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Abstract

With the growing amount of COVID-19 cases,
especially in developing countries with limited medical
resources, it’s essential to accurately diagnose COVID-19
with high specificity. Due to characteristic ground-glass
opacities (GGOs), present in both COVID-19 and other
acute lung diseases, misdiagnosis occurs often — 26.6% of
the time in manual interpretations of CT scans. Current
deep learning models can identify COVID-19 but cannot
distinguish it from other common lung diseases like
bacterial pneumonia. COVision is a multi-classification
convolutional neural network (CNN) that can differentiate
COVID-19 from other common lung diseases, with a low
false-positivity rate. This CNN achieved an accuracy of
95.8%, AUROC of 0.970, and specificity of 98%. We found
statistical significance that our CNN performs better than
three independent radiologists with at least 10 years of
experience. especially at differentiating COVID-19 from
pneumonia. After training our CNN with 105,000 CT
slices, we analyzed our CNN’s activation maps and found
that lesions in COVID-19 presented peripherally, closer to
the pleura, whereas pneumonia lesions presented centrally.
Finally, using a federated averaging, we ensemble our
CNN with a pretrained clinical factors neural network
(CFNN) to create a comprehensive diagnostic tool.

1. Introduction

1.1 Background

The outbreak of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) and its associated disease
COVID-19 has led to a global pandemic. As of March
31st, 2022, there have been over 486 million COVID-19
cases worldwide, claiming an estimated 6.14 million lives
according to the World Health Organization (WHO)1.

COVID-19 infects the lungs, specifically the alveolar type
II cells, resulting in complications like pneumonia2.
Currently, RT-PCR remains the gold standard for
COVID-19 diagnosis; however, due to limited sensitivity
of 89.9%3, and a wait time of at least 48 hours for results,
the need for quicker, and more accurate diagnosis is
imperative. This is especially the case when patients
present to the hospital with severe respiratory disease that
could be COVID-19, but also a condition with similar
presentations such as bacterial pneumonia, pulmonary
edema, or sepsis. Because of the similarity in presentation
of these pulmonary conditions, it is often difficult to form
an accurate diagnosis with CT scans alone, leading to a
high rate of misdiagnosis.. To this end, a high specificity
deep learning model that can quickly and accurately
diagnose and differentiate COVID-19 CT Scans from other
lung conditions like pneumonia has yet to be developed.

1.2 Disproportionate Effect of COVID-19

The disparity in the COVID-19 healthcare
response between developing and developed countries is
staggering. According to the World Bank, high and high-
intermediate countries have a higher physicians per capita
and nurses per capita when compared to low and
low-intermediate income countries4. Factors such as slow
economic growth in developing countries and the
migration of healthcare workers from developing to
developed countries are the primary reasons attributed to
the lack of healthcare professionals in developing nations4.
The shortage of healthcare workers in the low and
low-intermediate countries has led to greater work hours
per week and higher rates of burnout5. These issues have
only been exacerbated due to the COVID-19 pandemic
leading to overburdened medical systems. Using digital
technology and automation in healthcare, particularly in
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low income nations, has great potential to ease the burden
on these nations’ already crumbling medical infrastructure.

1.3 Deep Learning

New developments in deep learning have led to
innovative potential diagnostic applications. Deep learning
allows for the extraction of subtle quantitative features in
datasets allowing for analysis of complex patterns in the
training data, leading to the possibility of creating
automated high-accuracy diagnosis models using medical
scans in radionomics6. The convolutional neural network’s
(CNN) ability to use historical recall of data, and the use of
nonlinear systems (as opposed to commonly used linear
systems) allows for more accurate classification. In the
past, CNNs have shown general usability in diagnosing
retinal conditions using optical coherence tomography7.

