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Abstract

Combining training data from multiple sources increases sample size and reduces
confounding, leading to more accurate and less biased machine learning models.
In healthcare, however, direct pooling of data is often not allowed by data custo-
dians who are accountable for minimizing the exposure of sensitive information.
Federated learning offers a promising solution to this problem by training a
model in a decentralized manner thus reducing the risks of data leakage. Al-
though there is increasing utilization of federated learning on clinical data, its
efficacy on genomic data has not been extensively studied. This study aims to
contribute to the adoption of federated learning for genomic data by investigat-
ing its applicability in two scenarios: phenotype prediction on the UK Biobank
data and ancestry prediction on the 1000 Genomes Project data. We show that
federated models trained on data split into independent nodes achieve perfor-
mance close to centralized models, even in the presence of significant inter-node
heterogeneity. This paper describes the experiments and provides recommen-
dations on strategies that should be used to reduce computational complexity
or communication costs.
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1 Introduction

1.1 Availability of genomic data

The last decade has seen a rapid increase in the amount of genomic data due to
the improvement of sequencing technologies and the promise of big data studies
in healthcare. With genotyping costs going down, the pool of genomic data also
becomes less centralized as more organizations, both commercial, such as genetic
testing companies, and non-profit, such as biobanks, accumulate vast collections
of genomes. This decentralization, coupled with data-hungry genome-wide ma-
chine learning approaches, raises a need for collaboration between datasets.
However, access to genomic data is usually restricted due to its sensitive nature
and the harmful consequences of possible data leakage, such as deanonymization
and genetic discrimination [1] [2] [3].

Data holders may share aggregated data such as summary statistics for
genome-wide association studies (GWAS) to allow easy access with a reduced
risk of exposing sensitive information. The summary statistics can be analyzed
jointly via meta-analysis [4] [5]. However, summarizing involves a loss of infor-
mation which affects model performance.

Non-profit holders of genomic data, such as biobanks [6] [7], typically allow
researchers to access their data upon application approval. While in the case
of a successful application, researchers get access to individual-level data, the
approval process may take months and joint analysis with other data sources
may be prohibited.

1.2 Phenotype prediction

Phenotype-from-genotype prediction aims to score an individual’s genetic lia-
bility to a certain phenotype, usually, a disease, which can identify risk groups
and assist diagnostics [8]. To build a predictive model, one has to obtain either
individual-level data where each sample has two alleles for each included genetic
variant (SNP) or summary-level data where each SNP has an allele frequency.

Models trained on individual-level data typically yield higher predictive per-
formance as they learn the joint SNP distribution. However, this sensitive data
can typically be accessed only with an approved research application.

On the other hand, summary-based models, or polygenic scores, are trained
on publicly available GWAS-derived summary statistics and can even incorpo-
rate outputs of multiple GWAS using meta-analysis. However, polygenic score
models are typically based on assumptions that reduce their applicability to sam-
ples with ancestry different from the ancestry of the training set. For instance,
multiple studies show poor portability of polygenic scores to other ancestry
groups [9] [10] [11]. This is caused by inter-population differences in allele fre-
quency [12] and variant effect size [13], as well as different linkage disequilibrium
patterns [14].
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1.3 Ancestry prediction

Genetic ancestry prediction from SNPs has two common uses. First, it is a prod-
uct that genetic testing companies, also called consumer genomics companies,
sell to their customers [15]. Second, due to poor polygenic score cross-ancestry
portability, per-ancestry summary statistics [16] and polygenic score [17] cat-
alogs have been established. As self-reported ancestry is often noisy, ancestry
prediction is a promising tool to be used in phenotype prediction and pharma-
cogenomics [18].

