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Abstract

Background Worldwide it is estimated that more than 6 million people are infected with Chagas disease (ChD). It is
considered one of the most important neglected diseases and, when it reaches its chronic phase, the infected person
often develops serious heart conditions. While early treatment can avoid complications, the condition is often not
detected during its early stages. We investigate whether a deep neural network can detect ChD from electrocardiogram
(ECG) tracings. The ECG is inexpensive and it is often performed during routine visits. Being able to evaluate ChD
from this exam can help detect potentially hidden cases in an early stage.
Methods We use a convolutional neural network model, which takes the 12-lead ECG as input and outputs a scalar
number associated with the probability of a Chagas diagnosis. To develop the model, we use two data sets, which
jointly consist of over two million entries from Brazilian patients, compiled by the Telehealth Network of Minas Gerais
within the SaMi-Trop (São Paulo-Minas Gerais Tropical Medicine Research Center) study focused on ChD patients
and enriched with the CODE (Clinical Outcomes in Digital Electrocardiology) study focused on a general population.
The performance is evaluated on two external data sets of 631 and 13,739 patients, collected in the scope of the
REDS-II (Retrovirus Epidemiology Donor Study-II) study and of the ELSA-Brasil (Brazilian Longitudinal Study of
Adult Health) study. The first study focuses on ChD patients and the second data set originates from civil servants
from five universities and one research institute.
Findings Evaluating our model, we obtain an AUC-ROC value of 0.80 (CI 95% 0.79-0.82) for the validation data set
(with samples from CODE and SaMi-Trop), and in external validation datasets: 0.68 (CI 95% 0.63-0.71) for REDS-II
and 0.59 (CI 95% 0.56-0.63) for ELSA-Brasil. In these external validation datasets, we report a sensitivity of 0.52 (CI
95% 0.47-0.57) and 0.36 (CI 95% 0.30-0.42) and a specificity of 0.77 (CI 95% 0.72-0.81) and 0.76 (CI 95% 0.75-0.77),
respectively, in REDS-II and ELSA-Brasil. We also evaluated the model for considering only patients with Chagas
cardiomyopathy as positive. In this case, the model attains an AUC-ROC of 0.82 (CI 95% 0.77-0.86) for REDS-II and
0.77 (CI 95% 0.68-0.85) for ELSA-Brasil.
Interpretation The results indicate that the neural network can detect patients who developed chronic Chagas
cardiomyopathy (CCC) from the ECG and – with weaker performance – detect patients before the CCC stage.
Future work should focus on curating large and better datasets for developing such models. The CODE is the largest
dataset available to us, and their labels are self-reported and less reliable than our other data sets, i.e. REDS-II
and ELSA-Brasil. This, we believe, limits our model performance in the case of non-CCC patients. We are positive
that our findings constitute the first step towards building tools for more efficient detection and treatment of ChD,
especially in high-prevalent regions.
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Research in context

Evidence before this study: Chagas disease (ChD) is a
neglected tropical disease, and the diagnosis relies on blood
testing of patients from endemic areas. However, there is no
clear recommendation on selecting patients for serological
diagnosis in those living in endemic regions. Since most
of the patients with Chronic ChD are asymptomatic or
oligosymptomatic, the diagnostic rates are low, preventing
patients from receiving adequate treatment. The Electro-
cardiogram (ECG) is a widely available, low-cost exam,
often available in primary care settings in endemic countries.
Artificial intelligence (AI) algorithms on ECG tracings
have allowed the detection of hidden conditions, such
as cardiomyopathies and left ventricular systolic dysfunction.

Added value of this study: To the best of our knowledge,
this is the first study that presents an AI model for the
automatic detection of ChD from the ECG. As part of the
model development, we utilise established large cohorts
of patients from the relevant population of all-comers
in affected regions in the state of Minas Gerais, Brazil.
We evaluate the model on data sets with high-quality
ground truth labels obtained from the patients’ serological
status. Our model has moderate diagnostic performance in
recognition of ChD and better accuracy in detecting Chagas
cardiomyopathy.

Implications of all the available evidence: Our findings
demonstrate a promising AI-ECG-based model capacity for
discriminating patients with chronic Chagas cardiomyopathy
(CCC). However, detecting ChD patients without CCC is
still insufficient, and further developments that lead to higher
performance are needed. We believe this can be achieved
with the addition of epidemiological questions, and that our
model can be a useful tool in helping pre-selecting patients
for further testing in order to determine the infection with
ChD. The use of AI-ECG-based strategies for recognizing
CCC patients deserves to be tested in the clinical setting.

Introduction

Worldwide it is estimated that Chagas disease (ChD) in-
fects more than 6 million people, with thousands of deaths
each year [1]. Caused by the protozoan parasite Try-
panosoma cruzi (T. cruzi), the disease is endemic to coun-
tries in continental Latin America, but migration has car-
ried ChD to new regions, including Europe and the United
States [2]. The most critical consequence of ChD is chronic
Chagas cardiomyopathy (CCC), which occurs in 20-40% of
the infected individuals [3]. CCC comprises a wide range of
manifestations, including heart failure, arrhythmias, heart
blocks, sudden death, thromboembolism, and stroke [1],
[3].

