
 

 

Incorporating interactions into structured life course modelling approaches: 1 

A simulation study and applied example of the role of access to green space 2 

and socioeconomic position on cardiometabolic health 3 

 4 

Daniel Major-Smith1,2 *, Tadeáš Dvořák2, Ahmed Elhakeem1,2, Deborah A. Lawlor1,2,3, Kate Tilling1,2,3, 5 

Andrew D. A. C. Smith
4
 6 

1 MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK 7 
2
 Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK 8 

3
 Bristol National Institute of Health Research (NIHR) Biomedical Research Centre, Bristol, UK 9 

4 Mathematics and Statistics Research Group, University of the West of England, Bristol, UK 10 

* Corresponding author: dan.smith@bristol.ac.uk 11 

 12 

ORCIDs: 13 

DM-S: 0000-0001-6467-2023 14 

TD: 0000-0002-0423-5259 15 

AE: 0000-0001-7637-6360 16 

DAL: 0000-0002-6793-2262 17 

KT: 0000-0002-1010-8926 18 

ADACS: 0000-0001-5452-9901 19 

 20 

Word count: 4,270 21 

Tables: 4 22 

Figures: 2 23 

 24 

 25 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.23284935doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.01.24.23284935
http://creativecommons.org/licenses/by/4.0/


 

 

Abstract 26 

Background: Structured life course modelling approaches (SLCMA) have been developed to 27 

understand how exposures across the lifespan relate to later health, but have primarily been 28 

restricted to single exposures. As multiple exposures can jointly impact health, here we: i) 29 

demonstrate how to extend SLCMA to include exposure interactions; ii) conduct a simulation study 30 

investigating the performance of these methods; and iii) apply these methods to explore 31 

associations of access to green space, and its interaction with socioeconomic position, with child 32 

cardiometabolic health. 33 

Methods: We used three methods, all based on lasso regression, to select the most plausible life 34 

course model: visual inspection, information criteria and cross-validation. The simulation study 35 

assessed the ability of these approaches to detect the correct interaction term, while varying 36 

parameters which may impact power (e.g., interaction magnitude, sample size, exposure 37 

collinearity). Methods were then applied to data from a UK birth cohort. 38 

Results: There were trade-offs between false negatives and false positives in detecting the true 39 

interaction term for different model selection methods. Larger sample size, lower exposure 40 

collinearity, centering exposures, continuous outcomes and a larger interaction effect all increased 41 

power. In our applied example we found little-to-no association between access to green space, or 42 

its interaction with socioeconomic position, and child cardiometabolic outcomes. 43 

Conclusions: Incorporating interactions between multiple exposures is an important extension to 44 

SLCMA. The choice of method depends on the researchers’ assessment of the risks of under- vs 45 

over-fitting. These results also provide guidance for improving power to detect interactions using 46 

these methods. 47 

 48 

Keywords: Life course epidemiology, structured life course modelling approach, interaction, lasso, 49 

simulation study, green space, cardiometabolic health, ALSPAC. 50 

 51 

Key messages: 52 

• In life course epidemiology, it is important to consider how multiple exposures over the 53 

lifespan may jointly influence health. 54 

• We demonstrate how to extend current structured life course modelling approaches to 55 

include interactions between multiple different exposures. 56 

• A simulation study comparing different methods to detect a true interaction effect found a 57 

trade-off between false positives and false negatives, suggesting that the optimal choice of 58 

method may depend on the researchers’ assessment of this trade-off (e.g., exploratory 59 

studies may prefer a greater risk of false positives, while confirmatory studies may prefer to 60 

minimise the risk of false positives). 61 

• We identified key factors that improve power to detect a true interaction effect, namely 62 

larger sample sizes, centering exposures, lower exposure collinearity, continuous outcomes 63 

and larger interaction effect sizes. 64 

• We applied these methods in a UK birth cohort (ALSPAC; Avon Longitudinal Study of Parents 65 

and Children), finding little-to-no evidence of an association between access to green space 66 

and its interaction with socioeconomic position on child BMI, obesity or blood pressure. 67 
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Introduction 68 

Life course epidemiology studies the effects on health of biological, social and environmental 69 

exposures during gestation, infancy, adolescence, adulthood, and across generations (Ben-Shlomo & 70 

Kuh 2002; Kuh et al. 2003). Over the last decade several structured life course modelling approaches 71 

(SLCMA; pronounced “slick-mah”) have been developed to help with the challenges of 72 

understanding these life course effects (Mishra et al. 2009; Smith et al. 2015, 2016, 2022; Howe et 73 

al. 2016; Madathil et al. 2018; Zhu et al. 2021). These approaches have largely focused on how to 74 

model the effect of one repeated exposure over the life course on an adult outcome, to distinguish 75 

for example between critical or sensitive periods, or cumulative effects. Little attention has been 76 

applied to two or more exposures and how these may jointly affect an outcome, despite the 77 

definition of life course epidemiology clearly highlighting the importance of multiple exposures 78 

jointly influencing health. 79 

Here we extend these existing models by demonstrating how to incorporate interactions between 80 

multiple exposures in a SLCMA, allowing an exploration of how multiple exposures are associated 81 

with an outcome. This paper has three aims: i) describe how to extend existing structured life course 82 

models to include interaction terms between multiple exposures; ii) conduct a simulation study 83 

exploring how well this approach performs under a range of conditions; and iii) apply this approach 84 

in a UK birth cohort.  85 

 86 

Motivating Example 87 

Throughout this paper we will use access to green space during pregnancy, infancy and early 88 

childhood, and its interaction with family socioeconomic position (SEP), and how these impact later 89 

child cardiometabolic outcomes (body mass index [BMI] and blood pressure), as a motivating 90 

example. BMI and blood pressure are key risk factors for cardiovascular disease progression 91 