The task of predicting ancestry is closely related to inferring genetic pop-
ulation structure. As ancestry differences comprise the major part of human
genetic variation, population structure is well described by top eigenvectors of
the covariance matrix obtained from genetic variants. As a consequence, these
principal components are commonly included in phenotype prediction models
as covariates to control for population structure [19]. A common approach to
estimate the ancestry of unlabeled samples is to project it onto the principal
component space of a labeled reference panel [20], such as the 1000 Genomes
Project [21].

1.4 Federated learning

Federated learning involves training a model locally on clients (data nodes) and
sending parameter updates to a server (central hub) where these updates are
aggregated into a new set of model parameters which are then sent back to the
clients in the next round of training, also called a communication round [22].
Unlike conventional ‘centralized’ machine learning, federated learning does not
require assembling data at a single location which saves communication costs
and, more importantly, enhances data security since the client’s data is not
disclosed to the server nor to other clients. The server, however, should be
trustworthy as the model updates the server has access to may leak information
about the data [23]. A comprehensive review of the security aspects of federated
learning is provided at [24]. A more horizontal approach in which clients send
models to each other without a need for a server is called swarm learning [25].

Federated learning alone may not be enough to build a secure system. Ad-
ditional mechanisms such as differential privacy [26], secure multiparty com-
putation [27] and a trusted execution environment [28] can be utilized to pro-
vide additional security. We refer to [1] for a comprehensive survey of privacy-
preserving mechanisms.

Federated learning features different strategies, which vary in aggregation
methods on a server, in the training process on clients and in the communication
frequency between a client and a server. Different strategies may be preferable
in different data distribution scenarios: (i) cross-device (many clients with little
data) or cross-silo (few clients with a lot of data); (ii) varying degrees of inter-
client heterogeneity (dissimilarity); (iii) unavailable or straggling clients. This
study considers the cross-silo scenario which is the most typical for genomic
data where clients, such as hospitals, biobanks, and genetic testing companies
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may be dissimilar due to differing genetic populations.

1.5 Federated learning for genomics and healthcare

Researchers have applied federated learning to a variety of healthcare data,
including electronic health records [29], medical images [30] and wearables [31].
A number of surveys describe the applications, prospects, challenges and privacy
concerns of federated learning in healthcare [32], [33], [34]. A number of privacy-
preserving techniques for genomic data have been proposed, such as federated
GWAS [35] [36] and federated PCA for GWAS [37]. However, to the best of our
knowledge, the applicability of federated learning to make predictions from full-
scale genomic data has not been extensively investigated. Training a federated
model on genomic arrays poses additional challenges typical to omics data,
such as the vast number of non-independent features (genetic variants). Thus,
this paper contributes to the adoption of federated learning in genomics and
potentially other omics domains.

In this paper, we analyze the efficacy of federated learning on genomic data in
two experiments. First, we show the promise of federated models for phenotype
prediction from the large-scale UK Biobank (UKB) genomic data. Next, we
analyze federated learning strategies in more detail on the smaller-scale but
more heterogeneous 1000 Genomes Project data. We investigate the model
behavior on the clients and show the importance of frequent communication
to achieve faster convergence in the presence of significant heterogeneity (client
dissimilarity).

2 Results

2.1 Phenotype prediction from UK Biobank data

In this experiment, we mimic the situation where genomic data is stored in
multiple large silos within the same country. We split the UK Biobank data
into 19 datasets according to sample collection centers in different parts of the
UK. Some inter-node heterogeneity is present due to the correlation between
the UK’s genetic population structure and geography [38]. After a standard
quality control (QC), we reduced dimensionality by conducting GWAS on each
node and selecting top SNPs. Then, we trained local, federated and centralized
Lassonet neural networks (see Methods) of identical architecture with selected
SNPs, sex and age as features. The experiment setup is visualized in Figure 1
and described in more detail in the Methods section.

