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Figure 3: Participants' behaviour on the metacognitive tasks. A) Participants’ performance, response 
times, and confidence level in Metacognition task 1. Bars and error bars indicate mean and standard 
error of the mean (SEM); dots indicate individual data points (N=68 available measures). B) Left panel: 
Participants’ confidence for correct and incorrect decisions. Right panel: Mean perceptual performance 
(left panel) and mean response time (right panel) in each of the six difficulty bins, determined by the 
difference in number of dots between left and right boxes. Error bars indicate SEM (N=68). C) 
Participants’ performance, response times, and confidence level in Metacognition task 2. Bars and error 
bars indicate mean and SEM and dots indicate individual data points (N=67 available measures). D) Left 
panel: Participants’ confidence for correct and incorrect decisions. Right panel: Group-level 
metacognitive efficiency (H-Mratio) distribution estimated hierarchically (see Methods). 
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Dimensionality reduction of physiological measures 

In order to keep our regression models as parsimonious as possible, we aimed to obtain a low-dimensional 

summary of the physiological measures. To this end, we used principal components analysis (PCA) and 

computed the first principal component of physiological measurements, as pre-specified in our analysis 

plan (see Methods). We also examined the pairwise correlations of our measurements to better understand 

the covariance structure (Fig. 4A). As expected, sudomotor activity was correlated between hands and feet 

(ρ=0.62, p=4.38×10-8), and ΔBP was correlated between systolic and diastolic measurements (ρ=0.35, 

p=0.0048). The other physiological measurements of interest (HRV, ΔHR, and sudomotor activity) were 

reasonably uncorrelated (Fig. 4A). Applying PCA to all physiological measurements (Fig. 4B), we found 

that the first principal component (PC1) explained 42.2% of the variance in measurements of autonomic 

function. 

 

Figure 4: Physiological measures of homeostatic regulation. A) Correlation matrix of participants’ 
heart rate variability (HRV, computed as RMSSD during deep breathing), systolic and diastolic ΔBP and 
ΔHR (standing up after resting in supine position for 10 minutes), and sudomotor activity (averaged over 
hands and feet). B) Eigenvalues obtained for each of the inputs from a principal component analysis 
(PCA). 

 

With all of our metrics established, we next turned to the hypotheses pre-specified in our analysis plan.  

 

Analysis A: Is fatigue related to measures of interoception and autonomic regulation? 

Starting with hypothesis A (see Methods), we examined whether fatigue scores were associated with self-

report, questionnaire-based measures of interoceptive awareness that relate to the feeling of being in 

homeostasis and control and with the first principal component (PC1) of physiological measurements of 

autonomic function. Controlling for a number of potential confounds (see Methods), overall, the 

regression model explained a significant amount of variance in fatigue (MFIS) scores (F-test: p=0.0372; 
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N=53 available measures). We found a significant negative relation of self-report measures of 

interoception (MAIA subscales 3 and 8) with fatigue scores (t52=-2.79, one-tailed p=0.0078 uncorrected, 

p=0.025 FDR-corrected), but failed to find a significant association with PC1 (t52=0.41, p=0.68) (Fig. 5). 

The pattern of findings was similar when using the FSS questionnaire for fatigue instead of MFIS. Again, 

the regression model overall explained a significant amount of variance in FSS scores (F-test: p=7.9×10-4; 

N=63 available measures). Furthermore, there was again a significant negative association of fatigue 

levels with MAIA scores (t62=-3.04, one-tailed p=0.0036 uncorrected, p=0.05 FDR-corrected), but not 

with PC1 (t62=-0.03, p=0.97) with fatigue (FSS) scores. 

Given the surprising absence of an association between fatigue and physiological measurements of 

autonomic function, we conducted several control analyses, examining in particular whether using the first 

principal component as a summary of the various autonomic measurements may have been an inadequate 

choice. These control analyses, which are reported in the Supporting Information, confirmed that in our 

particular sample, a significant association between autonomic function measures and fatigue is not found. 