1.4 Existing Works

SARS-Net8 is one of many deep learning models
developed to aid with COVID-19 diagnosis. While this
model is able to achieve an accuracy of 97.6% in
identifying COVID-19 from Chest X-Rays (CXRs), this
model fails to differentiate COVID-19 from other common
pulmonary conditions such as bacterial pneumonia leading
to a low specificity. Specificity is a measure of how well a
model can identify individuals who do not have a disease
and can correctly identify what condition(s) an individual
might have instead. For effective use in a clinical setting,
and for triaging of patients, models that detect COVID-19
from medical images CT Scans need a high specificity.

2. Methods

2.1 Data Augmentation & Preprocessing

194,922 isolated CT slices for 3475 patients were
obtained from the CC-CCII dataset9. The slices were split
into 80:20 ratio of training images to testing images. To
standardize the images, all the images were resized into a
size of {512, 512, 1} through Lanczos3 interpolation.
Lanczos resampling rescales the images by passing the

pixels in the image through an algorithm based on sinc
functions. This type of interpolation minimizes the
aliasing, which is crucial for the model to develop accurate
patterns. Layers of augmentation were then applied othe
training images to increase the diversity of the data. By
altering the brightness, saturation, rotation of the images,
the model prevents overfitting of the training data.

Figure 1. Example of an original vs augmented CT slice. In
this case, the rotation filter was applied to the input image.

2.2 Proposed Convolutional Neural Network

The augmented images are passed into the first
layer with size 512 x 512 x 1. The first 2 dimensional
convolutional layer contains 64 3x3 kernels (Figure 3, left)
with a stride of 1x1 because of its edge detection ability.
We used this kernel size (3x3) because it is symmetric
around the center, and extracts a large amount of details
from the image. While this does increase the computational
expense, the difference in computation from a 3x3 filter to
filters of greater sizes is marginal. These filters extract
features from the images by applying convolution
operations to create a feature map.  The feature maps are
transformed by the Rectified Linear Unit (ReLU)
activation function which prevents exponential growth in
the computation by assigning 0 to negative input values,
thereby activating less neurons in the feature map by
zeroing values that do not contain any information. Spacial
dimensions are then reduced using a 2x2 max-pooling filter
which significantly reduces the computational cost by
reducing the number of parameters to learn.  Lesions such
as GGOs, crazy-paving patterns, and consolidation in the
lungs all show up on a CT Scan as brighter pixels. Brighter

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.22.23284880doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.22.23284880


pixels have grayscale values closer to 1 while darker pixels
have grayscale values closer to 0. This is why maximum
pooling was used instead of minimum pooling because on
CT Scans: the maximum values (i.e. the brightest pixels)
contain the most relevant information about the image
needed for classification of lung diseases. The resulting
feature maps contain high-level features which are then
classified by a multilayer perceptron network after being
flattened. A Softmax activation is used to normalize the
output from the last fully connected layer into a
multinomial probability distribution over K classes. Here,
K = 3 for COVID-19, bacterial pneumonia, and healthy
slices. Our CNN has 6,542,531 trainable parameters.

2.2.1 Minimizing Complexity

Between the input and output layers of a neural
network, a series of hidden layers are used to identify
various patterns within the training data. The training
accuracy of a CNN will generally increase with more
hidden layers, along with the computation and complexity
of the model. An overly complex model will often overfit
because it learns the patterns in the training data so well
that it isn’t able to extrapolate to testing data. This means
there is a tradeoff between the complexity and the accuracy
the model achieves on testing data. Current state-of-the-art
models VGG19, InceptionV3, and ResNet152 have 19, 48,
and 152 layers respectively. These large numbers of layers
significantly increase how much the model overfits
because the model is too complex. This complexity also
increases the time to train the model because of the
substantial amount of computation that comes along with
additional increased layers. On computing systems with
lower computation power, these models may be untrainable
in certain scenarios due to the immense amount of
computation required. With this in mind, our CNN was
designed to classify image features with just 6 hidden
layers. Together with the input and output layers, our CNN
minimizes unnecessary computation and complexity.