ChD is often a lifelong infection in which most chroni-
cally infected patients remain asymptomatic but at risk of
progression to cardiac damage [4], [5]. The incidence of car-
diomyopathy in those in this asymptomatic (indeterminate)
form of ChD varies from 0.9 to 7% new cases annually [1]
and is related to the parasite burden [5], [6]. There is no
single gold-standard laboratory test for diagnosing chronic
Chagas disease. Instead, at least two serological tests with
different methods for detecting antibodies to T. cruzi and
complementary sensitivity and specificity are needed to
confirm infection [1], [3]. Treatment with antitrypanoso-

mal drugs such as benznidazole can prevent progression to
the cardiac form [7], [8], but it does not seem to prevent
death and cardiac complications in those with advanced
cardiomyopathy [9]. Thus, the early recognition of chronic
ChD patients is a necessary step for treatment in the early
phases, when treatment success rates are higher and can
prevent severe organ damage from occur [10].

Even if the newly diagnosed patient has established car-
diomyopathy, an early diagnosis will allow the initiation of
guideline-directed medical therapy for clinical conditions,
such as heart failure and atrial fibrillation, to halt dis-
ease progression and eventually prevent death [10]. ChD
patients generally have low socio-economical levels and
limited access to health services, and they frequently do
not realize that they are infected. The awareness of ChD
among healthcare providers is also low, and there is a lack
of knowledge on who to screen as well as a lack of clarity
on the appropriate tests and clinical management [11], [12].

In many countries, there are detection rates below 10%,
even more frequently, below 1%. The low detection rates
create a barrier to the health care system, preventing pa-
tients from receiving adequate treatment [13]. The under-
appreciation of early diagnosis and treatment, especially
at the primary healthcare level, represents a missed oppor-
tunity for modifying the natural history of the disease [10].
For this reason, the theme of World Chagas Disease Day
2022 was “finding and reporting every case to defeat Cha-
gas disease” [13].

Here we study the possibility of using the electrocar-
diogram (ECG) to screen for ChD. The ECG is a widely
available, low-cost exam, often provided in primary care
settings in endemic countries [14]. The automated analysis
of ECG is a successful technology and has already improved
the analysis of this exam over the past decades [15].

The field of artificial intelligence, in particular deep
learning [16], has demonstrated promising performance for
automated analysis. Besides the success of classifying com-
mon ECG diagnoses with high-performance [17], [18], the
technology has presented successes in predicting and screen-
ing for diseases and diagnoses which traditionally were not
directly possible only from the ECG. These include de-
tection of myocardial infarction without ST-elevation [19],
predicting the future development of atrial fibrillation from
sinus rhythm exams [20], [21] and the ability to screen
for cardiac contractile dysfunction [22]. Indeed, there is
evidence that deep learning reading of ECGs detects more
than traditional features, as is indicated by studies showing
good prediction of age and even the risk of death [23]–[25].

In this study, we investigate whether a deep neural net-
work can detect ChD and CCC from ECG tracings. Being
able to evaluate ChD from this exam can help to detect
cases in an early stage and enables early and more effective
treatment.
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Methods

Data sets

We develop our model using the SaMi-Trop data set [26],
[27] and the CODE data set [28]. The SaMi-Trop data set
is a collection of ChD patients from the northern part of
Minas Gerais, Brazil. The CODE data set [29] is more gen-
eral, collected by the Telehealth Network of Minas Gerais
(TNMG), Brazil [28]. For testing or external validation, we
use the REDS-II data set [30] and the ELSA-Brasil data
set [31]. The baseline characteristics of all four data sets
are summarised in Table 1.

Definitions. Chronic ChD is diagnosed by the pres-
ence of two positive different serological tests against T.
cruzi in both SaMi-Trop and REDS-II cohorts, as recom-
mended by international guidelines [3]. In the ELSA-Brasil
study, a cohort primarily designed to study chronic non-
communicable diseases, the presence of Chagas disease was
detected by the presence of only one positive serological
test. In the CODE study, Chagas disease was self-reported
by the patients since this electronic cohort is formed by
patients under care in primary care units in the state of
Minas Gerais. For SaMi-Trop, REDS-II and ELSA cohorts,
ECGs were transmitted to an ECG reading center at the
‘Centro de Telessaúde in Hospital das Cĺınicas’ in Belo
Horizonte, Minas Gerais for standardized measurement, re-
porting and codification according to the Minnesota coding
criteria in a validated ECG data management software [32].
Major ECG abnormalities were considered according to
standard definitions [33], and all tracings with a major
ECG abnormality have been reviewed by an experienced
cardiologist.

CODE. The Clinical Outcomes in Digital Electrocardio-
graphy (CODE) data set was developed with the database
of digital ECG exams of the TNMG and a detailed descrip-
tion of the cohort can be obtained at [29]. The data set
was collected between 2010 and 2017 from 811 counties in
the state of Minas Gerais, Brazil. A subset of 15% of this
data set is available online [34].