Altogether, these findings indicate that self-report (questionnaire-based) measures of interoception that 

reflect the feeling of being in homeostasis and control were significantly related to fatigue, whereas this 

was not the case for physiological measures of autonomic function. 

 

Figure 5: Association of fatigue levels to measures of interoception and autonomic regulation (Analysis 
A). Regression analysis of MFIS values, with MAIA subscales relating to the feeling of being in 
homeostasis and control (‘MAIA38’) and autonomic function measures reflecting the integrity of 
homeostatic regulation (‘homeo’) (see Methods). Regressors of no interest include age, sex, 
immunomodulatory medication, medication with sedative effects, disease duration, and sleep quality as 
measured by the PSQI questionnaire. Error bars are the standard errors of regression coefficient 
estimates (N=53 available measures). **p<0.01 uncorrected, p<0.05 FDR-corrected; p-values from one 
sample t-tests against zero on regression coefficient. Note that fatigue scores based on the FSS 
questionnaire provided very similar results (see main text). 

 

Analysis B: Is fatigue related to measures of exteroceptive metacognition? 

The second part of our pre-specified analyses focused on the relationship between fatigue and 

(exteroceptive) metacognition. Here, the most important question – which we tested twice, using data 

from both metacognition tasks – was whether fatigue would show a negative association with 

metacognitive bias (confidence level). This hypothesis was based on previous findings by Rouault et al. 

(2018) who found this association for a fatigue-related construct (i.e., apathy) in the Metacognition task 2.  
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First, using Metacognition task 1 and parameter estimates from a drift-diffusion model of the decision-

making process (see Methods), we found that our regression model did not significantly explain variance 

in fatigue (MFIS) scores (F-test: p=0.1380, N=52 available measures). Contrary to our expectation, we 

failed to find a significant association between metacognitive bias and fatigue (one-tailed t-test, t54=0.03, 

p=0.97). Amongst the hierarchical drift diffusion model (HDDM) parameters, we found that neither the 

baseline drift rate (𝑣!) (t54=-1.90, p=0.0646) nor the effect of decision evidence on drift rate (𝑣!) (t54=-

1.42, p=0.163) were significantly associated with fatigue. For the other two parameters, decision threshold 

and non-decision time, we again failed to find a significant relation with fatigue (both t54>-1.17, both 

p>0.25) (Fig. 6A). 

Going beyond our pre-specified analyses, we reasoned that unpacking the decision process into the four 

HDDM parameter estimates might have led to an overparameterised regression model, and that replacing 

them by general decision accuracy (which the drift diffusion model seeks to characterise) could result in a 

more parsimonious model. Therefore, we ran an alternative model replacing the four HDDM parameters 

with accuracy instead (F-test: p=0.0271). We found that lower accuracy was related to fatigue (t54=-2.45, 

p=0.0176 uncorrected, p=0.025 FDR-corrected), again in the absence of a significant association between 

metacognitive bias (confidence level) and fatigue (one-tailed t-test, , t54=0.679, p=0.50). 

 

Figure 6: Association of fatigue levels to measures of metacognition (Analysis B). Analyses of the 
relationship between metacognition and fatigue scores (MFIS questionnaire). A) From Metacognition 
task 1, we included as regressors metacognitive bias (‘m.bias’) alongside four drift-diffusion model 
parameter estimates characterising the perceptual decision-making process: decision threshold (‘a’), non-
decision time (‘t’), drift rate ( 𝑣!  and 𝑣! ) (see Methods) (N=52 available measures). B) From 
Metacognition task 2, we included as regressors metacognitive bias (‘m.bias’) and metacognitive 
efficiency (meta-d’/d’) (‘m.effi’). (N=56 available measures). In all models, regressors of no interest 
included age, sex, immunomodulatory medication, medication with sedative effects, disease duration, and 
sleep quality (PSQI questionnaire). Error bars are the standard errors of regression coefficient estimates.  

