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Molnupiravir, an antiviral medication that has been
widely used against SARS-CoV-2, acts by induc-
ing mutations in the virus genome during replica-
tion. Most random mutations are likely to be dele-
terious to the virus, and many will be lethal, and
so molnupiravir-induced elevated mutation rates re-
duce viral load2,3. However, if some patients treated
with molnupiravir do not fully clear SARS-CoV-2 in-
fections, there could be the potential for onward
transmission of molnupiravir-mutated viruses. Here
we show that SARS-CoV-2 sequencing databases
contain extensive evidence of molnupiravir muta-
genesis. Using a systematic approach, we find
that a specific class of long phylogenetic branches,
distinguished by a high proportion of G-to-A and
C-to-T mutations, appear almost exclusively in se-
quences from 2022, after the introduction of mol-
nupiravir treatment, and in countries and age-
groups with widespread usage of the drug. We
identify a mutational spectrum, with preferred nu-
cleotide contexts, from viruses in patients known
to have been treated with molnupiravir and show
that its signature matches that seen in these long
branches, in some cases with onwards transmis-
sion of molnupiravir-derived lineages. Finally, we
analyse treatment records to confirm a direct asso-
ciation between these high G-to-A branches and the
use of molnupiravir.

Correspondence: theo.sanderson@crick.ac.uk cr628@cam.ac.uk

Molnupiravir is an antiviral drug, licensed in some coun-
tries for the treatment of COVID-19. In the body,
molnupiravir is ultimately converted into a nucleotide-
analog, molnupiravir triphosphate (MTP)1. MTP is in-
corporated into RNA during strand synthesis by viral
RNA-dependent RNA polymerases, where it can result
in errors of sequence fidelity during viral genome repli-
cation. These errors result in many viral progeny that
are non-viable, and so reduce the virus’s effective rate
of growth – molnupiravir was shown to reduce viral repli-
cation during 24 hours by 880-fold in vitro, and to reduce
viral load both in animal models2 and in patients sam-
pled on the final day of treatment3. Molnupiravir initially

1MTP is also known as β-D-N4-hydroxycytidine triphosphate (NHC-
TP).

showed some limited efficacy as a treatment for COVID-
194,5, but subsequently the much larger PANORAMIC
trial found that treatment did not reduce hospitalisation
or death rates in a group of largely vaccinated high-risk
individuals3. As one of the first orally bioavailable an-
tivirals on the market, molnupiravir was widely adopted
in many countries. However, recent trial results and the
approval of more efficacious antivirals have since led
to several countries recommending against its use6–8,
while longstanding concerns have been raised about
potential mutagenic activity in host cells9.

MTP appears to be incorporated into nascent RNA pri-
marily by acting as an analogue of cytosine (C), pairing
opposite guanine (G) bases (Fig. 1A). However, once
incorporated, the molnupiravir (M)-base can transition
into an alternative tautomeric form which resembles
uracil (U) instead. This means that in the next round of
strand synthesis, giving the positive-sense SARS-CoV-
2 genome, the tautomeric M base pairs with adenine
(A), resulting in a G-to-A mutation (Fig. 1B). These G-to-
A mutations arise from incorporation of molnupiravir into
the negative-sense genome. Incorporation of MTP can
also occur during the synthesis of the positive-sense
genome: in this scenario, an initial positive-sense C cor-
rectly pairs with a G during negative-sense synthesis,
but this G then pairs with an M base during positive-
sense synthesis. In the next round of replication this
M can then pair with A, which will result in a U in the fi-
nal positive sense genome, with the overall process pro-
ducing a C-to-U mutation (Fig. 1C). The free nucleotide
MTP is less prone to tautomerisation to the oxime form
than when incorporated into RNA, and so this direction-
ality of mutations is the most likely10. However it is also
possible for some MTP to bind, in place of U, to A bases
and undergo the above processes in reverse, causing
A-to-G and U-to-C mutations (Fig. 1C).

It has been proposed that many major SARS-CoV-2
variants emerged from long-term chronic infections.
This model explains several peculiarities of variants
such as a general lack of genetic intermediates, rooting
with much older sequences, long phylogenetic branch
lengths, and the level of convergent evolution with
known chronic infections11–14. During the approval pro-
cess for molnupiravir, concerns were raised about its
potential to increase the rate of evolution of variants of
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Figure 1. Molnupiravir induces mutations by acting as a nucleotide analogue with multiple tautomeric forms which pair preferentially with different
nucleotides. (A) Molnupiravir triphosphate can assume multiple tautomeric forms which resemble different nucleotides. The N-hydroxylamine form resembles
cytosine (C), and like cytosine can pair with guanine (G) while the oxime form more closely resembles uracil (U), and thus can pair with adenine (A).(Figure adapted
in part from Malone et al. 1) (B) In the most common scenario, molnupiravir (M) is incorporated in the N-hydroxylamine form opposite a G nucleotide. It can then
tautomerise into the oxime form, which can then pair to an A in subsequent replication, creating a G-to-A mutation. (C) Molnupiravir can result in four different mutation
types. In the first column a G-to-A mutation is created by M incorporation opposite a positive-sense G, which can then pair with an A in the next positive-sense
synthesis. In the second column, the positive-sense genome contains a C, which results in a G in the negative-sense genome. This G can then undergo the same
G-to-A mutation, creating a negative-sense A which finally results in a U in the positive sense genome, meaning the entire process results in a C-to-U mutation.
Although the biases of tautomeric forms for the free and incorporated MTP nucleotides appear to favour this directionality of mutations, with M incorporated in the
N-hydroxylamine form and then transitioning to the oxime form, the reverse can also occur: this results in A-to-G and U-to-C mutations.

concern15. In response, it was noted that no infectious
virus had been isolated at or beyond day 5 of molnupi-
ravir treatment, and that mutations recovered following
treatment were random with no evidence of selection-
based bias16.
During analysis of divergent SARS-CoV-2 sequences,
signs of molnupiravir-driven mutagenesis have been
noted17, including indications of possible transmission.
We therefore aimed to characterise the mutational pro-
file of molnupiravir and examine the extent to which this
signature appeared in global sequencing databases.