From an initial data set of 2,470,424 ECGs, 1,773,689
patients were identified. This initial data set contains
the SaMi-Trop data set. Therefore, we first remove the
patients from the SaMi-Trop study to avoid any overlap.
Additionally, we have to exclude the ECGs with technical
problems and those from patients under age 16, resulting in
a total of 2,304,596 ECG records from 1,556,767 patients.

In this data set, the labels of ChD rely on self-reported
diagnoses during the consultation. A total of 47, 474 ECGs
(2.0%) from 25, 252 patients (1.6%) are labelled as positive
ChD cases. The serological status of the self-reported
Chagas labels has not been checked, and it is also unclear
whether the patient has already developed CCC or not.

SaMi-Trop. The study was conducted through a col-
laboration between scientists within the São Paulo-Minas
Gerais Tropical Medicine Research Center (SaMi-Trop),
formed with a specific research focus on ChD. [35] The
study selected eligible patients with self-reported ChD
diagnosis. This data set was collected in 21 Brazilian mu-

nicipalities from ECGs taken between 2010 and 2012 by
the TNMG. The connection to the TNMG explains the
intersection of the SaMi-Trop data set with the CODE
data set. The study has a follow-up time of two years.

A total of 2, 157 patients were assessed in the study.
Among the patients from the original SaMi-Trop study, we
removed 22 patients with an undefined serological status,
and the remaining 83 for not having a paired ECG record-
ing. After the exclusions, the resulting data set comprises
2, 054 patients with 1, 910 ChD positive patients (93.4%).
The positive patients consist of 1, 111 patients with CCC
(54.1% of total sample) and 799 without (38.9% of total
sample).

Some of the patients have taken multiple ECG recordings
during an exam which we utilize during development as a
form of data augmentation. Hence, we have 5, 019 SaMi-
Trop ECG traces available including 2, 693 traces with
CCC (53.7%) and 1, 961 traces without (39.1%).

REDS-II. The Retrovirus Epidemiology Donor Study-II
(REDS-II) data set was collected to observe the natural
history of ChD patients in São Paulo and Montes Carlos,
Brazil from blood donors. Seropositive and seronegative
patients examined in 1996-2002 were re-examined in 2008-
10 [4] with ECG exams and again in 2018-19 [30]. The
data set consists of 631 patients that performed an ECG
in the last visit in 2018-19, including 348 ChD patients
(55.8%), of which 149 patients had CCC (23.6% of the
total sample). The model is evaluated using a single exam
from each patient (the first one).

ELSA-Brasil. The Brazilian Longitudinal Study of Adult
Health (ELSA-Brasil) aimed to examine risk factors and
the long-term incidence of chronic diseases with focus on
cardiovascular diseases and diabetes. The baseline evalua-
tion was performed in 2008-2010 and recruited active and
retired civil servants from five universities and research
institutes from 6 different Brazilian states. ChD serologi-
cal status and standardized ECG were obtained from all
participants [36], [37].

The data set consists of 15,105 patients in total. We
remove 27 patients where the ChD serological status is
not available, 12 patients where the serological status is
inconclusive, and 1,327 patients from which the ECG traces
are not available. After the exclusions, we have a data set
with a total of 13,739 patients. ChD was confirmed in 280
of the patients (2.0%), of which 46 had CCC (0.3% of the
total sample). The model is evaluated using a single exam
from each patient (the first one).

Model

Data preprocessing. The ECG signals have been re-
sampled such that all ECGs have the same sampling fre-
quency of 400 Hz. Each input ECG has 4, 096 time samples
for each of the 12 standard ECG leads. Original signals
of a shorter time span have been extended through zero-
padding. The output data comprises binary scalar variables
corresponding to positive or negative diagnose. We com-
bine positive cases with and without CCC in our model in
order to focus on the class of positive ChD cases in general.
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Table 1: Data set baseline characteristics. For CODE the Chagas patient reports their own condition, while for the
others the blood sample is used to determine the serological status. Smoking gives the current smoking habits of the
patient. CCC: Chronic Chagas cardiomyopathy which is not available (n.a.) for the CODE data set. MI: Myocardial
infarction. Dislipidemia is not available (n.a.) for SaMi-Trop or REDS-II data sets.