(Berenson et al. 1998) which often manifest in childhood (Chen & Wang 2008; Singh et al. 2008). 92 

Understanding the risk factors – and potential interventions – for childhood obesity and 93 

hypertension is therefore a major public health concern (World Health Organization 2016). One 94 

potential modifiable risk factor is access to green space. Numerous studies have reported 95 

associations between access to green space and improved BMI and blood pressure in adults (James 96 

et al. 2015; Luo et al. 2020), although associations in children have been mixed (Bell et al. 2008; 97 

Wolch et al. 2011; Lovasi et al. 2013; Markevych et al. 2014; Picavet et al. 2016; Schalkwijk et al. 98 

2018; Benjamin-Neelon et al. 2019; Bloemsma et al. 2019; Abbasi et al. 2020; Xiao et al. 2020; 99 

Warembourg et al. 2021; Jia et al. 2021; Cadman et al. 2022; Dzhambov et al. 2022; Luo et al. 2022). 100 

Interactions between access to green space and SEP on cardiovascular outcomes have received less 101 

attention, although some effect modification has been reported in both adults (James et al. 2015) 102 

and children (Schalkwijk et al. 2018). Previous studies have examined green space exposure at one 103 

time point, but, to the best of our knowledge, none have adopted a life course approach to identify 104 

how the association between green space and child BMI and blood pressure changes over infancy 105 

and childhood, or its interaction with SEP.106 
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The Structured Life Course Modelling Approach (SLCMA) 107 

The first step in a SLCMA is to specify and encode potential life course hypotheses, which may either 108 

be ‘simple’ (encoded into one variable) or ‘compound’ (a combination of two or more encoded 109 

variables; (Mishra et al. 2009; Smith et al. 2015, 2016, 2022)). The selection of hypotheses could be 110 

exploratory or confirmatory; here we focus on exploratory analyses. Table 1 describes some 111 

common life course hypotheses and their extension to include interactions, and how they can be 112 

encoded where the exposures and confounders/covariates are binary variables. We use the term 113 

‘confounder/covariate’ throughout, as the interaction term could include either the exposure and a 114 

confounder, or the exposure and an effect-modifier that is not a confounder. Similar encoding 115 

applies when the variables are continuous (Smith et al. 2016), but we introduce the key concepts 116 

here using binary variables.  117 

 118 
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Table 1: Examples of encoding hypotheses for structured life course models where exposure variables are binary and there are two exposure time-points. Xi 119 

is an indicator for the exposure at time-point i; Z indicates the confounder/covariate to be included in the interaction term. Note that as we have decided 120 

here that the confounder/covariate Z will be included in all models by default, it appears in all formulae in the ‘model’ column below. Not all possible life 121 

course model permutations are displayed here. 122 

Hypothesis Model Encoding Type Interpretation 

Critical period (i) Y = b0 + b1Z + b2Cii Ci = Xi Simple Exposure causes outcome only at ith time point 

Critical period (i) if Z = 1 Y = b0 + b1Z + b2CIi CIi = ZXi Simple Exposure causes outcome only at ith time point and where 

confounder/covariate equals ‘1’ (e.g., critical period only if high SEP) 

Critical period (i) with 

interaction 

Y = b0 + b1Z + b2Ci + 

b3CIi 

C1 = Xi 

CI1 = ZXi 

Compound Interaction between confounder/covariate and exposure at ith time 

point causes outcome (e.g., critical period differs by 

confounder/covariate for both levels of exposure). 

Accumulation Y = b0 + b1Z + b2A A = X1 + X2 Simple Outcome increases linearly with total amount of exposure 

Accumulation if Z = 1 Y = b0 + b1Z + b2AI AI = Z(X1 + X2) Simple Outcome increases linearly with exposure, but only where 

confounder/covariate equals ‘1’ 

Accumulation with 

interaction  

Y = b0 + b1Z + b2A + b3AI A = X1 + X2 

AI = Z(X1 + X2) 

Compound Interaction between confounder/covariate and accumulation causes 

outcome 

Sensitive period (i) Y = b0 + b1Z + b2Ci + b3A Ci = Xi 

A = X1 + X2 

Compound Exposure at both time points causes outcome, but more strongly at 

time i (i.e., accumulation plus critical period i) 

Change (increase from 1 

to 2) 

Y = b0 + b1Z + b2M+

12 M+

12 = (1 – X1)X2 Simple Increase in exposure between time 1 and 2 causes outcome 

Change (increase from 1 

to 2) if Z = 1 

Y = b0 + b1Z + b2M+

12I M+

12I = Z((1 – X1)X2) Simple Increase in exposure between time 1 and 2 causes outcome, but 

only where confounder/covariate equals ‘1’ 

Change (increase from 1 

to 2) with interaction 

Y = b0 + b1Z + b2M+

12 + 

b3M
+

12I 

M+

12 = (1 – X1)X2 

M
+

12I = Z((1 – X1)X2) 

Compound Interaction between confounder/covariate and increase in exposure 

between time 1 and 2 causes outcome 

Change (decrease from 1 

to 2) 