Emergence of a new mutational signature

To establish the mutational profile induced by molnupi-
ravir, we analysed published longitudinal genomic time
series that included both untreated patients and patients
treated with molnupiravir18,20, and compared against a
typical SARS-CoV-2 mutational spectrum19. In agree-
ment with previous findings, we found that molnupiravir
treatment led to an 8-fold increase (CI: 2.9-16) in the
rate of mutations and that this increase was highly spe-
cific to transition mutations (Fig. 2A), especially to G-to-
A and C-to-T mutations (hereon we use ‘T’ rather than
‘U’, as in sequences). While C-to-T mutations are rela-
tively common overall in SARS-CoV-2 evolution19,21,22,
G-to-A mutations occur much less frequently; therefore
an elevated G-to-A proportion was especially predictive
of molnupiravir treatment (Fig. 2B).
We looked for evidence of such a signal in global se-
quencing databases by analysing a mutation-annotated
tree, derived from McBroome et al.23, containing >15
million SARS-CoV-2 sequences from GISAID24 and the
INSDC databases25. For each branch of the tree we
counted the number of each substitution class (A-to-T,
A-to-G, etc.). Filtering this tree to branches involving
at least 20 substitutions, and plotting the proportion of

substitution types revealed a region of this space with
higher G-to-A and almost exclusively transition substitu-
tions, that only contained branches sampled since 2022
(Fig. 2C), suggesting some change (either biological or
technical) had resulted in a new mutational pressure,
with mutational classes consistent with those seen in
patients known to be treated with molnupiravir.

We created a criterion for branches of interest, which
we refer to as “high G-to-A” branches: we selected
branches involving at least 10 substitutions, of which
more than 25% were G-to-A, more than 20% were C-
to-T and more than 90% were transitions. Simulations
predicted that this criterion would have a sensitivity of
63% and a specificity of 98.6% for branches involving
13 substitutions (see methods). Branches satisfying the
high G-to-A conditions were almost all sampled after
the roll-out of molnupiravir in late 2021 and early 2022
(Fig. 2D, Extended Data 1). The branches were pre-
dominantly sampled from a small number of countries,
which could not be explained by differences in sequenc-
ing efforts (Fig. 2E-F, Extended Data 2). Many coun-
tries which exhibited a high proportion of high G-to-A
branches use molnupiravir: >380,000 prescriptions had
occurred in Australia by the end of 202226, >30,000
in the UK in the same period3,27, >240,000 in the US
within the early months of 202228, and >600,000 in
Japan by Oct 202229. Countries with high levels of to-
tal sequencing but a low number of G-to-A branches
(Canada, France, Fig. 2E-F) have not authorised the
prescription of molnupiravir30,31. Age metadata from
the US showed a significant bias towards samples from
patients of older ages for these high G-to-A branches,
compared to control branches with similar numbers
of mutations but without filtering on substitution-type
(Fig. 2G). Where age data was available in Australia it
also suggested high G-to-A branches primarily occur in
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Figure 2. A molnupiravir-associated mutational signature with high G-to-A and high transition ratio emerged in 2022 in some countries in global sequencing
databases
(A) A comparison the relative rate of different classes of mutations in typical BA.1 mutations vs. those with molnupiravir treatment (molnupiravir data from Alteri
et al. 18; naive data from Ruis et al. 19, scaled to total mutations in naive individuals from Alteri et al., see Methods) confirms an elevated rate of transitions, and
particularly C-to-T and G-to-A mutations. (B) Differences in the proportion of mutations due to different mutation classes in molnupiravir-treated individuals (Alteri et
al. 18) vs typical BA.1 mutations (Ruis et al. 19) highlights elevated G-to-A proportion as especially indicative of molnupiravir. These are ratios of proportions and so
the apparent reduction in transversions does not require an absolute decrease in the number of transversions, but can instead be caused by the increased number of
transitions. Error bars represent 95% confidence intervals. (C) A scatter plot where each point is a branch with >20 mutations, positioned according to the proportion
of these mutations that are G-to-A (x-axis) or transitions (y-axis) reveals a space with elevated G-to-A and transition rate that occurs only with the rollout of molnupiravir
in 2022, as also shown in (D) for nodes with >10 mutations, G-to-A proportions >25%, C-to-T proportions >20%, and transition proportions >90%. (E) Plotting the
number of high G-to-A nodes identified in 2022 against the number of total genomes for each country reveals considerable variation. (F) Countries confirmed to have
made molnupiravir available have more high G-to-A nodes than countries which have not. Numbers in brackets represent number of courses of molnupiravir supplied,
normalised to population. (p=0.02 for log-transformed two-sided t-test.) (G) Age distribution for US nodes, partitioned according whether they satisfy the high G-to-A
criterion (p<1e-10, two-sided t-test). Age metadata are missing for some samples, likely non-randomly. Where a node has many descendants of different ages, age
is assigned by a basic heuristic, as described in the methods. Boxplot depicts minimum, maximum, and 25th, 50th and 75th percentiles.

an aged population. This is consistent with the priori-
tised use of molnupiravir to treat older individuals, who
are at greater risk from severe infection, in these coun-
tries. In Australia, molnupiravir was pre-placed in aged-
care facilities, and it was recommended that it be con-
sidered for all residents testing positive for COVID-19
aged 70 or older, with or without symptoms32.