2.2.2 Dropout Layers

After choosing the number of hidden layers in our
novel architecture, we further increased accuracy and

prevented overfitting by implementing regularization
through dropout layers. Dropout layers randomly set some
of the outputs of a certain layer to 0. The proportion of
outputs that are dropped out is based on the dropout factor

such that the probability an output in a certain layer is𝑝
dropped is . We placed dropout layers after the 1st1 − 𝑝
and 2nd max-pool layers and after the 1st and 2nd dense
layers (Figure 2). Standard convention is to set  dropout

for fully connected (dense) layers and𝑝 = 0. 5
for convolutional layers, however this𝑝 = 0. 8 𝑜𝑟 0. 9

technique is arbitrary and is not generalizable to every
CNN. Using GridSearchCV from sklearn library, we use
grid searching to test dropout factors between 0.1 and 0.9
(increment = 0.1) in combination for all four dropout
layers. The following set of dropout factors achieved the
highest accuracy on a training set:: 0.6 for between the
convolutional layers and 0.7 for between the dense layers.

2.3 Training Convolutional Neural Network

Our CNN was trained using a stratified random
sample of 105,000 isolated CT slices taken from our
training set (Section 2.1). We used 35,000 slices for
COVID-19, pneumonia , and healthy (control). We trained
our CNN on a NVIDIA GeForce 3090 GPU for 250 epochs
by using CUDA, which enabled the GPU to be used for
general purpose computing. The Tensorflow operations
performed on the NVIDIA GPU were accelerated with the
cuDNN library. All Python scripts were run using Ubuntu.

2.3.1 Initializing Weights

Our CNN uses random initialization is used to set
the initial weights for the model before training. Our CNN
initializes its weights using a Glorot (Xavier) Uniform
Initializer because of its ability to maintain variance across
layers, which prevents the gradients from exploding or
vanishing. The weights for each layer are chosen by
selecting samples from the range on a uniform distribution.

(1)𝑈(− 𝑥,  𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑥 =  6
𝑖𝑛𝑝𝑢𝑡𝑠 + 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
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Figure 2. Visualization of the CNN’s Architecture

2.3.2 Loss Function

The CNN used the Categorical Cross Entropy loss
function10. This loss function takes the model’s predictions
and applies a Softmax activation to form a probability
distribution ( ). The distance between this predicted𝑝

𝑖

probability distribution and the ground truth values ( ) is𝑡
𝑖

calculated by cross-entropy and is penalized
logarithmically so that large differences output a value of 1
while small differences output a value of 0. Specifically,
the logarithm (base 2) of this distribution is multiplied with
the distribution of the ground truth label for all classes ( ).𝑛
The categorical cross entropy (Formula 2) is calculated by
summing all of these products across all the classes to form
a quantitative measurement of the uncertainty, or lack of
order, in the system, A categorical cross entropy closer to 0
indicates the current set of weights are able to classify the
training CT Scans with a high accuracy. A categorical cross
entropy closer to 1 indicates the current set of weight
classifies the training CT Scans with a low accuracy.

(2)𝐿𝑜𝑠𝑠
𝐶𝐶𝐸

=−
𝑖=1

𝑛

∑ 𝑡
𝑖
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2.3.3 Adam’s Optimizer

Our CNN uses Adam’s Optimizer11 to minimize its
categorical cross-entropy loss. Adam’s optimizer was
chosen because of its use of momentum and a non constant
learning rate. Momentum allows the optimizer to overcome
valleys caused by noise in the loss gradient when
converging to the minima.  Adam’s uses an adaptive
learning rate based on adaptive moment estimation. The
optimizer computes the moving averages of gradient  (𝐺