Development data sets

CODE (Patients, n = 1,556,767) SaMi-Trop (Patients, n = 2,054)
Not reported Chagas Seronegative Chagas CCC

Patients, n 1,524,766 32,001 144 1,910 1,111
Sex (male), n (%) 922,780 (39.7%) 11705 (36.6 %) 60 (41.7 %) 629 (32.9 %) 398 (35.8 %)
Age (years), mean (sd) 52 (18) 59 (14) 64.0 (14.7) 59.2 (12.9) 60.4 (13.0)
Hypertension, n (%) 482,184 (31.6 %) 21,849 (68.3 %) 112 (77.8 %) 1219 (63.8 %) 762 (68.6 %)
Diabetes, n (%) 102803 (6.7 %) 4,398 (13.7 %) 31 (21.5 %) 195 (10.2 %) 107 (9.6 %)
Smoking, n (%) 108,815 (7.0%) 4,190 (13.1 %) 49 (38.9 %)∗ 49 (38.9 %)∗ 301 (29.2 %)∗

Previous MI, n (%) 13,693 (0.9 %) 1,308 (4.1 %) 12 (8.3 %) 90 (4.7 %) 69 (6.2 %)
Dislipidemia, n (%) 62,686 (4.1 %) 3,823 (11.9 %) n.a. n.a. n.a
Obesity, n (%) 86,500 (5.7 %) 3,321 (10.4 %) 24 (21.8 %)∗ 222 (15.0 %)∗ 106 (12.8 %)∗

Exams, n 2,257,122 47,474 365 4,654 2,693

Test data sets

REDS-II (Patientes, n = 631) ELSA-Brasil (Patientes, n = 13,739)
Seronegative Chagas CCC Seronegative Chagas CCC

Patients, n 283 348 149 13,459 280 46
Sex (male), n (%) 140 (49.5 %) 171 (49.1 %) 82 (55.0 %) 167 (59.6%) 19 (41.3%) 6,256 (45.5%)
Age (years), mean (sd) 58.2 (9.6) 56.1 (9.8) 56.4 (9.8) 52.1 (9.2) 57.4 (9.1) 61.1 (6.8)
Hypertension, n (%) 101 (35.7 %)∗ 136 (39.1 %)∗ 62 (41.6 %)∗ 4,814 (35.8 %)∗ 135.0 (48.2%)∗ 27.0 (58.7 %)∗

Diabetes, n (%) 38 (13.4 %)∗ 45 (12.9 %)∗ 16 (10.7 %)∗ 2,160 (16.0 %) 57.0 (20.4 %) 15.0 (32.6 %)
Smoking, n (%) 94 (33.2 %) 98 (28.2 %) 42 (28.2 %) 1 769 (13.1 %) 32 (11.4 %) 4 (8.7 %)
Previous MI, n (%) 9 ( 3.2 %)∗ 13 ( 3.7 %)∗ 8 ( 5.4 %)∗ 242 (1.8 %) 9 (3.2 %) 5.0 (10.9 %)
Dislipidemia, n (%) n.a. n.a. n.a. 8,853 (65.8 %) 201 (71.8 %) 36 (78.3 %)
Obesity, n (%) 68 (24.6 %)∗ 66 (19.4 %)∗ 28 (19.0 %)∗ 3,079 (22.9 %) 67 (23.9 %) 10 (21.7 %)

Exams, n 283 348 149 13,459 280 46

∗For CODE, comorbidity data is self-reported and might be underrepresented. There is missing data regarding
smoking (seronegative=18/chagas=148/ccc=81 missing entries) and obesity (34/431/281 missing entries) in the

SaMi-Trop data set; regarding Hypertension (12/9/3 missing entries), Diabetes (2/8/4 missing entries), Previous MI
(0/5/1 missing entries) and Obesity (7/8/2 missing entries) in the REDS-II data set; and, regarding Hypertension
(16/0/0 missing entries) fin the ELSA-Brasil. For these entries, we report the percentages that consider the total of

patients without missing data.
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Figure 1: Network architecture. The figure was origi-
nally illustrated in [17].

Architecture. The deep learning model consists of a resid-
ual neural network (ResNet) adapted to uni-dimensional
signals, and includes convolutional layers both before and
within the residual blocks. Our network architecture is
visualised in Figure 1. We make use of the same network
architecture as [17], where the CODE data set was utilised
to classify multiple ECG abnormalities; we refer to that
work for further details and note that we have modified the
final output layer in adaptation to our binary classification.
The model is implemented in PyTorch [38], building upon
code used in related work [39], [40].

Parameter tuning. The learnable parameters of the neu-
ral network are chosen through minimisation of the binary
cross-entropy loss function. For increased computational
efficiency, we split the training data into mini-batches of
size 32.

We use both the CODE and SaMi-Trop data sets dur-
ing the training phase. This way, we utilise the size of
the CODE data set — with many examples of negative
diagnoses — as well as the high-quality (mainly positive)
entries of SaMi-Trop. Both data sets contribute with 50%
of the data that the model experience in each mini-batch.
The validation data is an independent mix of 30% of the
SaMi-Trop entries and twice as many entries from CODE.

The dropout rate is 0.5, and we use a weight decay of
0.001 to reduce the risk of overfitting. The learning rate
is initially set to 0.001 and is decreased in a step-wise
manner by a factor 10 when the validation loss has not
decreased for ten subsequent epochs (counted with respect
to SaMi-Trop) — we terminate the optimisation if the
learning rate drops below 10−7. We apply early stopping
by using the network parameter values associated with the
lowest validation loss for testing.

To reduce the sensitiveness of the weight initialisation,
we use an ensemble approach by running the optimisation
15 times with different random seeds, and then averaging
the outputs of the final models. The progression of the
losses evaluated on the training and validation data sets
are displayed in Figure 2.