Mutation contexts support molnupiravir link
To further probe the link between high G-to-A branches
and molnupiravir, we used mutation spectrum analysis,
which considers both the types of mutations and the ge-
nomic context in which the mutations occur (Extended
Data 5). The spectrum we identified for branches se-
lected by these criteria was, as expected, dominated by
G-to-A and C-to-T transition mutations with smaller con-
tributions from A-to-G and T-to-C transitions (Fig. 3A).
We similarly calculated spectra both from patients

known to be treated with molnupiravir18,20(Fig. 3B) and
from general SARS-CoV-2 evolution19 (Fig. 3C) .

There was a strong match between the spectrum of
known-molnupiravir sequences and that of high G-to-
A branches, both in terms of mutation classes and the
context preferences within each mutation class (Fig. 3,
Extended Data 6A). For C-to-T and G-to-A mutations, a
comparison of context preferences gave cosine similar-
ities of 0.988 and 0.965 respectively (Fig. 3D). Similar
results were seen for a spectrum calculated from a sep-
arate second dataset from a clinical trial of molnupiravir
(Extended Data 6B)20. The contextual patterns seen in
long branches did not correlate with typical SARS-CoV-
2 mutational processes (Extended Data 6C). In high G-
to-A branches, G-to-A mutations occurred most com-
monly in TGT and TGC contexts, which could represent
a preference for molnupiravir binding adjacent to partic-
ular surrounding nucleotides, a preference of the viral
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Figure 3. Mutation spectrum analysis supports high G-to-A branches being driven by molnupiravir
(A,B,C) Single-base substitution mutation spectra for high G-to-A branches (A), known molnupiravir-treated individuals (B) and typical BA.1 spectra (C). Each individual
bar represents a particular type of mutation in a particular trinucleotide context (Extended Data 5). Bars are grouped and coloured according to the class of mutation.
Within each coloured group, bars are grouped into 4 groups according to the nucleotide preceding the mutated residue, and then each of these groups contains 4
bars according to the nucleotide following the mutated residue. Number of mutations have been normalised to the number of times the trinucleotide occurs in the
reference genome, and then normalised so that the entire spectrum sums to 1. (D) High correlations between spectra from Alteri et al. from patients known to have
been treated with molnupiravir, and the spectra from high G-to-A branches identified in this study. Each point represents the normalised proportion of a particular
trinucleotide context. Points are coloured such that a context for C-to-T mutations has the same colour as its reverse complement in G-to-A. The values denoted by c
are cosine similarity scores.

RdRp to incorporate molnupiravir adjacent to specific
nucleotides, or a context-specific effect of the viral proof-
reading machinery. These correlations between spec-
tra from high G-to-A branches and known molnupiravir-
treated individuals strongly support a shared mutational
driver, and therefore that the high G-to-A branches are
driven by molnupiravir treatment.
Incorporation of molnupiravir during negative strand
synthesis will result in G-to-A mutations in the virus se-
quence while incorporation during positive strand syn-
thesis will manifest as C-to-T mutations in the virus se-
quence, after a second round of replication (Fig. 1C).
Consistent with this, we observe a strong similarity be-
tween the mutational biases in equivalent surrounding
contexts within C-to-T and G-to-A mutations when com-
paring reverse complement triplets, with for example a
G-to-A mutation in the TGC context on one strand be-
ing equivalent to a C-to-T mutation in the GCA context
on the other strand (cosine similarity: 0.955, Extended
Data 6D).

Transmission clusters and mutation rates

Although a majority of the long branches identified have
just a single descendant tip sequence in sequencing
databases, in some cases we could see that branches
had given rise to clusters with a significant number of
descendant sequences. For example, a cluster in Aus-
tralia in August 2022 involves 20 tip sequences, with dis-

tinct age metadata confirming they derive from multiple
individuals (Fig. 4A). This cluster involves 25 substitu-
tions in the main branch, of which all are transitions with
44% C-to-T and 36% G-to-A. Closely related outgroups
date from July 2022, suggesting that these mutations
emerged in a period of 1-2 months. At the typical rate of
SARS-CoV-2 evolution, this number of mutations would
take years to acquire in an unsampled population with
typical dynamics33. Overall in the dataset, we observe
a systematic accelerated evolutionary rate in high G-to-
A branches (p<0.001), consistent with the action of a
mutagenic drug.

There are many further examples of high G-to-A
branches with multiple descendant sequences, includ-
ing sequence clusters in the United Kingdom, Japan,
USA, New Zealand, Slovakia, Denmark, South Korea
and Vietnam (Fig. 4B, Supplement 1).