 

Second, using Metacognition task 2 and a Bayesian model based on signal detection theory (Fleming, 

2017), we extracted metacognitive bias (confidence level) and metacognitive efficiency (meta-d’/d’) and 

examined their link with fatigue using multivariate regression (see Methods). The regression model 

overall did not explain a significant amount of variance (F-test, p=0.2122), we found that neither 

metacognitive bias (one-tailed t-test, t55=0.91, p=0.185) nor metacognitive efficiency (two-tailed t-test, 

t55=-1.18, p=0.24) were significantly associated with fatigue (Fig. 6B). Deviating from our specified 
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analysis plan, we did not include accuracy in the model because it is already partly taken into account in 

the calculation of metacognitive efficiency (via d’). However, we also implemented the same model by 

adding the average evidence level for each individual from the staircase procedure, a proxy for individual 

perceptual difficulty, which provided consistent results. This model was significant (F-test: p=0.0417), 

with neither metacognitive bias (one-tailed t-test, t55=0.75, p=0.23) nor metacognitive efficiency (two-

tailed t-test, t55=-1.22, p=0.23) being significantly associated with fatigue, in contrast to significant effects 

of average evidence level (t55=2.60, p=0.0123) on fatigue. 

 

Analysis C. Are measures of interoception and autonomic regulation related to measures of 

metacognition? 

Finally, we examined our third pre-specified set of hypotheses regarding associations of interoception and 

autonomic measures, respectively, with metacognition (Analysis C). First, using multivariate regression, 

we examined whether self-report, questionnaire-based measures of interoceptive awareness (sum of 

MAIA subscales 3 and 8) were related to metacognitive indices (see Methods). We found that the model 

did not significantly explain more variance than a null model (F-test: p=0.60), and that none of the 

metacognitive regressors significantly explained MAIA subscale scores (all abs(t65)<0.69, all p>0.49; 

N=66 available measures; Fig. 7A). 

 

Figure 7: Association between measures of interoception and autonomic regulation and measures of 
metacognition (Analysis C). A) Regression analysis of the contribution of metacognitive bias and 
metacognitive efficiency to explaining a self-report measure of interoception (MAIA subscales, see 
Methods) (N=66 available measures) B) Regression analysis of the contribution of metacognitive bias and 
metacognitive efficiency to explaining a physiological measure of autonomic function (PC1, see Methods). 
(N=61 available measures). In both models, regressors of no interest include age, sex, immunomodulatory 
medication, medication with sedative effects., disease duration, and sleep quality as measured by the 
PSQI questionnaire. Error bars are the standard errors of regression coefficient estimates. *p<0.05, 
uncorrected p-values from one sample t-test against zero on regression coefficient. Error bars are the 
standard errors of regression coefficient estimates.  

 

Second, we examined, using multivariate regression with the first principal component of physiological 

measures of autonomic function (PC1) as dependent variable, whether PC1 was related to metacognitive 

indices. Although the overall model did not explain significantly more variance than a null model (F-test: 

p=0.1213), we did find a significant association between metacognitive bias (confidence level) and PC1 
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(t60=2.32, p=0.0243) (Fig. 7B). 

Altogether, these results suggest that exteroceptive metacognitive bias is associated with physiological 

measures of autonomic function, but not with aspects of interoceptive awareness related to the feeling of 

being in homeostasis and control (summed MAIA subscales 3 and 8). 

 

Elastic net regression: predicting fatigue from all available measurements 

The analyses described above used classical within-sample multiple regression with carefully pre-selected 

regressors, including the use of dimensionality reduction (PCA), in order to examine relationships 

between fatigue, metacognition, and interoceptive markers in a hypothesis-driven manner. In a subsequent 

and more exploratory step (but part of our pre-specified analysis plan), we performed a regression analysis 

where we sought to predict fatigue from all of the available interoceptive, physiological, and 

metacognitive measurements as well as additional variables (e.g., sleep; see Methods). This analysis was 

only possible for those participants where measures of all 15 variables were available (N=52 participants 

for MFIS, N=62 for FSS).  

