable (i.e., temporal) and 

inter-sequence (i.e., spatial) dependencies. 

 

An ablation study is carried out to verify the impact of the proposed model’s components, GNN and Graph 

Transformer, as depicted in Figures 2-4 bottom left subplots. Individually, the GNN and Graph Transformer models 

underperform in comparison to the complete model Graph Transformer + GNN as empirically the complete model is 

able to achieve a 9.5% and 1.8% RMSE reductions over the GNN and Graph Transformer respectively. In the case of 

GNN, this performance decline possibly arises from its failure to distill the important features because of equal 

weighting during node update. Although the Graph Transformer addresses this limitation by soft-selecting the 

neighbors, it loses on the explicit graph structure that defines the temporal relationships between the clinical events. 

Hence, incrementally building on both components to get the complete model leads to the best performance.  
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In the original problem setting, our model forecasts the drug response in the patient’s last visit having trained on all 

the previous visits’ EHR information. Practically in the actual clinical scenario, however, a physician would benefit 

more from knowing the treatment effects on the patient for multiple visits to be able to intervene in advance and 

prevent any negative clinical outcomes. Figures 2-4 bottom right subplots illustrate the model’s performance in this 

phenomenon (i.e., MULTISTEP) for the last two visits (t-th and (t-1)-th timesteps) and contrasts it with its original 

performance in the last visit (i.e., UNISTEP). The results show comparable performance for the UNISTEP and 

MULTISTEP’s t-th prediction but degrades in the MULTISTEP’S (t-1)-th timestep.     

    

 

 
   Figure 2. Part 1 Evaluation in MSE 
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Figure 3. Part 1 Evaluation in MAE 

 

 
Figure 4. Part 1 Evaluation in RMSE 
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Part 2 Evaluation:  

In the second set of experiments, we analyze the treatment response by tapping into the medication information from 

five different angles – drug category, top drug per category, drug combinations within a category (intra-category), 

drug combinations between two categories (inter-category) and polypharmacy across multiple diseases. In each 

instance, the performance comparison is visualized using box plot. Each box plot shows the distribution of the model’s 

performance on the 10-fold data associated with the respective cohort. The average RMSE score is denoted by the red 

triangle and is also annotated as µ. The median score is indicated by the green horizontal line and the standard deviation 

of the 10-fold scores is denoted by σ. We also perform a Student’s t-test to highlight the difference in performance 

through the computation of p-value (ρ).  

 

First, as depicted in Figure 6, among the five HF drug categories, the model’s ability to predict the physiological 

response of the patients taking medication under the Beta Blocker category is relatively better with statistical 

significance compared to the remaining four categories. The bar chart in the Figure 5 subplot shows the most 

frequently taken medications under each category in our dataset. We consider only the top medication per category, 

that is the one with the most # of patients on the y-axis and compare their performances in Figure 7. The top drug from 

Beta Blocker, namely Metoprolol, performs the best followed by Losartan from class ARB. Then moving to drug 

combinations, the Figure 5 subplot shows the most frequent drug combinations within each category in our dataset. 

To evaluate the intra-category performance, we only include the top four drug combinations across all the categories 

for analysis as the other combinations had fewer patient instances for the performance to be reflective of the whole 

cohort. As depicted in Figure 8, the ARB drug combination comprising Losartan and Valsartan medications gave the 

best performance with around 42% improvement ahead of the second-best combination, Pravastatin and Simvastatin, 

belonging to the category Statin. Figure 5 subplot shows the inter-category drug combination frequencies for the top 

ten combinations found in our dataset. On comparing their performances in Figure 9, the combination of the 

medications Metoprolol and Furosemide from the categories Beta Blocker and Loop diuretic, respectively, performed 

the best by reducing the RMSE by around 13% compared to the second-best drug combination Metoprolol from Beta 

Blocker and Atorvastatin from Statin. To demonstrate the case of polypharmacy across multiple diseases, we consider 

the medications taken for diabetes mellitus along with the heart failure medications. Figure 5 subplot shows the 

frequency of the top drug combinations for the two diseases found in our dataset. As shown in Figure 10, the HF drug 

Metoprolol and diabetes mellitus drug Metformin in combination performed the best by approximately 4%.   
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Figure 5. Medication Statistics 
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Figure 6. Performance comparison among the medication categories 

 

 

 

 
Figure 7. Performance comparison for the top drug within each medication category 
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Figure 8. Performance comparison among the intra-category medication combinations 

 

 

 

 
 

Figure 9. Performance comparison among the inter-category medication combinations 
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Figure 10. Performance comparison for polypharmacy between HF and diabetes mellitus 

 

Part 3 Evaluation:  

Heart failure can be classified according to the left ventricular ejection fraction (LVEF) into two major subtypes - HF 

with reduced ejection fraction (HFrEF; LVEF ≤ 40%) and HF with preserved ejection fraction (HFpEF; LVEF ≥ 

50%)7. Figure 11 shows the patient counts in our dataset for the two HF subtypes across the five drug categories. As 

there exists a dichotomy in the pathophysiology and etiology defining the two subtypes42, it would be enlightening to 

quantify the extent of their treatment response differences to decide effective treatment options. We depict the 

performance comparison of the model’s generalizability on three cohorts comprised of - HFrEF patients, HFpEF 

patients and both, as shown in Figure 12. Surprisingly, although HFpEF is considered to be more heterogeneous and 

resistant to conventional drug therapies43, it performs better than HFrEF by ~31%. This cements the utility of the 

longitudinal phenotypic features in the EHR as an indispensable resource for heterogeneous treatment analysis.   

     

We also provide an intrinsic evaluation by projecting the learned patient representations in a low dimensional space 

using t-SNE44, depicted in Figure 13. The idea is that patients belonging to the same subtype would have similar 

representations, so would be grouped together. The representation strength of our graph-based framework 

substantiates this as patients have been separated into two distinct clusters corresponding to the two HF subtypes.   
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Figure 11. Patient counts from our dataset for the HF subtypes  

 

 

 
 

Figure 12. Performance comparison between the HF subtypes 
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Figure 13. t-SNE visualization of the learned embedding space 

 

 

Conclusion 

In this work, we introduce a novel graph-based framework for HF treatment outcome prediction. Our study 

demonstrates that it is possible to effectively forecast the patient’s physiological response in the future visit by 

modeling the spatial-temporal correlations in the heterogeneous EHR observations as graph-structured data. We 

validate the superiority of our framework rigorously through a series of experiments on a real-world clinical data and 

evaluate using three error metrics.   
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