Figure 2 displays test R2 performance of six out of 19 local models, federated
(FedAvg, 8 epochs in a communication round, see Methods) and centralized
models for nine continuous phenotypes. The six displayed nodes were selected,
prior to model training, to demonstrate the whole range of sample sizes. The
considered phenotypes were selected based on previous heritability estimates
[39]. On each node two local models were trained: one trained on top SNPs
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from local GWAS and one trained on top SNPs from meta-GWAS (see Methods).
The federated models used SNPs from meta-GWAS and the centralized models
used SNPs from centralized GWAS. Local and centralized covariates-only (sex
and age) models were also trained as a baseline.

We trained local and centralized models with (i) ‘native’ features, i.e. SNPs
derived from local and centralized GWAS, to represent end-to-end solutions,
and (ii) SNPs yielded by meta-GWAS so that local, centralized and federated
models can be compared on exactly the same set of features. For centralized
models, performance on centralized GWAS SNPs and meta-GWAS SNPs was
very similar for all phenotypes, thus, only the former was included in the Figure
2. Local models tend to perform better on meta-GWAS SNPs compared to
local GWAS SNPs, most likely because SNP selection via a local GWAS tends
to yield more false positives due to an insufficient number of samples. For
local models, we see a natural trend that performance improves as the node size
grows. Federated models outperform all local models and get close to centralized
models.

2.2 Ancestry prediction from 1000 Genomes data

To mimic the situation where genetic testing companies from different parts of
the world collaboratively predict ancestry, we split the 1000 Genomes Project
data into 5 isolated nodes based on sample superpopulation (African, Native
American, East Asian, European, Southern Asian), thus getting high inter-
node heterogeneity. After a standard QC, we reduced dimensionality by ap-
plying federated PCA [40] to pruned SNPs and then trained local, federated
and centralized multilayer perceptrons (MLPs) of identical architecture. The
experiment setup is visualized in Figure 3 and described in more detail in the
Methods section.

Our goal here is to investigate the performance of federated models as a
function of communication between the clients (nodes) and the server in the
presence of significant cross-client heterogeneity. For this, we compare FedAvg
strategies with a different number of epochs in a round of communication. The
training process of federated models is displayed in Figure 4.

Figure 4a compares the validation loss of the centralized and federated mod-
els. Federated models show a clear trend that the more communication between
the server and the clients, i.e. the more rounds and the fewer local epochs in each
round, the faster the convergence is. For the centralized model, convergence was
fast, however, it started from a higher loss value because of the random class as-
signment in a multiclass classification initialization: a centralized model solves a
problem for 26 classes whereas each of the five superpopulation nodes has fewer
classes (26 in total).

Figure 4b shows the evolution of the client training loss of the FedAvg model
with 32 local epochs in a round of communication. Here, the peaks correspond
to the initial evaluation of the aggregated parameters sent from the server to
the client. Parameter aggregation on the server results in an increase of the
local loss as the aggregated parameters are a weighted average of parameters
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Figure 1: The workflow of phenotype prediction from UKB data. Data is split
into nodes and undergoes per-node variant QC. Then, within a cross-validation
loop dimensionality is reduced by selecting the most significant SNPs via a local
or meta-GWAS. Finally, models are trained.

6

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2023. ; https://doi.org/10.1101/2023.01.24.23284898doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284898
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2: R2 of observed vs predicted phenotype on a test set of local, federated
and centralized models for phenotype prediction on UK Biobank data split by
assessment center. Facets correspond to the phenotypes. The x-axis shows six
of 19 local nodes, selected to represent a range of node sizes, in increasing size
order, which is the same for each phenotype. The number of training samples
in each node is indicated in the x-axis labels, which bubble size also corresponds
to. Color corresponds to the model type. For each dot, the median and 80%
confidence interval for 10-fold cross-validation is displayed.
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Figure 3: The workflow of ancestry prediction from 1000 Genomes data. Data
was split into nodes according to sample superpopulation. The union of variants
pruned on each node was taken for all nodes to have the same features. Fed-
erated / centralized PCA was used to further decrease dimensionality. Finally,
federated and centralized models were trained.
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(a) (b)