In order to avoid overfitting and obtain out-of-sample predictions, we used elastic net regularisation (Zou 

& Hastie, 2005) together with ten-fold nested cross-validation. We used permutation tests to examine 

whether model predictions as well as the contribution of specific regressors were significantly above 

chance. Specifically, we derived null distributions based on the mean squared error (MSE) for model 

predictions and based on the regression coefficients for individual regressors. In either case, 1,000 

permutations were used to create the null distribution. 

The regression model was able to predict individual MFIS scores well above chance (p=0.003; Fig. S2). 

Out of the 15 regressors, two showed large regression weights, and both were significant predictors of 

MFIS scores: self-report measures of interoceptive awareness, i.e., summed scores of MAIA subscales 3 

and 8 (regression weight = -5.49, p=0.002), and sleep quality (regression weight = 4.83, p=0.001). While 

these results confirm the relation between fatigue and interoceptive measures, it is noteworthy that they 

were now obtained in the presence of all other variables. Moreover, the use of cross-validation moves the 

analysis from explaining fatigue scores (i.e., within-sample associations) towards predicting them out-of-

sample. Specifically, the model in the current analysis can predict MFIS scores of "unseen" individuals 

with a median absolute error of 13.59 (for comparison, MFIS scores are on a scale from 0 to 84). 

Turning to FSS as an alternative fatigue score, again the model’s predictions were significantly above 

chance (p=0.003; Fig. S3). The same regressors as for MFIS were significant predictors of fatigue: self-

report measures of interoceptive awareness (MAIA subscales 3 and 8) (regression weight = -3.47, 

p=0.001) and sleep quality (regression weight = 5.05, p=0.001). The overall model could predict 

individual FSS scores out-of-sample with a median absolute error of 10.19 (for comparison, FSS scores 

are on a scale from 9 to 63). 
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Finally, it is worth mentioning that, for MFIS scores, two of the physiological variables (ΔHR and HRV) 

were also significant predictors (ΔHR: p=0.019; HRV: p=0.031). However, this finding did not generalise 

across questionnaires: for FSS scores, neither variable was a significant predictor (ΔHR: p=0.763; HRV: 

p=0.749).	 

In conclusion, as for the separate regression analyses above, the choice of fatigue questionnaire did not 

impact our results: both MFIS and FSS fatigue scores could be predicted with highly significant accuracy, 

and the same variables (self-report on interoception and sleep quality) were important for this prediction.   

 

Relationship between local and global confidence 

Finally, as pre-specified in our analysis plan, we examined possible associations between ‘global’ 

confidence (here measured as self-efficacy) and ‘local’ confidence, the task-based confidence level, by 

examining the correlation between metacognitive bias (confidence level) from Metacognition task 2 and 

either of the two self-efficacy questionnaires that participants had completed (General Self-Efficacy Scale, 

GSES, and MS Self-Efficacy Scale, MSES). For GSES, the Pearson correlation coefficient was ρ=0.11 

(p=0.37) and for MSES ρ=0.067 (p=0.59) (N=66 available measures in both cases). The correlations are 

visualised in Fig. 8. These findings suggest that, in our particular sample and for the task we used, task-

based metacognitive confidence and general self-efficacy beliefs were not significantly related.  