Y = b0 + b1Z + b2M-

12 M-

12 = (1 – X2)X1 Simple Decrease in exposure between time 1 and 2 causes outcome 

Change (decrease from 1 

to 2) if Z = 1 

Y = b0 + b1Z + b2M-

12I M-

12I = Z((1 – X2)X1) Simple Decrease in exposure between time 1 and 2 causes outcome, but 

only where confounder/covariate equals ‘1’ 

Change (decrease from 1 

to 2) with interaction 

Y = b0 + b1Z + b2M
-

12 + 

b3M
-

12I 

M
-

12 = (1 – X2)X1 

M-

12I = Z((1 – X2)X1) 

Compound Interaction between confounder/covariate and decrease in 

exposure between time 1 and 2 causes outcome 

 123 
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Once these hypotheses have been encoded, these terms are entered into a lasso regression model. 124 

Lasso models apply a penalty term (lambda) which constrains terms in the model to zero, an 125 

approach known as L1-regularisation. The initial lambda value is set so that there are no variables in 126 

the model; lambda is then decreased, allowing variables which explain the highest amount of the 127 

variation in the outcome into the model in a cumulative manner (Hastie et al. 2015). Previous 128 

structured life course approaches (Smith et al. 2015, 2016) have used an algorithm for this approach 129 

known as Least Angle Regression (LARS; (Efron et al. 2004)) which finds the best lasso model as 130 

lambda decreases. The first model contains the variable with the strongest association with the 131 

outcome, with later models containing additional variables added in a stepwise procedure. The 132 

choice of hypotheses is then based on an inspection of an ‘elbow plot’ (the proportion of variation 133 

explained after new variables are added), a formal lasso covariance hypothesis test as to whether 134 

inclusion of another variable improves model fit (Lockhart et al. 2014), or both. However, concerns 135 

have been raised about this lasso covariance test, especially regarding binary outcomes, and this 136 

approach is no longer recommended (Zhu et al. 2021).  137 

Hence, there is currently no consensus on the optimal method for selecting the best fitting lasso 138 

model; we explore three possible approaches below, all of which are based on a standard lasso, 139 

rather than the LARS approach. These are: 140 

1) Visual inspection. Examining the order in which encoded variables are entered into the 141 

model and the variance explained associated with each variable (similar to a LARS elbow 142 

plot). While this is a relatively straightforward approach, it is subjective, especially if the 143 

choice of best variable(s) is not clear. 144 

2) Using a ‘relaxed lasso’ (Hastie et al. 2020) approach and comparing model fit using 145 

information criteria. After running the lasso model, take all model combinations found by 146 

the lasso, run a standard regression model on each (e.g., linear models for continuous 147 

outcomes, logistic regression for binary outcomes), and select the best-fitting model based 148 

on an information criterion which has a penalty for over-fitting (e.g., AIC [Akaike Information 149 

Criterion] or BIC [Bayesian Information Criterion]). Although both assess model fit, the AIC 150 

and BIC are calculated differently (Kuha 2004), with the BIC penalising complexity more than 151 

the AIC. We will use both the AIC and BIC here, and compare their performance.  152 

3) Using a cross-validated lasso approach. Unlike an ordinary lasso which continuously 153 

improves model fit as lambda reaches 0, at each lambda value cross-validated lasso splits 154 

the data into k equal portions (here, k = 10) and calculates the mean prediction error. The 155 

lambda value which minimises the prediction error is deemed the ‘optimal’ model for 156 

predicting the outcome. We will compare two cross-validated methods for selecting the 157 

best-fitting model, one based on the model with the lowest mean prediction error and 158 

another selecting the model within 1 standard error of the minimum mean prediction error 159 

(which selects a sparser model and may avoid over-fitting; ((Hastie et al. 2015), pages 13-160 

14)).  161 

Note that the primary aim of this SLCMA as used in the simulation sections of this paper is not in 162 

estimation of the coefficients, but rather model selection and understanding the overall impact of 163 

the exposure on the outcome throughout the life course. For post-selection inference methods to 164 

calculate unbiased effect estimates, confidence intervals and p-values when using SLCMA – known 165 

as ‘selective inference’ – see; (Tibshirani et al. 2016; Zhu et al. 2021; Smith et al. 2022). Throughout 166 

this paper we focus on lasso approaches using the ‘glmnet’ package in R (Friedman et al. 2010). 167 
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 168 

Worked Example 169 

We first demonstrate these methods with a simple simulated dataset based on our motivating 170 

example, using BMI as our cardiometabolic outcome (see section S1 of the supplementary 171 

information for simulation details; simulated n = 10,000; all code is openly-available on GitHub, see 172 

the Data Availability section). In this simulation, there is one binary SEP covariate (1 = high SEP), 173 

three binary green space exposures (in pregnancy, at age 4, and at age 7; 1 = access to green space), 174 

and a continuous BMI outcome. We simulate that SEP causes all three green space exposures (higher 175 