Figure 4: Loss behavior of federated and centralized models. FedAvg strategy
with 1, 2, 4, 8, 16, 32 epochs/round was used. (a) Validation loss of federated
models with a different number of communication rounds. For each model and
epoch, a median loss over 10-fold cross-validation is shown. (b) The training
process of a 32-epochs-in-round model on a client. Every 32nd epoch contains
two points: one before the start of the epoch when the client receives parameters
from the server and one after the first epoch of a round.

optimized on different data distributions (due to inter-node heterogeneity), then
the loss starts decreasing as the model starts fitting to the local data.

2.3 Practical considerations of server-client communica-
tion

Figure 5 shows the accuracy of federated models as functions of the number of
total epochs (computational complexity) and rounds (communication). In com-
pliance with Figure 4a, Figure 5a shows that for heterogeneous data, increasing
communication between the clients and the server leads to higher accuracy. On
the other hand, Figure 5b shows that for a limited number of rounds, it is ben-
eficial to train locally for a larger number of epochs. Thus, depending on what
is the bottleneck of the system, communication or computational complexity,
different federated learning strategies may be preferable.

A fully federated solution requires all data to be prepared in a federated
manner as well. In the case of ancestry prediction, dimensionality reduction is
usually conducted via PCA, thus, we first pruned SNPs as displayed in Figure
3 to decrease computational load and then utilized federated PCA using the
P-stack algorithm as described in [40]. The amount of communication used in
federated PCA linearly depends on the number of input SNPs which affects the
model accuracy. Hence, if communication is limited, one can spend more on the
PCA step by including more SNPs or use more communication rounds for model
training. Figure 6 shows our rationale behind choosing the pruning parameters
that determine the number of input SNPs for federated PCA. We also validate
the federated PCA approach and show that the centralized classifier performs
similarly on federated and centralized PCs.
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(a) (b)

Figure 5: Validation accuracy as a function of complexity and communication.
FedAvg strategy with 1, 2, 4, 8, 16, 32 epochs/round was used. Each shown
value is a median over 10-fold cross-validation. (a) Accuracy of federated models
as a function of the total number of epochs. (b) Accuracy of federated models as
a function of the amount of communication between the server and the clients.
The dashed line corresponds to the amount of communication used by federated
PCA.

Figure 6: Centralized model accuracy as a function of the number of SNPs used
for dimensionality reduction via centralized and federated PCA. Solid/dashed
line corresponds to train/validation model accuracy, and blue/red corresponds
to centralized/federated PCA. Shaded areas correspond to 80% confidence in-
tervals based on 10-fold cross-validation. Vertical dashed lines correspond to
the number of SNPs we chose to be used in downstream analysis.
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3 Methods

This study aims to assess the applicability of federated learning to genomic data.
In this paper, we consider only ‘global’ models that aim to perform well on all
varieties of data split between isolated datasets. A survey of personalization
methods for federated models is provided in [41].

Intuitively, we expect a good federated model to perform considerably better
than the local models, trained on data in a single node, and slightly worse than
a centralized model that trains on all of the data together. In this case, a
federated model delivers all benefits of federated learning at the cost of a small
reduction in performance compared to a centralized model.

3.1 Federated learning strategies

Here, we consider the FedAvg strategy [42] with a different number of epochs
in a communication round. In our case, where the number of clients is low, the
pseudocode is displayed in Algorithm 1:

Algorithm 1 FedAvg for a small number of clients. K is number of clients, nk
– number of samples on kth client, R – number of communication rounds, E –
number of local epochs in a round, η – local learning rate

1: procedure Server-side
2: Initialize ω← ω0 ▷ Initialize model weights
3: for r ∈ 1, .., R do
4: for k ∈ 1, .., K do <in parallel>