 

Figure 8: Associations between ‘local’ and ‘global’ aspects of metacognition. Correlations between 
task-based measure of metacognitive bias (‘local’ confidence level) and global measures of confidence as 
indexed by the general self-efficacy scale (GSES, left panel) and the MS self-efficacy scale (right panel).  
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Discussion  

This study examined questionnaire-based interoceptive awareness, autonomic function, and 

(exteroceptive) task-based metacognition in a sample of 71	 PwMS. We tested a number of concrete 

hypotheses jointly inspired by the theory of allostatic self-efficacy (ASE) (Stephan et al., 2016) and by 

recent findings on links between exteroceptive metacognition and apathy in a general population sample 

(Rouault et al., 2018).  In brief, our study found the expected association of interoceptive awareness with 

fatigue (but not with exteroceptive metacognition) and an association of autonomic function with 

exteroceptive metacognition (but not with fatigue). Furthermore, a machine learning analysis (based on 

elastic net regression) showed that individual fatigue scores could be predicted out-of-sample from our 

measurements, with questionnaire-based measures of interoceptive awareness and sleep quality having a 

particular relevance for prediction. 

To the best of our knowledge, our study is novel in at least three ways. It is the first to explore the utility 

of (exteroceptive) measures of metacognition for investigating fatigue. Second, it achieves successful out-

of-sample prediction of individual fatigue scores in MS from simple questionnaire-based measurements. 

Third, when examining links between questionnaire-based interoception and fatigue, it is the first study 

that assesses interoceptive awareness in MS using a validated questionnaire (MAIA) focusing on those 

aspects of interoceptive awareness that relate to the feeling of being in control and homeostasis. 

How do our results relate to previous findings in the literature? Several previous studies have provided 

indirect evidence for an association between altered interoception and fatigue in MS. This rested on 

showing that PwMS exhibit structural/functional changes in interoceptive brain regions, such as the insula 

and anterior cingulate cortex (ACC) (e.g., (Faivre et al., 2012; Rocca et al., 2012; Haider et al., 2016; 

Salamone et al., 2018)), and demonstrating associations of such changes with fatigue (Andreasen et al., 

2010; Pardini et al., 2015). This form of evidence for an association between altered interoception and 

fatigue is highly valuable but only of an indirect nature because areas like the ACC and the insula are also 

involved in other cognitive functions. Direct assessments of interoception in MS are rare so far. The only 

exception we are aware of is a recent study which showed that, in comparison to healthy controls, PwMS 

with fatigue (but not PwMS without fatigue) exhibited significant differences on a heartbeat detection task 

(in addition to changes in grey matter volume and functional connectivity of the insula) (Gonzalez Campo 

et al., 2020). Our study used specific subscales of the MAIA questionnaire (pre-specified in our analysis 

plan) to assess aspects of interoceptive awareness that are of particular relevance for the ASE theory. We 

are not aware of any previous study that used the MAIA or another validated interoception questionnaire 

in MS. 

Concerning the relation between autonomic nervous system function and fatigue in MS, most previous 

studies have investigated cardiac measures of autonomic dysfunction, e.g., with regard to heart rate 

variability (Flachenecker et al., 2003). As summarised in a recent systematic review of cardiac autonomic 

function in MS, most of these studies have reported a relation between cardiac autonomic dysfunction and 
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fatigue, although the degree and the nature (i.e. which measurement) of this relation varied considerably 

across studies (Findling et al., 2020). In our analyses, we did not find any association between measures of 

autonomic function and fatigue when applying dimensionality reduction (PCA) prior to regression 

analysis. When using all physiological measures as regressors in a regularised regression model (elastic 

net), we found that two physiological variables (ΔHR and HRV) did predict MFIS scores; however, this 

finding could not be replicated for FSS scores and should therefore be treated with caution. We conducted 

a number of control analyses (see Supporting Information) which, however, failed to reveal an obvious 

reason for the absence of the expected association. One remaining possibility is that although our sample 

size was relatively large (N=71 participants), this may still not have been large enough to detect 

associations of small effect size. 