Threshold selection. The model output is a value be-
tween 0 and 1 and can loosely be interpreted as the pre-
dicted probability of ChD being present in the exam anal-
ysed. The Chagas diagnose is predicted as positive when
the model output is above a given classification threshold.

We consider two different approaches to selecting the

threshold. The first one is by maximising the F1 score
(i.e. the harmonic mean of precision and recall) on the
validation data. This threshold is suitable for balanced or
moderately imbalanced data sets where the main interest
is to diagnose the patients under consideration.

The second approach is to choose the threshold by requir-
ing a certain specificity on the validation data. The higher
the specificity, the more likely is the model to correctly
diagnose a negative patient. As a high specificity typically
is desired for screening purposes, this approach for thresh-
old selection is motivated on highly imbalanced data sets
(which reflects the Chagas prevalence in the population as
a whole).

The first approach is used on the REDS-II test set since
this data set is only moderately imbalanced (55.8% ChD
and 23.6% CCC ECGs). On the ELSA-Brasil test set
the threshold is selected according to the second approach
since this data set is more imbalanced (2.0% ChD and
0.3% CCC ECGs). We select the threshold by requiring a
90% specificity on the validation data.

Evaluation

Metrics. Recall (also known as sensitivity), specificity
and precision are threshold-dependent metrics that we used
to evaluate and report the model performance. Recall or
sensitivity specifies the ratio of true positive predictions
to positive cases (i.e. the ratio of the positive cases that
are indeed predicted as positive); specificity denotes the
ratio of true negative predictions to negative cases; and
precision is the ratio of true positive predictions to all
positive predictions (the ratio of all positive predictions
that are correct).

We also report two threshold-independent metrics. The
AUC-ROC (also known as c-statistics) is the integral of
the receiver-operator characteristics (ROC), and can be
interpreted as the probability that a randomly chosen sam-
ple with positive label is assigned a higher output than a
randomly chosen sample with negative label. Lastly, we
report the average precision, which is obtained by integrat-
ing the precision-recall curve and thereby summarising it
into a single value.
Analysis of the results in groups. As part of the model
analysis we evaluate the model performance in different
subgroups of patients. We stratify the patients by age
group {16-40, 40-49, 50-59, 60-69, 70+} and sex {male,
female}. Bootstrapping [41] is used to analyse the empirical
distribution of the metrics in each subgroup. We generate
1, 000 different data sets by sampling with replacement
from the test set (each with the same number of samples
as in the test set). Using the bootstrapped data sets,
we compute the evaluation metrics described above and
present the results in box plots.
Visualisation tools. To identify possible patterns in the
classification, we highlight parts of the ECG that the model
focuses on for its prediction using an adaptation of the
Grad-CAM visualisation method [42]. Visualisations are
generated in two steps: in a forward pass we compute the
activations of the neural network in an intermediary layer
(we use the first convolutional layer of the first residual
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Figure 2: Loss function evaluation. The shaded regions
correspond to the maximum and minimum values of 15
separate learning processes with different weight initialisa-
tions. The solid lines are the averages.

block), and in a backward pass we compute the gradi-
ents corresponding to these activations. The gradients are
averaged to get the relative importance of each channel,
which is then used to compute a proportional mean of the
activations.

In essence, these plots highlight which parts of the ECG
the network assigns particularly high importance. We
generated the Grad-CAM plots for 20 cases (10 with CCC
and 10 without) with the highest probability among the
true positive cases. These plots were then inspected and
analysed by a cardiologist for possible medical patterns.

Results

We evaluated the model performance on the validation
data and the external test data sets. The ROC curve
performance is displayed in Figure 3. The model attains
AUC-ROC values of 0.80 (CI 95% 0.79-0.82) for the vali-
dation data set, 0.68 (CI 95% 0.63-0.71) for REDS-II and
0.59 (CI 95% 0.56-0.63) for ELSA-Brasil. The confidence
intervals have been formed by bootstrapping the output of
the ensemble model. Table 2 lists all performance metrics
evaluated on the validation data for two different thresholds
selected through the aforementioned approaches. The same
metrics evaluated on the test data sets are listed in Table 3.
Additionally, we also analysed the precision-recall curve
and the empirical probabilities predicted by the model.
These results are displayed in the Supplementary Material
Figures S.1-S.4. The metrics for subgroups stratified by
age and sex are displayed in Figure 5.

We also evaluated the model for considering only patients
with CCC as positive. In this case, the model attains an
AUC-ROC of 0.82 (CI 95% 0.77-0.86) for REDS-II and
0.77 (CI 95% 0.68-0.85) for ELSA-Brasil. All metrics for
this configuration are included in Table 3.

In the Supplementary Material Figure S.5 and Table S.1,

we show the additional results for another test set configu-
ration. Namely where the patients with CCC have been
excluded; the remaining patients where ChD was detected
are here constituting the positive cases (this configuration
is indicated “no CCC”). In the Supplementary Material, we
also show the result of a model trained to detect CCC (with
all others being considered negative). Figure S.6 shows the
training curve, Figure S.7 shows the ROC curves, precision-
recall curves and empirical distribution of the probabilities,
and finally, Table S.2-S.3 give the performance metrics in
this case.