SEP = greater access to green space) and the outcome (higher SEP = lower BMI), and is therefore a 176 

confounder of the green space-BMI relationship. In this example, we simulate a critical period where 177 

most recent access to green space at age 7 has a causal effect on BMI, but only when interacting 178 

with SEP, such that lower SEP and access to green space causes a reduction in BMI, but access to 179 

green space for those with higher SEP has no impact on BMI. This example is purely illustrative, 180 

although these effects may be plausible (James et al. 2015; Schalkwijk et al. 2018). The life course 181 

hypotheses encoded are described in table 2.  182 

Figure 1 shows the results of this simulated lasso model. The order in which variables are entered is 183 

displayed from left to right, with a measure of model fit (deviance ratio) on the y-axis (for a detailed 184 

interpretation of this plot, see the figure 1 legend). The first variable entered in the model was ‘crit3’ 185 

(critical period at time 3/age 7), followed by ‘int3’ (interaction between SEP and critical period at 186 

time 3/age 7), and there appears to be an appreciable increase in model fit associated with both 187 

variables before additional variables are added (approx. 1.5% for both variables). As the line is 188 

largely horizontal after these two variables have been added, this suggests that the inclusion of 189 

additional variables does not noticeably improve model fit. This indicates that critical period at time 190 

3/age 7 and its interaction with SEP have the strongest association with the outcome, and that all 191 

other variables have a much weaker/null association. 192 

Next, we tested these patterns more formally using the relaxed lasso approach. The lowest AIC and 193 

BIC values were found for the true model, containing both critical period at time 3/age 7 and its 194 

interaction with SEP (in addition to the ‘high_sep’ confounder/covariate included in all models by 195 

default). As with the more subjective visual inspection method, we again reach the conclusion that 196 

the compound hypothesis of recent access to green space by SEP interaction is the best model. 197 

Finally, we can use cross-validated lasso for model selection. The model within one standard error of 198 

the model with the lowest mean-squared error correctly identified critical period at time 3/age 7 199 

and its interaction with SEP (in addition to ‘high_sep’) as the best-fitting model. The cross-validated 200 

model with the lowest mean prediction error included both of these variables, in addition to nine 201 

other encoded variables (figure S1), indicating overfitting. All three of these methods – except for 202 

cross-validated lasso using the model with the minimum mean prediction error – therefore provide 203 

broadly consistent results that match the simulated model.  204 
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Table 2: Hypotheses encoded in our simulated worked example dataset. The variables in this dataset 205 

are: green1 (access to green space at time1/in pregnancy), green2 (access to green space at time 206 

2/age 4), green3 (access to green space at time 3/age 7) and high_sep (binary marker for high 207 

socioeconomic position). The confounder ‘high_sep’ is included in all models. ‘Simple’ models can be 208 

encoded in just one additional variable, while ‘compound’ hypotheses combine two or more 209 

additional encoding variables. In this simulated example, the compound hypothesis ‘crit3 + int3’ 210 

(critical period at time 3/age 7 with an interaction with SEP) is the true model. 211 

Hypothesis Encoding Type 

Critical period (1) crit1 = green1 Simple 

Critical period (1) only if high SEP int1 = high_sep * green1 Simple 

Critical period (1) with SEP interaction crit1 + int1
 

Compound 

Critical period (2) crit2 = green2 Simple 

Critical period (2) only if high SEP int2 = high_sep * green2 Simple 

Critical period (2) with SEP interaction  crit2 + int2
 

Compound 

Critical period (3) crit3 = green3 Simple 

Critical period (3) only if high SEP int3 = high_sep * green3 Simple 

Critical period (3) with SEP interaction  crit3 + int3
 

Compound 

Accumulation accumulation = green1 + 

green2 + green3 

Simple 

Accumulation only if high SEP int_accum = high_sep * 

accumulation 

Simple 

Accumulation with SEP interaction  accumulation + int_accum Compound 

Sensitive period (1) crit1 + accumulation Compound 

Sensitive period (2) crit2 + accumulation Compound 

Sensitive period (3) crit3 + accumulation Compound 

Change (more green space from 1 to 2) green_inc12 = (1 – green1) * 

green2 

Simple 

Change (more green space from 1 to 2) 

only if high SEP 

green_inc12_int = high_sep 

* green_inc12 

Simple 

Change (more green space from 1 to 2) 

with SEP interaction 

green_inc12 + 

green_inc12_int 

Compound 

Change (less green space from 1 to 2) green_dec12 = (1 – green2) * 

green1 

Simple 

Change (less green space from 1 to 2) only 

if high SEP 

green_dec12_int = high_sep 

* green_dec12 

Simple 

Change (less green space from 1 to 2) with 

SEP interaction 

green_dec12 + 

green_dec12_int 

Compound 

Change (more green space from 2 to 3) green_inc23 = (1 – green2) * 

green3 

Simple 

Change (more green space from 2 to 3) 

only if high SEP 

green_inc23_int = high_sep 

* green_inc23 

Simple 

Change (more green space from 2 to 3) 

with SEP interaction 

green_inc23 + 

green_inc23_int 

Compound 

Change (less green space from 2 to 3) green_dec23 = (1 – green3) * 

green2 

Simple 

Change (less green space from 2 to 3) only 

if high SEP 

green_dec23_int = high_sep 

* green_dec23 

Simple 

Change (less green space from 2 to 3) with 

SEP interaction 

green_dec23 + 

green_dec23_int 

Compound 
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 212 

Figure 1: Results of the lasso from the simulated worked example. This plot displays the log lambda value on the x-axis (the lasso penalty term which allows 213 

more variables to enter the model) and the absolute deviance ratio of the lasso model associated with each lambda value on the y-axis (as a measure of 214 

model fit). As the variables are added to/removed from the model they appear on the x-axis, moving from left to right (with “(+)” indicating addition, and 215 