During the construction of the daily-updated mutation-
annotated tree23, samples highly divergent from the ex-
isting tree are excluded. This is a necessary step given
the technical errors in some SARS-CoV-2 sequenc-
ing data, but means that highly divergent molnupiravir-
induced sequences might be missed from this analysis.
To search for excluded sequences with a molnupiravir-
like pattern of mutations we processed a full sequence
dataset with Nextclade and calculated the proportion of
each of the mutation classes among the private mu-
tations (see methods) each sequence carried. This
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Figure 4. High G-to-A branches can be associated with transmission clusters and, separately, can involve more than 100 mutations
(A) A cluster of 20 individuals emerging from a high G-to-A mutation event. This cluster involves a saltation of 25 mutations occurring within a period of around a
month, all of which are transition substitutions, with an elevated G-to-A rate. Sequences are annotated with age metadata suggestive of an outbreak in an aged-care
facility. Phylogenetic placement within the cluster is affected by missing coverage in some regions. (B) Examples of further transmission clusters from the UK, left:
four sequences from the UK from Feb-March 2022 with 13 shared muations with the high G-to-A signature, right: a cluster of four sequences from the UK from Feb
2022 with 31 shared muations with the high G-to-A signature. (C) A sequence from Australia with a high G-to-A signature and a total of 133 mutations relative to the
closest outgroup sequence. Just 2 of the 133 mutations observed are transversions and transitions include numerous G-to-A events. (In the month after this sequence
was deposited two additional related/descendant sequences – EPI_ISL_16315710, EPI_ISL_16639468 – were deposited, which may represent continued sampling
from the same patient since they involve a substantial subset of shared mutations, but not full concordance, suggestive of complex intra-host evolution.)

analysis allowed the identification of further mutational
events, including some involving up to 130 substitu-
tions (Fig. 4C, Extended Data 3), with the same signa-
ture of elevated G-to-A mutation rates and almost ex-
clusively transition substitutions. The cases we iden-
tified with these very high numbers of mutations pre-
dominantly involved single sequences, and could rep-
resent sequences resulting from chronically infected in-
dividuals who have been treated with multiple courses
of molnupiravir. We verified that nucleotide contexts of
the transition mutations observed within the sequence
in Fig. 4C were much more likely under the molnupiravir
spectrum than the typical BA.1 spectrum (Bayes factor
>1010).

Effects of molnupiravir-induced mutations

High G-to-A branches made up a considerable percent-
age of branches involving more than 10 substitutions in
some countries (Fig. 5A), suggesting that molnupiravir
drives a substantial proportion of large saltations. We
found that high G-to-A branches had a different distribu-
tion of branch lengths from other types of branches. In
typical SARS-CoV-2 evolution, the branch length distri-
bution contains many more nodes with shorter branch
lengths than with larger branch lengths, however for
nodes satisfying the high G-to-A criterion this decline
was much less pronounced, with long branch lengths
still relatively common (Fig. 5B).
We also examined whether the mutations identi-
fied induced changes to amino acid sequence (non-
synonymous mutations) or not (synonymous muta-
tions). We found that for short branches in the tree,
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Figure 5. High G-to-A branches make up a considerable proportion of long branches in affected countries and include evidence of selection.
(A) Proportion of branches that are high G-to-A for a range of branch lengths in different countries. Data from collection dates in 2022 and 2023 (submission dates
up to June 2023). (B) Branch length distributions for high G-to-A and other branches. (C) Genomic distribution of mutations in high G-to-A nodes, partitioned into 3
classes: synonymous mutations, non-synonymous mutations, and non-synonymous that occur 4 or more times. (D) Table of the most recurrent mutations in spike in
high G-to-A branches. n shows the number of high G-to-A branches that exhibit the mutation. Mutation type shows the parental and final nucleotide at the nucleotide
position driving the mutation, while context shows the trinucleotide context for the nucleotide mutated, transcribed assuming a NC045512.2background.

65% (64.6%–64.7%) of mutations in the spike gene
were non-synonymous. For long branches (>=10 muta-
tions) that lacked the high G-to-A signature, the propor-
tion of spike mutations that were non-synonymous was
higher, at 77% (76.8%–77.55%). This increase may re-
flect, in part, positive selection during intra-host evolu-
tion in individuals with chronic infections. In contrast, for
long branches with a (molnupiravir-associated) high G-
to-A signature, the proportion of mutations in the spike
protein that were non-synonymous was 63% (60.3%–
65.1%), similar to that of short branches, and substan-
tially lower than that of other long branches (p<0.001).

Despite this overall indication of purifying selection, con-
sistent with the actions of a mutagenic drug, there
was also evidence for positive selection. Even in
high G-to-A branches, there was a concentration of
non-synonymous mutations in spike, especially among
the most recurrent mutations (Fig. 5C). Many of the
recurrent spike mutations, such as S:P9L, S:A701V,
S:K147E, S:R493Q, and S:G252S, were also mutations
that arise in variants of concern and/or chronic infec-
tions, including S:E340K which has been associated
with sotrovimab resistance (Fig. 5D). There was good
correspondence between the contexts in which these
mutations occurred and the molnupiravir mutation spec-
trum. For example, the most common context for G-to-A
class mutations among those listed in Fig. 5D is TGT,
which has a high enrichment in the molnupiravir spec-
trum and a low enrichment in the normal BA.1 spectrum

(Extended Data 6C).
There was also a relative concentration of recurrent
non-synonymous mutations in the exonuclease en-
coded by nsp14. This proofreading exonuclease func-
tions to correct errors during genome replication, but
typically has poor performance in recognising mis-
matches involving molnupiravir34. Future work could
examine whether there is a relationship between spe-
cific mutations in nsp14 and tolerance to molnupiravir.