The Grad-CAM analysis is presented in Figure 6, which
shows three representative leads of a patient with CCC
from the ELSA-Brasil data set. The shaded regions illus-
trate what parts of the signals the model considers to be of
particular importance for the prediction. In the Supplemen-
tary Material Figure S.8 we include the equivalent plots
for another three patients with positive Chagas diagnose,
one with and two without CCC.

Discussion

Deep neural network-enabled analysis of the ECG is a
topic of intense research [19]–[25]. Such methods have
shown promising potential in detecting diverse conditions
that are not traditionally diagnosed from the ECG, such
as contractile disfunction [22] or non-STEMI myocardial
infarction [19]. ChD is the parasitic disease with the most
impact in South America [43] and it affects the lives of
millions of individuals worldwide. Early detection of this
disease can therefore have a huge impact. Antiparasitic
drugs are most effective in the early stage of the disease,
however, most patients only become aware that they are
infected much later when the patient is already in the later
stage of the disease and presents other manifestations. Pro-
viding early treatment and the usage of advanced artificial
intelligence or machine learning methods for the detection
of this disease presents itself as a promising alternative. To
the best of the authors’ knowledge, this is the first study
to present such an application.

The development of data-driven methods for automatic
diagnosis of neglected diseases presents a challenge of its
own. These diseases usually affect areas where the popula-
tion is underprivileged and have little access to the health-
care system. The data might not come in well-organised
databases or might not even be stored in electronic format.
In this sense, the CODE, SaMi-Trop, ELSA-Brasil and
REDS-II cohorts are extremely valuable: they are medium
or large-size and well-kept data sets that can be used for
developing and testing such tools.
The results we present are promising and indicate that

the model is capable of detecting patients with CCC from
the ECG tracings with high discrimination. For patients
without CCC, the discrimination is lower.

In light of the results, it is natural to ask if we can
further improve the performance with respect to patients
with CCC. Therefore, we restrict the positive diagnoses to
patients with CCC during the training phase and consider
all patients without CCC as negatives (this implies that
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(b) REDS-II
AUC-ROC: 0.68 (0.63-0.71)
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(c) ELSA-Brasil
AUC-ROC: 0.59 (0.56-0.63)

Figure 3: ROC curves on validation and test data: ChD vs normal. Receiver operating characteristics (ROC)
computed on the validation data set (SaMi-Trop + CODE) (a) and the test data sets, REDS-II (b) and ELSA-Brasil (c).
The shaded regions encapsulate the maximum and minimum values corresponding to 15 different weight initialisations.
The outputs of the 15 trained models are averaged to produce the output of the ensemble model, the result of which
is shown by the solid lines. The 95% CI is obtained by bootstrapping the ensemble model. The dotted blue lines
correspond to completely random assignment of class probabilities.

Table 2: Results on validation data. Metrics and 95% confidence intervals evaluated on the validation data set for
two different classification thresholds: 0.60 (selected by maximising the F1 score) and 0.71 (corresponding to 90%
specificity).

Metric \ Threshold F1 score-based: 0.60 Specificity-based: 0.71

Recall 0.67 (0.65-0.70) 0.54 (0.51-0.57)
Specificity 0.80 (0.78-0.81) 0.90 (0.89-0.91)
Precision 0.62 (0.59-0.64) 0.73 (0.70-0.75)
F1 score 0.64 (0.62-0.66) 0.62 (0.60-0.64)

AUC-ROC 0.80 (0.79-0.82)
Average precision 0.68 (0.65-0.70)

ChD positive patients without CCC are considered negative
in this scenario). The result of this approach is given in the
Supplementary Material. All metrics considered, except
for the recall, are indeed improved. Thus, this model might
be the preferable choice for CCC detection.
Chagas cardiomyopathy is characterised by a group of

typical ECG abnormalities, frequently combining conduc-
tion disturbances, especially right bundle branch block with
left anterior hemiblock, associated with rhythm disorders,
such as ventricular ectopic beats and atrial fibrillation [44]–
[46]. Thus, it is unsurprising that our Grad-CAM analysis
depicts exactly the late portion of the QRS in cases with a
bundle branch block. It is interesting that the Grad-CAM
map also depicts the QRS complex when recognising the
ChD patients with CCC, maybe related to the presence
of high frequency, low amplitude abnormalities typical of
fibrosis, which can occur early in the natural history of
ChD [47]. However, this type of analysis has clear limita-
tions [48], [49] since heatmaps can provide information on
where the critical area for the neural network model is to
make a decision but not inform if the abnormality is related
to changes in voltage, duration or morphology modification
of the ECG tracing. Moreover, recurrent features, like the