As specified in our analysis plan, we also conducted an exploratory analysis, applying a machine learning 

approach (elastic net regression with ten-fold nested CV) to all our measurements. It showed that fatigue 

scores of individual participants can be predicted from questionnaire, physiological and behavioural 

measurements, with a median absolute error of 13.59 for MFIS and 10.19 for FSS. Furthermore, 

questionnaire-based measures of interoceptive awareness and sleep quality played a particularly important 

role for this prediction. This finding is important in two ways. First, this machine learning approach goes 

beyond classical within-sample statistical analyses: by combining regularisation with cross-validation, it 

doubly protects against overfitting and enables us to include all measurements within a single regression 

model. This allows our analysis to account for several potential confounders, thus decreasing the 

probability that the observed predictive relationship may have been driven by a third variable. The finding 

that sleep quality by itself is negatively related to fatigue is not surprising and has been demonstrated 

before (e.g. (Nociti et al., 2017)); however, our analysis provides new evidence for the strength of this 

relationship by examining it in the simultaneous presence of many other explanatory variables and in an 

out-of-sample prediction context. Second, patients are often frustrated by the lack of objective tests that 

provide objective confirmation of their subjective experience of fatigue. An important clinical goal is 

therefore to predict the presence and degree of fatigue from other measurements. Clearly, our current 

study does not present a solution to this long-standing problem because the predictive variables it 

identifies (questionnaire-based interoceptive awareness and sleep quality) are based on self-reports 

themselves and because the sample size is too small to for establishing a precise prediction tool. 

Nevertheless, to our knowledge, it represents the first demonstration that predicting individual fatigue 

levels out-of-sample is possible at all for MS. 

While numerous studies exist which, in a variety of contexts and disorders, used machine learning to 

predict individual fatigue levels from behavioural or physiological data (Baykaner et al., 2015; Mun & 

Geng, 2019; Luo et al., 2020; Bafna et al., 2021; Jiang et al., 2021; Pinto-Bernal et al., 2021; Yao et al., 

2021; Zeng et al., 2021), only two of these studies have concerned MS (Ibrahim et al., 2020; 2022). 

Additionally, like the vast majority of studies, these two MS-specific studies did not actually predict 

fatigue (the subjective experience) but predict fatiguability (the observable decrease in performance 
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during physiologically or cognitively demanding tasks) (Kluger et al., 2013) (sometimes, fatigue and 

fatiguability are also referred to as "trait fatigue" and "state fatigue", respectively (Cehelyk et al., 2019)). 

Generally, to our knowledge, only two previous studies – concerning fatigue during cancer treatment and 

in HIV, respectively; (Zuñiga et al., 2020; Kober et al., 2021) – have attempted to predict fatigue, all other 

studies have reported predictions of fatiguability. While fatiguability is also a clinically very important 

topic, it is important to distinguish these two concepts, not least because different types of 

pathophysiological explanations exist for fatigue and fatiguability (Manjaly et al., 2019).  

Our study has a number of notable strengths and limitations. Beginning with its strengths, our results 

derive from a preregistered analysis plan in which all hypotheses and analysis procedures were specified 

before the data were touched. Any deviations from this analysis plan were described in the Methods and 

Results sections above. Second, we examine (exteroceptive) metacognition using an established 

behavioural paradigm and a computational (hierarchical Bayesian) model (Fleming, 2017; Harrison, 

Garfinkel, et al., 2021). Third, a sensitivity analysis – i.e., comparing our results across two separate 

fatigue questionnaires (MFIS and FSS) – demonstrated that our findings did not depend on a specific 

construct of fatigue. It could be interesting in future work to examine relationships between different 

dimensions of fatigue (e.g. physical vs. cognitive) and measures of interoception/metacognition. However, 

in this study, we did not conduct separate analyses for different dimensions of fatigue because the ASE 

theory (which guided our analyses) does not make any predictions in this regard so far. Finally, as 

mentioned above, using machine learning, we could take into account many potential confounders, despite 

a limited sample size, and demonstrate that individual fatigue levels can be predicted, out-of-sample and 

with significant accuracy, from simple measures (questionnaire-based interoceptive awareness and sleep 

quality). 