Confirmation from treatment records
To better test a direct relationship between high G-to-
A branches and the use of molnupiravir, linkage analy-
sis was performed for high G-to-A branches sampled in
England with treatment data in the Blueteq database35.
This analysis found that 31% of clades descending from
a high G-to-A branch involved an individual prescribed
with molnupiravir (11 sequences in singleton clades;
with sampling dates from day 7 to day 61 post treatment
start date). The overall rate of molnupiravir prescrip-
tion in sequenced individuals in England from 2022 is
0.043%.
Not all branches analysed were linked to a person
known to have been prescribed molnupiravir. In some
cases, these could represent false positives in our anal-
ysis. In addition, the Blueteq database does not contain
prescription data for people treated as part of clinical tri-
als (which make up around a third of total molnupiravir
prescriptions in the UK) or patients who fell outside in-
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terim clinical policy, and it is also possible that in some
cases we have not sampled the index case treated with
molnupiravir, but instead an individual downstream of a
treated patient in a transmission chain.

Discussion
The observation that molnupiravir treatment has left a
visible trace in global sequencing databases, includ-
ing onwards transmission of molnupiravir-derived se-
quences, will be an important consideration for assess-
ing the effects and evolutionary safety of this drug. Our
results are consistent with recent observations in im-
munocompromised individuals36.
New variants of SARS-CoV-2 are generated through ac-
quisition of mutations that enhance properties includ-
ing immune evasion and intrinsic transmissibility37,38.
The impact of molnupiravir treatment on the trajectory
of variant generation and transmission is difficult to pre-
dict. A high proportion of induced mutations are likely
to be deleterious or neutral, and it is important to con-
sider a counterfactual to molnupiravir treatment which
might involve higher viral load, potentially increasing
the absolute number of diverse sequences39,40. How-
ever molnupiravir increases per-sequence diversity in
the surviving population, potentially with many muta-
tions per genome, which might provide a broader sub-
strate for selection to act on during intra-host evolution.
Importantly, the divergence of the molnupiravir muta-
tion spectrum from standard SARS-CoV-2 mutational
forces might allow the virus to explore the fitness of
distinctive parts of the possible genomic landscape to
those it is already widely exploring in the general pop-
ulation. Molnupiravir-induced mutation could also po-
tentially allow infections to persist for longer by creat-
ing a more varied target for the immune system: one
concerning aspect of the PANORAMIC trial is that while
molnupiravir-treated individuals had much lower viral
load at day 5, they had slightly higher viral load than
placebo-arm individuals at day 143. It is notable that in
some countries, a significant proportion of sequences
with the longest branch lengths are attributable to mol-
nupiravir. However, at the time of writing, the largest
clusters satisfying our criteria consist of ~20 sequenced
individuals.
Considerations of mechanism of action are important in
the design and assessment of antiviral drugs. Molnupi-
ravir’s mode of action is often described using the term
"error catastrophe" – the concept that there is an upper
limit on the mutation rate of a virus beyond which it is un-
able to maintain self-identity41, but this model has been
criticised on its own terms42 and is particularly prob-
lematic in the case of short-term antiviral treatment as it
assumes an infinite time horizon. The “lethal mutagen-
esis” model is much more useful in this context43. Not
all nucleoside analog drugs function primarily through
mutagenesis. Many act through chain-termination44,45,
and therefore would not be expected to cause the ef-
fects seen here for molnupiravir.

Our study illustrates the far-reaching potential of the
extensive genomic dataset created by the community
of researchers tracking SARS-CoV-2 evolution. The
combination of all available global sequences increased
the power of our analyses, while comparisons between
countries with different treatment regimes were highly
informative. We recommend that public health authori-
ties perform continued investigations into the effects of
molnupiravir in viral sequences, and the transmissibil-
ity of molnupiravir-derived lineages. These data will be
useful for ongoing assessments of the risks and benefits
of this treatment, and may guide the future development
of mutagenic agents as antivirals, particularly for viruses
with high mutational tolerances such as coronaviruses.
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Methods
Processing of pre-existing genomic data from mol-
nupiravir treated individuals
We used three existing sources of genomic data in cal-
culations of the mutational classes (and later the con-
textual mutational spectra) associated with known use
of molnupiravir and with typical SARS-CoV-2 evolution
in the absence of molnupiravir. We analysed a dataset
from Alteri et al.18 which contained longitudinal data for
both individuals treated with molnupiravir and untreated
individuals. For this we downloaded FASTQ files from
BioProject ERP142142 using fastq-dl46. We mapped
these reads to the Hu-1 reference genome using min-
imap2 and then extracted the number of calls for each
base at each position. We identified mutations com-
pared to the day 0 sequence, counting variants where
the site had >=100 reads of which >=5% were variant to
the day 0 consensus. As a secondary dataset we used
data from the AGILE trial (Donovan-Banfield et al.20,
BioProject PRJNA854613). There was general agree-
ment on the nature of molnupiravir mutations between
Alteri et al. and the AGILE trial, with the exception of a
high G-to-T mutation rate seen only in the AGILE trial.
Previous evidence on molnupiravir’s mutation classes,
as well as the fact that a high G-to-T rate was seen
even in untreated individuals in the AGILE data, led us
to conclude that this G-to-T signal in the AGILE data
represented a technical artifact.
We used the BA.1 mutational spectrum previously cal-
culated by Ruis et al.19 as an exemplar of the mutation-
classes and spectrum under typical SARS-CoV-2 evo-
lution in the relevant time period. To compare mu-
tation burden by mutation-class between molnupiravir-
treated and untreated individuals we scaled the Ruis
et al. dataset of typical BA.1 evolution to have the
same number of total mutations as untreated individu-
als in the Alteri et al. dataset, and then plotted these
against molnupiravir-treated individuals from the Alteri
et al. dataset (Fig. 2A).
To identify which mutation-classes were diagnostic of
the use of molnupiravir, we first calculated what propor-
tion of mutations came from each mutation class, for
both the Alteri et al. molnupiravir dataset and the Ruis
et al. BA.1 dataset. We then calculated the ratio of
these proportions between the molnupiravir and (naive)
BA.1 datasets. To put confidence intervals on this ra-
tio we performed bootstrap resampling from each set of
mutations (with 100 bootstrap repeats). These data are
presented in Fig. 2B.