RR interval, are not shown in this kind of heatmaps. Our
analysis here is also limited to a small set of correct model
predictions and does not represent a statistical analysis.
Hence, we cannot deduct general rules for the diagnosis of
ChD but we can identify from the unsurprising areas where
the model focuses on that it does not use some unrelated
proxy information to make its predictions.
Comparing the two test data sets, we obtain similar

performance for discrimination in terms of AUC-ROC, but
very different precision. This indicates that our model
predicts many false positives for the ELSA-Brasil data set.
Given the vast difference in prevalence for ChD patients in
ELSA-Brasil (2.0%) and REDS-II (55.1%), it is reasonable
that for ELSA-Brasil our model will by default have lower
precision. We can also observe the large portion of false
positive cases in Figure S.3c when choosing a threshold
of 0.60 (based on F1 score) or even 0.71 (based on 90%
specificity). We believe the performance could be improved
with the addition of epidemiological questions, and that our
model can be a useful tool in helping pre-selecting patients
for further testing in order to determine the infection with
ChD.

As previously mentioned, the ChD status in the CODE
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(a) REDS-II, AUC-ROC: 0.82 (0.77-0.86)
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(b) ELSA-Brasil, AUC-ROC: 0.77 (0.68-0.85)

Figure 4: ROC curves on test data: CCC vs all. Receiver operating characteristics computed in REDS-II and
ELSA-Brasil for predicting Chagas Cardiomiopathy. The shaded regions encapsulate the maximum and minimum
values corresponding to 15 different weight initialisations – the outputs of these models are averaged to produce the
output of the ensemble model, the result of which is given by the solid lines. The dotted blue lines correspond to
completely random assignment of class probabilities.

Table 3: Results on test data. Metrics and 95% confidence intervals were evaluated on two different configurations
of the test data sets. Left we consider ChD and CCC as positive. Right we only consider CCC as positive. The
classification thresholds are 0.60 for REDS-II and 0.71 for ELSA-Brasil.

Metric \ Test data REDS-II ELSA-Brasil REDS-II (CCC) ELSA-Brasil (CCC)

Recall 0.52 (0.47-0.57) 0.36 (0.30-0.42) 0.79 (0.72-0.85) 0.70 (0.56-0.82)
Specificity 0.77 (0.72-0.81) 0.76 (0.75-0.77) 0.73 (0.69-0.76) 0.76 (0.75-0.77)
Precision 0.73 (0.68-0.79) 0.03 (0.02-0.04) 0.47 (0.41-0.53) 0.01 (0.01-0.01)
F1 score 0.61 (0.57-0.66) 0.06 (0.05-0.07) 0.59 (0.53-0.64) 0.02 (0.01-0.03)

AUC-ROC 0.68 (0.63-0.71) 0.59 (0.56-0.63) 0.82 (0.77-0.86) 0.77 (0.68-0.85)
Average precision 0.74 (0.69-0.78) 0.04 (0.03-0.06) 0.69 (0.61-0.76) 0.10 (0.03-0.19)

data set is based on self-reporting by the patients, and the
labels are thus suffering from notable uncertainty. Thus,
testing on these labels might be uninformative and we
have used more reliable databases such as ELSA-Brasil
and REDS-II to get a better estimate of our model per-
formance. Nonetheless, the labels in CODE still contain
a sufficient amount of information to learn about CCC
patients and the data set was indeed useful in developing a
better-performing model. Methods designed to reduce the
impact of label noise (see e.g. [50], [51]) could potentially
be employed for more efficient use of the CODE data.

Our model could be even more insightful if we could test
it on other openly available data sets. However, data sets
about neglected diseases are scarce and both ELSA-Brasil
as well as REDS-II are valuable but also medium to large-
scale sources to rigorously test the model. Furthermore,
a comparison with other models or software for Chagas
detection would be useful, but unfortunately, it is not pos-
sible — to the best of our knowledge, this is the first work
that tackles automatic diagnosis of Chagas directly from
the ECG. Therefore, this study serves as a first baseline
that opens a new line of work for further improvements.

Our findings are particularly valuable under the scant-
iness of validated strategies to detect ChD patients in
endemic regions. Current recommendations for screening
include all patients who were born in or have lived for an
extended period in ChD endemic zones [44], which can
be challenging, especially in endemic countries, since it
can encompass the whole population of a region. A risk
score was developed specifically to answer the question,
“Does my patient have chronic Chagas disease?” but it
seems to have limited practical value since it includes 13
variables obtained from clinical and epidemiological history
and from a conventionally analysed 12-lead ECG [52]. It
implies that the best approach would merge conventional
and non-conventional methods [53], including the use of
rapid point-of-care serological tests [54].