Turning to the weaknesses of our study, our recruitment procedure was unconstrained, i.e., we did not pre-

select PwMS on the basis of any criteria. On the one hand, this is a strength as we avoided recruiting a 

specific subgroup that could have led to a biased perspective. On the other hand, there are probably 

multiple pathophysiological mechanisms that lead to fatigue in MS (Manjaly et al., 2019), and, given this 

likely heterogeneity and the absence of data on interoception and metacognition in MS prior to the start of 

our study, it was not possible to determine an adequate sample size. Second, novel methods for assessing 

metacognition of interoception have been introduced only very recently (Harrison, Garfinkel, et al., 2021; 

Nikolova et al., 2022; Legrand et al., 2022) and were not available when our study started. However, we 

acknowledge that such a task-based measure of interoceptive accuracy could provide relevant data 

regarding the correspondence between objective interoception and participants’ beliefs about their 

reported interoception (instead, we relied on a well-validated questionnaire of interoceptive awareness). It 

is worth mentioning that even these task-based procedures do not yet allow for assessing the particular 

metacognitive construct of interoception that the ASE theory focuses on, i.e. self-monitoring of the brain's 

capacity to control bodily states. We therefore had to resort to an indirect approach, using a task that 

probes metacognition about exteroception (specifically, confidence about perceptual decisions in the 
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visual domain). This was motivated by a recent study (Rouault et al., 2018) showing that metacognitive 

bias (confidence level) during this specific task was associated with apathy. However, apathy is not a fully 

identical construct and shares both similarities and differences with fatigue (Daumas et al., 2022). Indeed, 

in our sample, we could not detect an association between metacognitive bias and fatigue. One potential 

reason could be statistical power: the sample of PwMS in this study was much smaller than the general 

population sample from Rouault et al. (2018). Additionally, according to the ASE theory, a link between 

fatigue and exteroceptive metacognition is only to be expected once a generalisation of low self-efficacy 

beliefs has taken place – a process that, according to the theory, should be reflected by the onset of 

depression.  

This directly leads us to the third, and most important, limitation of the current study: our particular 

sample of PwMS did not exhibit a particularly high degree of depressive symptoms, which is not 

congruent with a key assumption inherent to the ASE theory. This observation represents an important 

caveat for all analyses of exteroceptive metacognition presented in this study. More specifically, according 

to the ASE theory, alterations of exteroceptive metacognition are only expected to occur once a 

generalisation of low self-efficacy beliefs, manifesting as depression, has taken place (Stephan et al. 

2016). The fact that only a small subgroup of our participants was found to exhibit notable depressive 

symptoms casts doubt on whether our particular sample is well suited to test for significant metacognitive 

changes in the exteroceptive domain. This doubt is strengthened further by the observation that, in our 

sample, there is no association between local (task-based) confidence level and global confidence (self-

efficacy). By contrast, the questionnaire-based and physiological assessments are not affected by this 

potential problem since they provide measures unrelated to the exteroceptive domain and do not rely on 

the assumption that generalisation of low self-efficacy beliefs having taken place. 

Notwithstanding these weaknesses, our study makes several important contributions to a better 

understanding of fatigue in MS. In particular, our results support the notion that interoception is an 

important factor for fatigue and demonstrate the feasibility of predicting individual levels of fatigue from 

simple questionnaire-based measures not directly related to fatigue. In future work, we will aim to 

replicate these findings in larger samples and address the important challenge of developing experimental 

procedures that allow for assessing metacognition of interoceptive processes. We hope that this work will 

eventually lead to clinically useful procedures of differential diagnosis that help identifying patients who 

would benefit from cognitive interventions targeting interoception and metacognition (Manjaly et al. 

2019).  
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