Identification of high G-to-A sequences from
UShER mutation-annotated tree
To identify sequences in global databases with a
molnupiravir-like pattern of mutations, we analysed a
regularly-updated mutation-annotated tree built by the
UShER team47 using almost all global data from INSDC
and GISAID – a version of the McBroome et al. (2021)

tree23. We extracted data using a script initially adapted
from TaxoniumTools48, and later modified to use the
Big Tree Explorer (BTE)49. The script added metadata
from sequencing databases to each node, then passed
these metadata to parent nodes using simple heuris-
tics: (1) a parent node was annotated with a year if all
of its descendants were annotated with that year, (2) a
parent node was annotated with a particular country if
all of its descendants were annotated with that coun-
try, (3) a parent node was annotated with the mean
age of its (age-annotated) descendants. Nodes with
descendants spanning multiple years and/or countries
were rare. We also calculated a more nuanced time
estimate for nodes using Chronumental50. We used
Taxonium48, the UShER web interface47, Nextstrain51

and Nextclade52 extensively in investigating individual
branches of interest.

We defined “high G-to-A branches” as those with at
least 10 mutations, of which >90% were transitions and
>25% were specifically G-to-A mutations, with >20% C-
to-T. Such a threshold appeared to yield very high speci-
ficity, as judged by the ability to detect marked changes
in the rate of a rare event (molnupiravir treatment) over
time. We also created simulated measures of sensitiv-
ity and specificity using the distribution of mutation types
from Ruis et al. and Alteri et al. We performed these cal-
culations for different branch lengths (n) from 10 to 20.
In each case we performed 10,000 draws of n mutations
from each of the naive and molnupiravir-associated mu-
tational class distributions. We then assessed what
proportion of these draws satisfied our criteria defined
above. In the case of the molnupiravir-associated class
distribution, this proportion represented the sensitivity.
In the case of the typical-BA.1 distribution, this propor-
tion represented 1 - specificity. We obtained a sensitiv-
ity of 46% and a specificity of 98.9% for branch length
10, a sensitivity of 63% and a specificity of 98.6% for
branch length 13, a sensitivity of 71% and a specificity
of 98.6% for branch length 15, and a specificity of 64%
and specificity of 99.8% for branch length 20.

To measure whether high G-to-A branches showed a
statistically significant increase in mutation rate we used
Chronumental’s branch length estimates in time, and
performed statistical testing with a two-sided t-test on
nodes from 2022, looking only at nodes with at least 10
mutations.

To test whether age metadata differed according to the
presence of the high G-to-A signature we took all USA
nodes from 2022 that were above the minimum branch
length (>=10) and divided them according to the pres-
ence or absence of the high G-to-A signature. We per-
formed a two-sided t-test to test the significance of the
effect seen. To verify that the effect was not substan-
tially driven by the heuristic of taking the mean of de-
scendant nodes, we repeated the analysis considering
only branches with a single descendant, finding highly
similar results.
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Calculation of mutational spectra
To identify preferred nucleotide contexts for
molnupiravir-based mutagenesis we calculated
single-base substitution (SBS) spectra. For the
high G-to-A branches, we extracted mutation paths
from the UShER mutation-annotated tree. The
context of each mutation was identified using the
Wuhan-Hu-1 genome (accession NC_045512.2),
incorporating mutations acquired earlier in the path.
Mutation counts were rescaled by genomic content
by dividing the number of mutations by the count of
the starting triplet in the Wuhan-Hu-1 genome. MutTui
(https://github.com/chrisruis/MutTui) was used
to rescale and plot mutational spectra.
To calculate an SBS spectrum from the Alteri et al.
dataset we used the mapped reads from BioProject PR-
JNA854613, again taking sites which had >=100 reads
of which >= 5% were distinct from the day 0 consensus.
We rescaled mutation counts to mutational burdens by
dividing each mutation count by the number of the start-
ing triplet in the Wuhan-Hu-1 genome (accession NC_-
045512.2).
We performed a similar analysis for the Donova-
Banfield et al.20. We used deep sequencing data
from samples collected on day one (pre-treatment) and
day five (post-treatment) from 65 patients treated with
placebo and 58 patients treated with molnupiravir. For
each patient, we used the consensus sequence of the
day one sample as the reference sequence and identi-
fied mutations as variants in the day five sample away
from the patient reference sequence in at least 5% of
reads at genome sites with at least 100-fold coverage.
The surrounding nucleotide context of each mutation
was identified from the patient reference sequence.
To ensure that any spectrum differences between
placebo and molnupiravir treatments are not due to
previously observed differences in spectrum between
SARS-CoV-2 variants19,21, we compared the distri-
bution of variants between the treatments (Extended
Data 4). The distributions were highly similar.
We compared the contextual patterns within each tran-
sition mutation type, assessing the similiarity of the val-
ues of the 16 possible tri-nucleotide context from the
high G-to-A phylogenetic branches against those from
the Alteri et al. dataset and, separately, those from the
Donovan-Banfield et al. dataset and the Ruis et al. con-
trol spectrum. For each dataset combination, cosine
similarities were calculated for each transition mutation
class. We performed the same correlational analysis
within the long branch data, comparing the G-to-A sub-
set with the C-to-T subset, matching each G-to-A con-
text to its reverse-complement in the C-to-T dataset.