“(-)” indicating removal). The covariate/confounder ‘high_sep’ does not appear in this plot as it was constrained to be included in all models by default. This 216 

plot shows that the first encoded variable to enter the model was access to green space at critical period 3/age 7 (‘crit3’). This variable was then associated 217 

with an increase in the deviance ratio by approximately 1.5% until the next encoded variable was added, that of an interaction between critical period 218 

3/age 7 and SEP (‘int3’). After this variable was added, there was another increase in the deviance ratio of approximately 1.5% when the next encoded 219 

variable was added, that of ‘green_dec23_int’ (the interaction term between a decrease in green space between times 2 and 3 and SEP). When this and 220 

subsequent variables were added, the improvements in the deviance ratio were minimal – as indicated by the largely horizontal line by this point – 221 

suggesting that none of these encoded variables were strongly associated with the outcome BMI (for an explanation of all other encoded variables in this 222 

plot, see table 2). These results suggest that the combination of ‘crit3’ and ‘int3’ are the best fit to the data, with all other variables having a much 223 

weaker/null association with the outcome, just as was simulated. 224 
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Simulation study 225 

The previous section demonstrated how to extend SLCMA to include multiple exposures and 226 

interaction terms. However, the conditions under which these approaches identify the correct 227 

interaction term is unknown, especially given known issues of low statistical power for interactions 228 

(Brookes et al. 2004; Blake & Gangestad 2020). We conducted a formal simulation study (using the 229 

ADEMP approach; (Morris et al. 2019)) to explore how several factors impact the probability of the 230 

SLCMA methods detecting the true interaction term (i.e., the correct SEP-interaction, regardless of 231 

other terms in the final model).  232 

Aim: Assess how often SLCMA identifies the true interaction term, while varying the following 233 

factors: 234 

• Sample size: 1,000 vs 10,000 235 

• Exposure variables: binary vs continuous (for binary exposures we used the life-course 236 

hypotheses encoded in table 2, while for continuous exposures we used the hypotheses 237 

encoded in table S1) 238 

• Centering exposure variables: no vs yes (centering exposures may reduce the collinearity 239 

between main effects and interaction terms (Afshartous & Preston 2011; Iacobucci et al. 240 

2016)) 241 

• Collinearity between exposure variables: low vs high (higher collinearity may make it more 242 

difficult for the model to distinguish between different life course hypotheses) 243 

• Outcome variable: binary vs continuous (analyses with binary outcomes tend to have lower 244 

power (Altman & Royston 2006)) 245 

• Size of interaction term: none vs very small vs small vs moderate vs large vs very large 246 

(ranked on a relative scale) 247 

• Life course hypothesis interaction: critical period at time 3 vs accumulation vs change from 248 

time 2 to time 3 249 

Data-generating mechanism: We used the same data-generating mechanism as above to generate 250 

all exposures, with SEP as a binary variable. Simulating the outcome BMI depended on the life 251 

course hypothesis being assessed, i.e., an interaction between SEP and either critical period at time 252 

3, accumulation or change from time 2 to 3. See supplementary information section S2 for additional 253 

detail on these simulation parameters and how they were selected. 254 

Estimand: The target estimand was the inclusion of the correct SEP-interaction term being selected 255 

in the final model. 256 

Methods: We used the relaxed lasso approach (using both AIC and BIC) and cross-validated lasso 257 

(using both minimum mean-squared error [MSE] and within 1 standard error of the MSE) for model 258 

selection. 259 

Performance measure: The percentage of simulations (out of 1,000) that selected the true 260 

interaction term.  261 

 262 

The results of this simulation study across all simulation parameters, for each SLCMA method, 263 

interaction strength, and life course interaction model, are displayed in table 3. As the strength of 264 

the interaction increased more models selected the correct interaction term. The relaxed lasso AIC 265 

and cross-validated minimum MSE methods were more likely to select the target interaction (even 266 
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frequently in the ‘no interaction’ scenario), while the relaxed lasso BIC and cross-validated 1SE 267 

approaches were less likely to select the interaction, even with larger interaction coefficients (with 268 

1SE cross-validation less likely to detect an interaction than relaxed BIC). The relaxed AIC and cross-269 

validated minimum MSE methods are therefore more likely to detect a true interaction term, but at 270 

the expense at an increased risk of false positives, while the reverse is true for the relaxed BIC and 271 

cross-validated 1SE approaches. 272 

Variation between the life course interaction models was also apparent, with critical period 273 

interactions more likely to be selected than change interactions, and accumulation interactions least 274 

likely to be selected. This is likely due to the accumulation variables having high collinearity with the 275 

critical period variables, and therefore having less power to distinguish between these competing 276 

hypotheses.  277 

This summary masks substantial variation, with methods performing well for some combinations of 278 

simulation parameters, and poorly for others. Focusing on the moderate interaction scenario, there 279 

is variation in the power to detect the correct interaction term (table 4). Overall, power was much 280 

greater with a larger sample size and continuous rather than binary outcomes. For other simulation 281 

parameters, differences were either smaller or varied by the life course interaction model. For 282 

instance, whether the exposures were binary or continuous made little difference for the critical 283 

period model, but power to detect an accumulation interaction was greater with binary exposures, 284 

while for the change interaction continuous exposures had greater power. High exposure collinearity 285 

greatly reduced the power of the accumulation and change models, while for the critical period 286 

models differences in collinearity were more modest. Centering the encoded variables increased 287 

power in the accumulation and critical period settings, but not in the change scenario. 288 