5: ωk
r
← Client-side(k, ω) ▷ Parallel local optimization

6: end for
7: ω←

∑K
k=1

nk
n ω

k
r

▷ Weighted average of client weights
8: end for
9: end procedure

10: procedure Client-side(k, ω)
11: for  ∈ 1, .., E do
12: for batch b do
13: ω← ω − η∇F(ω,b) ▷ Batch gradient descent
14: end for
15: end for
16: return ω
17: end procedure

In the presence of significant inter-node heterogeneity, i.e. when the local
data distribution on the clients is different from the global distribution, the
global model tends to overfit to local data causing ‘client drift’ that slows or
prevents convergence [43]. Client drift can be decreased by limiting the amount
of training on a client in a single round, i.e. increasing communication between
a client and a server. In this paper, we utilize FedAvg with different amounts of
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server-client communication by varying the number of communication rounds
K but keeping the total number of local epochs KE constant.

3.2 The UK Biobank dataset and data processing

An overview of our data processing pipeline for experiments on the UK Biobank
dataset can be seen in Figure 1. All samples underwent quality control using
PLINK [44] to remove individuals with an insufficient number of genotyped vari-
ants (6% missingness cutoff) and related samples with a KING [45] cutoff 0.0884
corresponding to second-degree relatives. For local and federated but not cen-
tralized models, the data is split into 19 datasets according to the data collection
center (UKB data-field 54). Data collection centers with less than 10k samples
were excluded. The size of the datasets after QC ranges from 12.1k (Barts) to
42.1k (Bristol), for a total of 441k samples. For each dataset separately, variant
QC is conducted by filtering out variants by rarity (5% minor allele fraction
cutoff), missingness (2% cutoff), and a Hardy-Weinberg equilibrium p-value
threshold of 10e-6. Each dataset is split into 10 folds for cross-validation where
at each time eight folds are used as training data, one as validation data (to
be used for early stopping during model training and regularization parameter
selection), and one as test data. Next, we reduce dimensionality by selecting
the 10,000 most significant SNPs with a GWAS conducted on the training data
using age, sex, and 20 principal components from SNPs as covariates. These
10,000 SNPs are combined with age and sex as the input features for our pre-
dictive model. For experiments with federated models, feature selection is done
by performing a random-effects meta-analysis using PLINK to aggregate infor-
mation from the GWAS reports of the individual datasets and then selecting
the top 10,000 SNPs.

3.3 Phenotype prediction model

The best-performing phenotype prediction models on large datasets like UK
Biobank are typically LASSO-based and are solved iteratively to save memory
consumption [46, 47, 48]. LASSO is a linear model with L1 regularization, which
performs feature selection by setting the weights of non-influential parameters
to zero. A LASSO problem can be solved using coordinate descent [46] or
gradient descent. We chose to solve LASSO using gradient descent because
it can be easily implemented on top of existing deep learning and federated
learning frameworks, such as PyTorch [49] and Flower [50].

However, with gradient descent, the LASSO problem can only be solved
for a single value of the regularization parameter λ. Since λ determines model
performance and generalization ability, one typically trains multiple models with
different values of λ and selects the one with the best validation metric. We
implemented this procedure as a linear neural network which efficiently trains
LASSO models with a range of λ values in parallel and offers built-in model
selection. We call this implementation Lassonet.
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Centralized and local Lassonet models are trained using PyTorch and Py-
Torch Lightning [51] on the Zhores cluster node with Nvidia V100 GPU with
16GB VRAM and up to 160GB of RAM [52]. We used the SGD optimizer with
learning rate 5e-3, learning rate decay 0.99, batch size 16 and trained Lassonet
for 256 local epochs for each run on the UK Biobank data.

We implemented federated models using the Flower framework. Here, we
aggregated validation loss from models with the same λ across clients each
round, and then chose the model with the best validation loss to be evaluated
on the test set.

