Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Putting ChatGPT’s Medical Advice to the (Turing) Test

Oded Nov, Nina Singh, Devin M. Mann
doi: https://doi.org/10.1101/2023.01.23.23284735
Oded Nov
1NYU Grossman School of Medicine, Department of Population Health, New York, NY, USA
2Department of Technology Management, NYU Tandon School of Engineering, Brooklyn, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: onov@nyu.edu
Nina Singh
1NYU Grossman School of Medicine, Department of Population Health, New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Devin M. Mann
1NYU Grossman School of Medicine, Department of Population Health, New York, NY, USA
3NYU Langone Health, Medical Center Information Technology, New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Importance Chatbots could play a role in answering patient questions, but patients’ ability to distinguish between provider and chatbot responses, and patients’ trust in chatbots’ functions are not well established.

Objective To assess the feasibility of using ChatGPT or a similar AI-based chatbot for patient-provider communication.

Design Survey in January 2023

Setting Survey

Participants A US representative sample of 430 study participants aged 18 and above was recruited on Prolific, a crowdsourcing platform for academic studies. 426 participants filled out the full survey. After removing participants who spent less than 3 minutes on the survey, 392 respondents remained. 53.2% of respondents analyzed were women; their average age was 47.1.

Exposure(s) Ten representative non-administrative patient-provider interactions were extracted from the EHR. Patients’ questions were placed in ChatGPT with a request for the chatbot to respond using approximately the same word count as the human provider’s response. In the survey, each patient’s question was followed by a provider- or ChatGPT-generated response. Participants were informed that five responses were provider-generated and five were chatbot-generated. Participants were asked, and incentivized financially, to correctly identify the response source. Participants were also asked about their trust in chatbots’ functions in patient-provider communication, using a Likert scale of 1-5.

Main Outcome(s) and Measure(s) Main outcome: Proportion of responses correctly classified as provider- vs chatbot-generated. Secondary outcomes: Average and standard deviation of responses to trust questions.

Results The correct classification of responses ranged between 49.0% to 85.7% for different questions. On average, chatbot responses were correctly identified 65.5% of the time, and provider responses were correctly distinguished 65.1% of the time. On average, responses toward patients’ trust in chatbots’ functions were weakly positive (mean Likert score: 3.4), with lower trust as the health-related complexity of the task in questions increased.

Conclusions and Relevance ChatGPT responses to patient questions were weakly distinguishable from provider responses. Laypeople appear to trust the use of chatbots to answer lower risk health questions. It is important to continue studying patient-chatbot interaction as chatbots move from administrative to more clinical roles in healthcare.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study was funded by NSF grant 1928614.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This was filed as a Quality Improvement study at NYU Langone Health.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data produced in the present study are available upon reasonable request to the authors

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted January 24, 2023.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Putting ChatGPT’s Medical Advice to the (Turing) Test
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Putting ChatGPT’s Medical Advice to the (Turing) Test
Oded Nov, Nina Singh, Devin M. Mann
medRxiv 2023.01.23.23284735; doi: https://doi.org/10.1101/2023.01.23.23284735
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Putting ChatGPT’s Medical Advice to the (Turing) Test
Oded Nov, Nina Singh, Devin M. Mann
medRxiv 2023.01.23.23284735; doi: https://doi.org/10.1101/2023.01.23.23284735

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (228)
  • Allergy and Immunology (504)
  • Anesthesia (110)
  • Cardiovascular Medicine (1240)
  • Dentistry and Oral Medicine (206)
  • Dermatology (147)
  • Emergency Medicine (282)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (531)
  • Epidemiology (10023)
  • Forensic Medicine (5)
  • Gastroenterology (499)
  • Genetic and Genomic Medicine (2453)
  • Geriatric Medicine (238)
  • Health Economics (479)
  • Health Informatics (1643)
  • Health Policy (753)
  • Health Systems and Quality Improvement (636)
  • Hematology (248)
  • HIV/AIDS (533)
  • Infectious Diseases (except HIV/AIDS) (11864)
  • Intensive Care and Critical Care Medicine (626)
  • Medical Education (252)
  • Medical Ethics (75)
  • Nephrology (268)
  • Neurology (2281)
  • Nursing (139)
  • Nutrition (352)
  • Obstetrics and Gynecology (454)
  • Occupational and Environmental Health (537)
  • Oncology (1245)
  • Ophthalmology (377)
  • Orthopedics (134)
  • Otolaryngology (226)
  • Pain Medicine (158)
  • Palliative Medicine (50)
  • Pathology (324)
  • Pediatrics (730)
  • Pharmacology and Therapeutics (313)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2280)
  • Public and Global Health (4834)
  • Radiology and Imaging (837)
  • Rehabilitation Medicine and Physical Therapy (492)
  • Respiratory Medicine (651)
  • Rheumatology (285)
  • Sexual and Reproductive Health (238)
  • Sports Medicine (227)
  • Surgery (267)
  • Toxicology (44)
  • Transplantation (125)
  • Urology (99)