As it may not be possible to directly compare power between continuous and binary outcomes 289 

because the interaction terms are not equivalent, these results are repeated in tables S2 and S3, 290 

split by continuous vs binary outcome. Results are qualitatively similar to the combined results 291 

reported here.  292 
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Table 3: Summary of overall simulation results for each SLCMA method, each interaction strength, 293 

and each life course interaction model (n simulations = 32; n iterations per simulation = 1,000). 294 

Results show the percent of simulations in which the correct interaction term was selected. Note 295 

that in the rows for interaction strength of ‘None’, technically this is not the ‘correct’ interaction as 296 

no interaction was present (i.e., 15.7% of simulations using the AIC relaxed lasso method included 297 

the interaction term for the critical period at time 3 model, even though no interaction was 298 

simulated). For full details on the simulation parameters, see section S2 of the supplementary 299 

information. SE = Standard error; MSE = Mean-squared error. 300 

Interaction 

Strength 

Life course interaction 

model 

Relaxed 

lasso – AIC 

Relaxed 

lasso – BIC 

Cross-

validated 

lasso – 1 SE 

of min. MSE 

Cross-

validated 

lasso – min. 

MSE 

None 

Critical period at time 3 15.7% 2.3% 0.7% 24.3% 

Accumulation 5.1% 0.9% 0.3% 9.9% 

Change from time 2 to 3 21.2% 2.7% 0.2% 33.2% 

Very small 

Critical period at time 3 25.1% 5.0% 0.0% 32.1% 

Accumulation 5.9% 0.5% 0.0% 14.9% 

Change from time 2 to 3 26.3% 6.8% 0.0% 29.4% 

Small 

Critical period at time 3 54.5% 27.6% 0.3% 60.5% 

Accumulation 19.2% 7.1% 0.0% 34.7% 

Change from time 2 to 3 46.8% 22.6% 0.3% 46.1% 

Moderate 

Critical period at time 3 85.3% 65.0% 28.6% 89.4% 

Accumulation 47.6% 30.9% 9.5% 62.7% 

Change from time 2 to 3 73.3% 50.4% 15.5% 70.3% 

Large 

Critical period at time 3 96.1% 84.8% 61.4% 98.2% 

Accumulation 65.2% 49.3% 35.6% 74.9% 

Change from time 2 to 3 86.1% 66.1% 34.6% 82.4% 

Very large 

Critical period at time 3 98.8% 93.5% 80.3% 99.4% 

Accumulation 74.1% 63.4% 47.8% 79.9% 

Change from time 2 to 3 92.2% 80.4% 48.9% 88.9% 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 
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Table 4: Summary of simulation results for each SLMCA method and each life course interaction 313 

models, under the ‘moderate interaction’ scenario, with results separated by each of the simulation 314 

parameters varied (n simulations = 32; n iterations per simulation = 1,000). Results show the percent 315 

of simulations in which the correct interaction term was selected (as there were 32 simulations, each 316 

row here contains the average over 16 simulations). For full details on the simulation parameters, 317 

see section S2 of the supplementary information. SE = Standard error; MSE = Mean-squared error. 318 

Simulation 

parameter 

Life course interaction 

model 

Relaxed 

lasso – AIC 

Relaxed 

lasso – BIC 

Cross-

validated 

lasso – 1 SE 

of min. MSE 

Cross-

validated 

lasso – min. 

MSE 

Sample size 

1,000 

Critical period at time 3 72.0% 33.8% 2.5% 78.8% 

Accumulation 20.9% 4.6% 0.2% 36.6% 

Change from time 2 to 3 56.8% 28.0% 2.5% 53.6% 

10,000 

Critical period at time 3 98.6% 96.2% 54.7% 100.0% 

Accumulation 74.3% 57.1% 18.8% 88.7% 

Change from time 2 to 3 89.8% 72.8% 28.5% 87.0% 

 

Exposure 

Binary 

Critical period at time 3 86.4% 69.6% 34.7% 89.1% 

Accumulation 56.7% 39.5% 16.8% 66.4% 

Change from time 2 to 3 61.5% 35.2% 10.3% 56.3% 

Continuous 

Critical period at time 3 84.3% 60.4% 22.4% 89.7% 

Accumulation 38.4% 22.3% 2.2% 58.9% 

Change from time 2 to 3 85.0% 65.6% 20.7% 84.4% 

 

Collinearity of exposures 

Low 

Critical period at time 3 90.4% 69.5% 30.0% 90.9% 

Accumulation 60.5% 42.4% 6.6% 69.4% 

Change from time 2 to 3 91.0% 75.7% 30.9% 89.8% 

High 

Critical period at time 3 80.2% 60.5% 27.1% 87.9% 

Accumulation 34.7% 19.4% 12.4% 55.9% 

Change from time 2 to 3 55.6% 25.2% 0.1% 50.9% 

 

Encoded variables centered 

No 

Critical period at time 3 87.1% 65.6% 27.6% 89.0% 

Accumulation 38.8% 24.1% 7.7% 57.3% 

Change from time 2 to 3 74.1% 50.8% 15.4% 70.8% 

Yes 

Critical period at time 3 83.5% 64.4% 29.6% 89.8% 

Accumulation 56.3% 37.7% 11.3% 68.1% 

Change from time 2 to 3 72.4% 50.0% 15.6% 69.8% 

 