A clinical study would be particularly valuable, as the
performance of the model could be evaluated directly by
clinicians and patients. At this stage, we foresee our model
as a pre-selection method of patients for further screening
of the serological status. It is important to underline that
more available data will enable improvements of the model
that can be adapted into its daily clinical practice. We
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Figure 5: Results stratified by subgroup. Box plots of the model performance on the REDS-II (top row) and
ELSA-Brasil (bottom row) test sets stratified by age (left column) and sex (right column). The box plots give the
performance on 1000 bootstrapped samples.
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Figure 6: Grad-CAM analysis. Grad-CAM plot for a patient with CCC from the ELSA-Brasil data set, correctly
classified by the model as Chagas positive. This plot includes three representative leads (top to bottom: aVL, V1 and
V6). The shading indicates regions that the model assigns particular importance for its prediction.

hope that a future study will evaluate the clinical relevance
of our model to improve the early diagnosis of ChD.
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Supplementary material

Table S.1: Results on test data: no-CCC configuration. Metrics and 95% confidence intervals evaluated on the
no-CCC configuration of the test data sets (see the text for details). The classification thresholds are 0.60 for REDS-II
and 0.71 for ELSA-Brasil.

Metric \ Test data REDS-II (no CCC) ELSA-Brasil (no CCC)

Recall 0.33 (0.27-0.39) 0.29 (0.23-0.35)
Specificity 0.77 (0.72-0.82) 0.76 (0.75-0.77)
Precision 0.50 (0.41-0.58) 0.02 (0.02-0.03)
F1 score 0.39 (0.33-0.46) 0.04 (0.03-0.05)

AUC-ROC 0.56 (0.51-0.61) 0.56 (0.52-0.59)
Avg. prec. 0.45 (0.39-0.52) 0.02 (0.02-0.02)

Table S.2: Results on validation data: CCC-specific training. Equivalent to Table 2 when the training is adapted
to specifically target patients with CCC. The classification thresholds are 0.51 (selected by maximising the F1 score)
and 0.33 (corresponding to 90% specificity).

Metric \ Threshold F1 score-based: 0.51 Specificity-based: 0.33

Recall 0.72 (0.69-0.75) 0.79 (0.76-0.82)
Specificity 0.95 (0.94-0.95) 0.90 (0.89-0.91)
Precision 0.76 (0.74-0.79) 0.66 (0.63-0.68)
F1 score 0.74 (0.72-0.76) 0.72 (0.69-0.74)

AUC-ROC 0.93 (0.92-0.93)
Avg. prec. 0.80 (0.77-0.82)

Table S.3: Results on test data: CCC-specific training. Equivalent to Table 3 when the training is adapted to
specifically target patients with chronic Chagas cardiomyopathy. The classification thresholds are 0.51 for REDS-II
and 0.33 for ELSA-Brasil.

Metric \ Test data REDS-II (CCC) ELSA-Brasil (CCC)

Recall 0.70 (0.63-0.77) 0.59 (0.44-0.73)
Specificity 0.98 (0.96-0.99) 0.96 (0.96-0.96)
Precision 0.91 (0.85-0.95) 0.05 (0.03-0.07)
F1 score 0.79 (0.74-0.84) 0.09 (0.06-0.12)

AUC-ROC 0.90 (0.86-0.93) 0.91 (0.85-0.95)
Avg. prec. 0.83 (0.76-0.89) 0.10 (0.05-0.19)
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Figure S.1: Precision-recall curves on validation and test data: ChD+CCC vs normal. The shaded regions
encapsulate the maximum and minimum values corresponding to 15 different weight initialisations — the outputs of
these models are averaged to produce the output of the ensemble model, the result of which is given by the solid lines.
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Figure S.2: Precision-recall curves on test data: CCC vs rest. We consider only CCC as positive and ChD as
well as normal as negative here.
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Figure S.3: Output histograms: ChD+CCC vs normal. Histograms are computed on the validation data and the
test data. Note the logarithmic scale of the y-axis. We can see the number of false positive/negatives when applying
the selected thresholds on the x-axis: 0.60 for REDS-II and 0.71 for ELSA-Brasil.
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Figure S.4: Output histograms: CCC vs rest. Histograms are computed on the test data where we only consider
CCC as positive and ChD as well as normal as negative. Note the logarithmic scale of the y-axis.
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Figure S.5: Results on test data: no-CCC configuration. Receiver operating characteristics (left), precision-recall
curves (middle) and output histograms (right) computed on the test data for the no-CCC configuration (see the text
for details). This set removed the CCC cases and shows ChD vs normal.
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Figure S.6: Loss function evaluation: CCC-specific training. Equivalent to Figure 2 when the training is adapted
to specifically target patients with CCC.
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Figure S.7: Results on test data: CCC-specific training. Receiver operating characteristics (left), precision-recall
curves (middle) and output histograms (right) computed on the validation data and the test data when the training is
adapted to specifically target patients with CCC.
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(a) Positive patient with CCC.
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(b) Positive patient without chronic Chagas cardiomyopathy.
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(c) Positive patient without chronic Chagas cardiomyopathy.

Figure S.8: Grad-CAM analysis: additional patients. Complementing Figure 6 with another three Grad-CAM
plots for patients from the ELSA-Brasil data set, correctly classified by the model as Chagas positive. We here include
one patient with chronic Chagas cardiomyopathy (a), and two without (b-c). The plots include three representative
leads (top to bottom: aVL, V1 and V6). The shading indicates regions that the model assigns particular importance.
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