3.4 The 1000 Genomes Project dataset and data process-
ing

The 1000 Genomes array contains about 750 thousand genetic variants (SNPs)
of 2624 samples of 26 genetic populations belonging to five superpopulations of
East Asians (EAS), Southern Asians (SAS), Europeans (EUR), Africans (AFR)
and Native Americans (AMR).

Our data processing workflow sketched in Figure 3 was performed in the
following order. First, we conduct variant QC in PLINK keeping genetic variants
with minor allele frequency >5% and missing call rates <2%. Next, we split the
samples into five isolated nodes according to sample superpopulations. Then,
we conduct sample QC on each node separately in PLINK keeping non-related
(KING relatedness cutoff 0.0884 that corresponds to second-degree relatives)
samples with missing call rates <6%.

Next, we reduced dimensionality by first pruning variants on each node sepa-
rately in PLINK, then taking a union of the remaining variants across the nodes
to get a single variant set (only variant IDs are communicated between nodes)
yielding about 65 thousand SNPs. Then, data on each node was split into 10
folds for cross-validation where at each time eight folds are used as training data,
one as validation data (to be used for early stopping during model training) and
one as test data. Finally, we conducted federated PCA and, alternatively, cen-
tralized PCA on the training set and extracted the top 20 principal components.
To reduce the dimensionality of validation and test sets, we projected them onto
the training PC space. The influence of the pruning strictness and the federated
vs centralized PCA is displayed in Figure 6.

3.5 Federated PCA for dimensionality reduction

The standard way to reduce dimensionality for ancestry-from-genotype predic-
tion is by using the principal component transformation as it is well known
that PCs of genetic variants retain genetic population structure in the dataset
[53]. The federated models we use in this study require client datasets to have
the same feature space, therefore the PCs have to be obtained collaboratively.
Since computing PCs centrally discloses the data and therefore compromizes
the purpose of downstream federated learning, we employ the federated PCA
approach.
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We utilized the P-STACK method as described in [40], which involves send-
ing a local eigenvalues vector and an eigenvector matrix from each client to the
server. Further, the server stacks local PCA components and then performs a
singular value decomposition (SVD) of the obtained joint matrix. To perform
an exact PCA, we used the maximum available number of eigenvectors on each
client, which equals the number of client samples minus one. When the number
of PCs is fixed, the size of the eigenvector matrix depends only on the number
of genetic variants. We used PLINK to prune genetic variants, i.e. removed
variants in close linkage disequilibrium. Pruning was conducted on each indi-
vidual node and then a union of remaining on each node variants was taken.
This allowed us to reduce communication costs for federated PCA and signifi-
cantly shrink RAM consumption while running SVD on the server. When SVD
is completed, the resulting eigenvector matrix is sent back to the clients after
which each client is able to perform the PC transformation into the joint feature
space.

3.6 Ancestry prediction model

After performing the Federated PCA on the 1000 Genomes dataset we use
20 PCs as features for a multi-layer perceptron neural network. It has two
hidden layers and outputs raw scores of a sample belonging to the each of 26
populations. It has approximately 182K parameters.

We use a fully-connected neural network with two hidden layers of size 800
and 200, respectively, 20 input and 26 output neurons. The activation function
is se and the loss function is cross entropy. We trained it for 16384 local
epochs with batch size 64, learning rate 0.1 and exponential learning rate decay
with γ 0.9999. We trained it on CPU-only machines with 4 CPUs and 8-16 GB
of RAM.

4 Discussion

The promise of federated learning for healthcare, and genomics in particular,
is a result of two powerful trends. First, machine learning models require a lot
of data to train and their applicability depends on the diversity of the training
dataset. Training the model on diverse data obtained from multiple sources
reduces confounding by population genetics, experimental design, etc. and gen-
erally improves performance on external data. Second, the growing awareness of
the sensitivity of healthcare data and the harmful consequences of its leakage en-
courages data custodians to restrict data access, e.g. by requiring an application
approval and then granting access only within a trusted research environment
[54] [55]. This makes merging multiple datasets at a single location challenging,
thus discouraging training conventional centralized models.