Outcome 

Continuous 

Critical period at time 3 92.6% 77.1% 42.7% 97.5% 

Accumulation 56.2% 38.6% 17.1% 73.5% 

Change from time 2 to 3 82.4% 59.9% 24.7% 79.8% 

Binary 

Critical period at time 3 78.0% 52.9% 14.4% 81.2% 

Accumulation 38.9% 23.2% 2.0% 51.8% 

Change from time 2 to 3 64.2% 41.0% 6.4% 60.9% 
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Applied example in a UK birth cohort 319 

We used data from the Avon Longitudinal Study of Parents and Children (ALSPAC) as an illustrative 320 

example of how to apply the SLCMA methods detailed above. Our substantive research question 321 

concerns the impact of access to green space, and its potential interaction with SEP, on later child 322 

BMI (both continuous and a binary of measure of obesity) and blood pressure. We used ‘access to 323 

green space’ as our exposure, measured during pregnancy, age 4 and age 7 (this was a binary 324 

variable indicating whether there was a green space >5,000 m
2
 within 300 meters of their home). 325 

Our outcomes were BMI, overweight/obese, systolic blood pressure (SBP) and diastolic blood 326 

pressure (DBP) measured at age 7. We used parental education as our binary SEP interaction term 327 

(coded as ‘O-level or lower’ [lower SEP] vs ‘A-level or higher’ [higher SEP]). Maternal ethnicity, the 328 

sex of the child, and the age of child at the time of outcome measurement were included as 329 

confounders/covariates (see figure S2 for our hypothesised Directed Acyclic Graph displaying the 330 

assumed causal relations between variables). As all exposures were binary, hypotheses were 331 

encoded as described in table 2. Additional details of the study population, variable selection and 332 

analysis methods can be found in section S3 of the supplementary information. 333 

At each of the time points approximately 75% of children had access to a green space (table S4), 334 

while variation in this exposure over time was relatively low, with 70% of children having access to a 335 

green space at all three time points and 17% having no access at all time points (table S5 and figure 336 

S3). Correlations between access to green space for adjacent time-points were high (r = 0.76 337 

between pregnancy and age 4; r = 0.86 between age 4 and age 7). Descriptive statistics for the BMI, 338 

obesity and blood pressure outcomes, SEP confounders/interaction variables and the other 339 

confounders/covariates can be found in table S6.  340 

We first present results where BMI was the outcome. Visual inspection indicated that inclusion of 341 

the first variables in the model – an interaction between SEP and critical period at age 4 (‘int2’) and 342 

an increase in access to green space between times 2 and 3 (‘green_inc23’) – had little association 343 

with the outcome as there was minimal improvement in model fit (figure 2). This was confirmed by 344 

both other methods, with the relaxed lasso (AIC and BIC) and cross-validated lasso (minimum MSE 345 

and 1SE of MSE), selecting the covariate-only model as the best fit to the data (table S7). Given the 346 

rather limited variation in this green space exposure over time, we also explored whether using just 347 

two time-points (pregnancy and age 7) would give different results; results were qualitatively similar 348 

(figure S4), suggesting that results from the models using all three time-points are robust.  349 

Similar results were found for the other three outcomes (table S7). For the binary outcome 350 

overweight/obese, all SLMCA methods indicated no association between any of the encoded 351 

variables and the outcome (figure S5). SBP was a more complex case, as visual inspection indicated 352 

at best a marginal increase in model fit as more encoded variables were added (figure S6), the 353 

relaxed BIC and the 1 SE cross-validated lassos suggested no association between any of the 354 

encoded variables and the outcome, while the relaxed AIC and minimum MSE cross-validated lassos 355 

both selected more complex models with 5 and 11 encoded variables, respectively (table S7). Results 356 

of the best-fitting relaxed AIC lasso are discussed in detail in table S8, finding that a decrease in 357 

access to green space between pregnancy and age 4, and its interaction with SEP, was associated 358 

with SBP, with children from lower SEP backgrounds who had a reduction in green space having 359 

lower SBP than everyone else. Results for DBP were similar, with some inconsistency again found 360 

between the different methods. Visual inspection hinted at a weak association between a decrease 361 

in access to green space between pregnancy and age 4 and DBP (figure S7), relaxed BIC and the 1 SE 362 

cross-validated lassos indicated no association between any of the encoded variables and the 363 
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outcome, while the relaxed AIC and minimum MSE cross-validated lassos both selected a decrease in 364 

green space between pregnancy and age 4 in their respective best-fitting models (with this decrease 365 

in green space associated with lower DBP; table S7).  366 

 367 
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 368 

Figure 2: Plot of the lasso model with binary access to green space >5,000m within 300m of home in pregnancy (time 1), at age 4 (time 2) and at age 7 (time 369 

3) as the exposures, BMI at age 7 as the continuous outcome, and highest parental education as the SEP-interaction term (n = 6,013). As the variables are 370 

added to/removed from the model they appear on the x-axis (with “(+)” indicating addition, and “(-)” indicating removal). The covariates/confounders 371 

constrained to be included in all models by default do not appear in this plot (SEP, maternal ethnicity, child sex and child age at outcome measurement). 372 