Identifying highly divergent molnupiravir-derived
sequences excluded from the mutation-annotated
tree
Given that in the process of construction of the UShER
mutation-annotated tree highly divergent sequences

can be excluded, we decided to perform a secondary
analysis to identify divergent sequences with a mol-
nupiravir signature. We used Nextclade52 for this task.
We supplied a full dataset of full-length FASTA se-
quences, and every sequence that could be aligned with
Nextclade was included. Nextclade places each se-
quence onto a sparse tree reference phylognetic tree.
Its outputs include a unlabelled private mutations
column, which contains private mutations at a node
with respect to the tree, excluding revertant mutations
and mutations that are very common in other clades.
We analysed this set of mutations for the presence of
molnupiravir-like mutation-class distributions.
We selected sequences that had >=20 mutations of
which >=20% where G-to-A, >=20% were C-to-T and
>=90% were transitions. Again these were heavily en-
riched for dates after the roll-out of molnupiravir. We
placed identified sequences onto a downsampled global
tree using usher.bio and visualised this tree using
Nextstrain51.
To test whether the >100 mutations in the sequence
shown in Fig. 4C had contexts more compatible with the
molnupiravir spectrum we identify here or with typical
BA.1 spectrum, we performed analysis with multinomial
models. Here we aimed to ignore the signal from the
mutations classes themselves (since these had been
used to select the sequence as interesting) and to con-
sider only the extra information added by the contexts in
which transition mutations occurred. For each transition
class (G-to-A, C-to-T, A-to-G, T-to-C) we created two
multinomial models of trinucleotide context, one using
the long-branch molnupiravir spectrum we define here,
and one using the BA.1 spectrum from Ruis et al. In
each case we multiplied by the number of times a trinu-
cleotide context occurred in the genome to remove the
previous normalisation against this parameter. We as-
sessed the likelihood of observing the counts of con-
texts in the sequence of interest under both models and
calculated a Bayes factor for each (G-to-A: 35017, C-
to-T: 6068, A-to-G: 53, T-to-C: 1.22). These combine to
give a Bayes factor of 1.4e10.

Analysis of synonymous and non-synonymous mu-
tations
We examined the types of mutations that made up these
branches. We used BTE to determine whether each
mutation observed was synonymous or not. Mutations
were tallied by this status, grouped according to whether
the branch was short (<10 mutations) or long (>=10 mu-
tations), and whether it had a high G-to-A signature. We
calculated the proportion of mutations that were non-
synonymous in each case, calculated binomial confi-
dence intervals for these proportions, and compared
them using a two-sided test of equal proportions.
We plotted the distribution of mutations across the
genome for high G-to-A branches, split according to
whether the mutations were synonymous or not, and
also plotting the distribution specifically for the most re-
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current non-synonymous mutations, occurring in four or
more high G-to-A branches. Kernel density estimates
were made with a Gaussian kernel, and a bandwidth of
500 bp.

Processing and visualisation of cluster trees
The bulk trees presented in the supplement were plotted
from the UShER tree using ggtree53.
For the cluster of 20 individuals shown in Fig. 4A, we
observed small imperfections in UShER’s representa-
tion of the mutation-annotated tree within the cluster re-
sulting from missing coverage at some positions. We
therefore recalculated the tree that we display here. We
took the 20 sequences in the cluster, and the three clos-
est outgroup sequences, we aligned using Nextclade52,
calculated a tree using iqtree54 and reconstructed the
mutation-annotated tree using TreeTime55. We visu-
alised the tree using FigTree56.

Linkage analysis to treatment records
49 sequences with high G-to-A signatures from Eng-
land, which fell into 35 clusters, were analysed by
UKHSA. Sequences were linked to Blueteq treatment
records35 based on NHS number. Linkage could be
established for all sequences. The analysis found that
11 of the 35 distinct clusters involved a molnupiravir-
prescribed individual, giving a cluster hit-rate of 31%.
Only sequences sampled after the treatment date were
counted, with no upper time limit.

Limitations
There are some limitations of our work. Identifying a
particular branch as possessing a molnupiravir-like sig-
nature is a probabilistic rather than absolute judgement:
where molnupiravir creates just a handful of mutations
(which trial data suggests is often the case), branch
lengths will be too small to assign the cause of the
mutations with confidence. We therefore limited our
analyses here to long branches. This approach may
also fail to detect branches which feature a substan-
tial number of molnupiravir-induced mutations alongside
a considerable number of mutations from other causes
(which might occur in chronic infections). Our approach
to identifying molnupiravir-associated sequences used
simple thresholding on the proportion of mutations on
a branch with different classes of mutation. The sim-
plicity of this approach, which does not make detection
probability a function of branch length, enabled us to
perform analyses such as looking at the distribution of
branch length in different conditions, but future analyses
which increase sensitivity with more nuanced statistical
approaches (with which we did experiment, finding the
simple method preferable in this first case for the flex-
ibility it offered), as well as considering the contextual
mutation spectrum itself as a signal for detection, will
both be valuable in future work.
We discovered drastically different rates of molnupiravir-
associated sequences by country and suggest that this