Nevertheless, the applicability of federated learning to genomic data has
not been studied extensively. In this paper, we analyzed the behavior of fed-
erated models in two scenarios: phenotype-from-genotype prediction on the
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UK Biobank data and ancestry-from-genotype prediction on the 1000 Genomes
Project data. We first showed that federated models are almost as accurate as
centralized models and considerably more accurate than local models for pre-
dicting multiple phenotypes from genomic data. Then, we moved to ancestry
prediction using the 1000 Genomes dataset which features fewer samples but
higher population diversity. By splitting the data by sample superpopulations
we achieved high inter-node heterogeneity. We showed that in this setting, fre-
quent communication between the server and the clients plays a crucial role
in achieving fast convergence and showing performance similar to that of the
centralized model. We also demonstrated that depending on whether compu-
tational time or communication is a bottleneck of the system, different FedAvg
with different numbers of epochs in a round should be preferred.

In both of our experiments, the main reason for federated models not reach-
ing the performance level of centralized models is data heterogeneity across the
nodes or client dissimilarity. When a federated model trains on a client, it over-
fits to local data; then as fitted parameters from different clients get aggregated,
the result may differ from the update of the corresponding centralized model,
a phenomenon called client drift. Client drift can be decreased by increasing
communication between the client and the server by decreasing the number of
epochs of local training in a communication round (between parameter updates),
as shown in Figures 4a and 5a.

Federated learning is a quickly developing field of research and new strategies
continue to emerge, including those aiming to tackle client drift and improve
convergence in case of high inter-node heterogeneity, such as SCAFFOLD [56]
and FedDyn [57]. These novel strategies may be preferable if communication
between the clients and the server is limited. However, they require additional
testing, as FedAvg with frequent communication, one or two epochs in a round,
is a difficult baseline to beat.

In both experiments, we used a single dataset artificially split into several
independent nodes. On the one hand, this is an advantage as the uniform data
collection process allows us to limit the influence of environmental and experi-
mental confounders and focus on the relative performance of the models. On the
other hand, in a real scenario, using multiple independently collected datasets
may require additional work to unify features and outputs across datasets. For
example, predictions from genomic data may require SNP imputation or an-
other solution if different datasets have different sets of genetic variants; simi-
larly, ancestry and phenotypes may be defined or collected differently in different
experiments.

Currently, the vast majority of healthcare data comes from people of Eu-
ropean descent which makes models trained on this data biased towards Eu-
ropeans, adding to the healthcare inequality of people around the world [58]
[59]. Thus, one of the main potential extensions of this study is to train fed-
erated phenotype-from-genotype predicting models across different ancestries.
This could be achieved by establishing collaboration between data custodians,
such as biobanks, in different countries and training a global federated model
that accurately predicts phenotype across different ancestries, potentially even
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in those absent from the training set. This global model can be subsequently
personalized if the collaborating parties require the model to prioritize their
data.

5 Conclusions

Despite its promise, the applicability of federated learning to genomics has not
been thoroughly investigated. We filled this gap by training and analyzing fed-
erated models in two important scenarios: phenotype-from-genotype prediction
and ancestry-from-genotype prediction. We showed that federated models con-
sistently achieve high performance close to that of centralized models for the
prediction of multiple phenotypes and ancestry, even in the presence of signif-
icant inter-node heterogeneity. For heterogeneous nodes, we investigated the
dependency of federated strategies convergence on the amount of communica-
tion between the server and the nodes and provided recommendations on which
strategy to choose if communication or computational time is a bottleneck. We
also showed how federated prediction models can be integrated with federated
data processing steps such as dimensionality reduction by federated PCA. This
study encourages the adoption of federated models in healthcare, which has the
potential to enable global data collaboration and train less biased models that
represent diverse genetic ancestries.
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