There appears to be little association between any of the green space hypotheses and the outcome, with model fit (deviance ratio) barely increasing as 373 

variables enter the model. Due to collinearity with the critical period variables, the ‘accumulation’ hypothesis (and hence also its interaction with SEP) was 374 

dropped from this model. See figure 1 for a detailed explanation of how to interpret this plot, and table 2 for information on what each of the encoded 375 

variables mean. 376 
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Discussion 377 

We have demonstrated how to incorporate multiple exposures and their interaction within a SLCMA, 378 

and illustrated three methods of interpreting these results (visual inspection, relaxed lasso via 379 

information criteria, and cross-validation). In our simulation study, we observed substantial variation 380 

between these different methods in their ability to select the true interaction term. Despite greater 381 

ability to detect the interaction term, the relaxed AIC and minimum MSE cross-validation suffered 382 

from overfitting and produced numerous false positives, even when the true interaction was null. In 383 

contrast, the relaxed BIC and 1 SE cross-validation methods generated few false positives, but 384 

frequently did not detect the true interaction term, even when the interaction effect was large (this 385 

was especially true for 1 SE cross-validation). The choice of approach may therefore depend on the 386 

researcher’s assessment of the risks of under- vs over-fitting and the specific research question; 387 

exploratory studies may prefer false positives over false negatives (i.e., over-fitting; and hence use 388 

either the relaxed AIC or minimum MSE cross-validated methods), while confirmatory studies may 389 

prefer to be more stringent and have greater evidence for an association (i.e., under-fitting; and 390 

hence use either relaxed BIC or 1 SE cross-validated methods). Despite these inconsistencies, if 391 

different methods give similar results this bolsters confidence in our conclusions. If these methods 392 

provide divergent results, then it may not be possible to provide a definitive answer and this 393 

ambiguity should be discussed. Nonetheless, as all these methods use the same lasso procedure, the 394 

order in which variables are added to the models will be equivalent, so it should be possible to 395 

identify the most likely hypotheses which have the strongest association with the outcome (if any). 396 

We also observed considerable variation in the performance of these models to detect the true 397 

interaction term given different parameter combinations. Larger sample sizes, centering exposures, 398 

and using continuous outcomes may improve the power to detect a true interaction. Models were 399 

also more likely to detect an interaction term if collinearity between exposures is lower, and if the 400 

interaction effect is larger. These findings may help inform future studies using this methodology, 401 

although some of these factors are beyond the researchers’ ability to control. 402 

In our applied example, we found no consistent association between access to green space and child 403 

BMI, obesity, SBP or DBP, let alone specific life course trajectories or interactions with SEP. Although 404 

some associations between a reduction in access to green space between pregnancy and age 4 and 405 

lower blood pressure were reported (tables S5 and S6), these effects were inconsistent, had small 406 

effect sizes, and would appear biological implausible (e.g., a reduction in access to green space being 407 

associated with lower blood pressure); it is possible that these were a result largely of random noise, 408 

especially given how the methods which selected these more complex models – relaxed AIC and 409 

minimum MSE cross-validation – are more prone to over-fitting. To the extent that these findings 410 

are causal, this suggests that, in this and potentially similar populations at least, access to green 411 

space may not improve child BMI or blood pressure. 412 

The applied aspect of this study has several limitations. First, there was lack of variation in exposures 413 

over time, which might be expected given that exposures were all based on the child’s home address 414 

at three close ages (pregnancy, then when aged 4 and 7 years). Nonetheless, if any association 415 

between green space and BMI or blood pressure was present, it should have been visible, even if 416 

there was not enough power to detect specific life course trajectories or interactions with SEP. While 417 

high collinearity between exposures lowers power to detect a true effect, here we have shown that 418 

these methods can be applied even in this challenging scenario; in situations where there is more 419 

variation in exposures over time these methods should have even greater ability to uncover the 420 

correct life course trajectory. Second, the results from our illustrative example could be biased by 421 
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measurement error and selection bias and may be explained by residual confounding (Hernán & 422 

Robins 2020); such biases need to be considered in any SLCMA studies (Smith et al. 2016). 423 

Throughout this paper we have focused on using a standard lasso for SLMCA, rather than the more 424 

commonly-used LARS (Smith et al. 2015, 2016, 2022). While both approaches are similar, being 425 

based on the lasso, the standard lasso approach may have some benefits, especially when 426 

considering interactions, including: i) being easier to implement when constraining some covariates 427 

to be in the model by default; ii) permitting binary (and other non-continuous) outcomes; and iii) 428 

greater flexibility when reporting the results of the best-fitting model (e.g., being able to include 429 

main effects of interactions in the reported model, even if not selected in the best-fitting model). 430 

Regardless of the SLCMA approach used – lasso or LARS – it is important to check parameter 431 

estimates from the final via selective inference to ensure that all encoded variables are associated 432 

with the outcome, given the possibility of variables with little-to-no association with the outcome 433 

remaining in the final model. For instance, the best-fitting relaxed lasso model via AIC from the 434 

applied ALSPAC example with systolic blood pressure as the outcome selected five encoded 435 

variables (table S7), yet in the reported model only two were associated with the outcome (table 436 

S8). 437 

To improve population health, we need to understand life course trajectories of diseases, and 438 

structured life course models are a useful tool for investigating this. We have demonstrated how 439 

these structured life course methods can be extended to include interactions between multiple 440 

exposures, which should permit a more detailed exploration of how exposures over the life course 441 

impact subsequent health. We hope that this paper provides useful guidance for researchers using 442 

these methods. 443 
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