reflects in part whether, and how, molnupiravir is used
in different geographical regions; however, there will
also be contributions from the rate at which genomes
are sequenced in settings where molnupiravir is used.
For example, if molnupiravir is used primarily in aged-
care facilities and viruses in these facilities are signif-
icantly more likely to be sequenced than those in the
general community this will elevate the ascertainment
rate of such sequences. Furthermore, it is likely that
some included sequences were specifically analysed as
part of specific studies because the samples demon-
strated continued test positivity after molnupiravir treat-
ment. Such effects are likely to differ based on se-
quencing priorities in different locations. We identified
sequence clusters descending from high G-to-A nodes.
In a number of cases, detailed and distinctive meta-
data show that a particular cluster is made up of se-
quences from different patients, suggesting transmis-
sion of molnupiravir-induced mutations; however in the
absence of such data, clusters are also compatible with
representing multiple samples taken from a single indi-
vidual.
Our analysis here looked at consensus sequences,
which means that for a mutation to be detected it must
reach a high proportion of the population in the host.
Analyses that look at deep sequencing data, and also
mixed base-calls in consensus sequences, will be valu-
able.
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Extended Data 1. Timeline of number of high G-to-A branches, normalised for sequencing volumes, in 6 countries
The y-axis represents number of high G-to-A branches, divided by total sequencing volume for the year. This analysis demon-
strates that the effects seen in raw numbers in Fig. 2D cannot be explained by changes in sequencing volume.

Sanderson et al. | A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes Supplementary Information | 13

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 18, 2023. ; https://doi.org/10.1101/2023.01.26.23284998doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.26.23284998
http://creativecommons.org/licenses/by/4.0/


Country
High G-to-A

branches in 2022
Total genomes

in 2022

Australia 149 121,602
USA 106 2,031,795
United Kingdom 35 1,232,969
Japan 35 366,060
Russia 17 41,416
Germany 13 525,967
Italy 13 70,555
Israel 12 108,770
Slovakia 11 26,461
Denmark 10 332,006
Thailand 9 24,338
Austria 8 46,962
Spain 7 95,635
New Zealand 7 25,170
South Korea 6 58,567
Turkey 6 20,754
France 4 328,527
Czech Republic 4 32,124
Ireland 3 48,704
Indonesia 3 34,499
Luxembourg 3 30,715
India 2 121,841
Belgium 2 84,600
Philippines 2 12,830
Canada 1 217,040
Sweden 1 88,418
Poland 1 44,014
Mexico 1 35,857
Slovenia 1 31,221
Norway 1 30,796
South Africa 1 15,502
Latvia 1 14,039
Hong Kong 1 10,969
Brazil 0 98,346
Netherlands 0 64,614
Switzerland 0 49,062
Peru 0 30,772
Malaysia 0 27,113
Croatia 0 22,786
Chile 0 20,229
Portugal 0 19,483
Finland 0 18,518
Singapore 0 17,353
Greece 0 14,293
Colombia 0 12,302
China 0 11,425
Lithuania 0 10,059

Extended Data 2. Number of high G-to-A branches from 2022 against total number of genomes from 2022 by country.
Only countries with >10,000 genomes are included.
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Extended Data 3. High G-to-A sequences with more than 20 private mutations identified from a Nextclade alignment of
all available SARS-CoV-2 sequences
Nextclade was used to align sequences and identify private mutations. High G-to-A branches were identified on the basis of
unlabelled private mutations. Usher.bio was then used to create a tree with high G-to-A branches highlighted on a downsampled
global tree, with visualisation performed with Nextstrain.
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Extended Data 4. Distribution of major SARS-CoV-2 variants between placebo and molnupiravir treatments in the AGILE
trial dataset.
The proportion of patients infected with each variant is shown. The proportions are similar suggesting that differences between
placebo and molnupiravir spectra will not be influenced by previously observed spectrum differences between variants (Ruis et
al., Bloom et al.). VOC = variant of concern.
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Extended Data 5. Context locations within the mutational spectrum.
The RNA mutational spectrum contains 12 mutation types, for example C-to-T, shown here. The spectrum also captures the
nucleotides surrounding each mutation. There are four potential upstream nucleotides and four potential downstream nucleotides.
This figure shows the location of each of the 16 contexts within an example mutation type. For example, the leftmost bar
represents C-to-T mutations in the ACA context while the second leftmost bar represents C-to-T mutations in the ACC context.
The spectrum represented is from AGILE trial data on monlupiravir.
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Extended Data 6. Mutation spectrum analysis supports a molnupiravir origin for high G-to-A nodes
(A) Strong correlation for contexts in all transition mutation classes between Alteri et al. molnupiravir-treated patients and high
G-to-A long branches. (B) Similar analysis, with clear correlation between Donovan-Banfield et al. dataset of molnupiravir treated
individuals to long high G-to-A branches. (C) Little correlation seen between contexts in typical SARS-CoV-2 evolution (Ruis et
al.) and high G-to-A branches. (D) In data from long branches, context proportions for G-to-A mutations correlate with context
proportions for C-to-T mutations, indicating a common mutational process. Points are labelled with G-to-A context, then C-to-T
context.
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