𝑡 
)

and gradient squared to estimate the moments mean ((𝐺
𝑡 

2)

and uncentered variance respectively. and 𝑚
𝑡
 ( 𝑣

𝑡
)  𝑚

𝑡
 𝑣

𝑡

are calculated using Forumula 3 and Formula 4
respectively. Formula 5 uses information from the current
interaction of weights as well as the hyperparameters to
adjust the weights for the iteration in order to minimize the
value of the categorical cross entropy loss function.  In
Formulas 3-5, t is a certain iteration of weights at a specific
epoch. The hyperparameters for these computations were
tuned using a grid-search method for COVison. Using
GridSearchCV from the sklearn library in Python, a cross
validation process is performed where a metric for different
portions of the data are averaged to estimate the
performance. This process was used to tune the initial
learning rate (η), beta 1 (β1), beta 2 (β2) for the CNNwith
root mean squared error as the metric. The
hyperparameters were tuned by a factor of 10 from a range
of 0.1 to 0.0001 for η and 0.9 to 0.9999 for β1 and β2. The
combination of hyperparameters that achieved the lowest
root mean squared error are summarized in Table 1.

(3) 𝑚
𝑡

= β
1

* 𝑚
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Figure 3. Accuracy of the CNN in classifying the training
data across 250 epochs (left) and value of categorical

cross-entropy loss function for each epoch (right).

2.4 Clinical Factors Dataset Oversampling

We used the Khorshid COVID Cohort (KCC)12,
and the Israeli Ministry of Health public health database13

to construct a custom dataset of 7 clinical factors (shortness
of breath, cough, headache, fever, sore throat, age, and
gender). Combined, we compiled clinical factors for 30
patients with COVID-19, 30 patients with pneumonia, and
125,882 healthy patients. Training a model on this dataset
results in an imbalance classification problem because of
the skewness in distribution over the three classes. To
address this, the data was resampled using the Imbalanced
Learn library in Python. The majority class of healthy
patients was undersampled so that 12,000 sets of clinical
factors were randomly selected. Both minority classes of
patients with COVID-19 and patients with pneumonia were
oversampled through random duplication so that 11,970
sets of clinical factors were added to the original 30 sets for
both classes. We applied oversampling and undersampling
to the three classes. The complete dataset had 36,000 sets
of clinical factors equally distributed among the three
classes. This was split 80:20 into a training/testing set.

2.5 Clinical Factors Neural Network (CFNN)

In addition to CT Scans, a patient’s clinical factors
can serve as a means of differentiating whether a patient
has COVID-19 or pneumonia. We designed this secondary
neural network called the clinical factors neural network
(CFNN) to work in conjunction with our CNN (for CT
Scans) designed and trained in Sections 2.2 and 2.3
respectively. Adding another neural network to the CNN
framework increases the variation during training, which
consequently decreases the spread of predictions and the
overall bias. The ensembling process to combining the
CFNN and CNN is described in Section 4.

Our CFNN is a fully connected neural network
(FCNN), or multilayer perceptron neural network, with 6
fully connected (dense) layers. This means that every
neuron in a specific layer is connected to every neuron in
the following layer. The output layer has a size of 3
neurons in our model, which are the 3 classes the images
are categorized into. The large amount of connections
increases the complexity and computation time, so we
added a dropout layer for regularization after the first 3
dense layers to reduce overfitting. The dropout factor was
tuned to p = 0.5 using the same grid-searching method in
Section 2.2.2. ReLU was used as the activation function in
all the hidden layers to prevent exponential growth in
computation, and Softmax was used in the final layer to
create the probability distribution over the 3 classes:
COVID-19, pneumonia, and healthy (control). In total,
there are 60,099 trainable parameters in our CFNN.

Figure 4. Architecture of Clincal Factors Neural Network
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2.6 Training CFNN

In total we trained our model for 7 clinical factors:
shortness of breath, cough, headache, fever, sore throat,
age, and gender.  After processing our training data, we
trained our CFNN on a NVIDIA GeForce 3090 GPU using
CUDA and cuDNN. We utilized early stopping in our
training, which is a regularization method in which the
amount of epochs is decreased to minimize overfitting.
Both the accuracy and loss of the model began to stabilize
by 40 epochs so we did not continue training our model
past 50 epochs. The weights in our CFNN were initialized
using a Glorot Uniform Initializer (Section 2.3.1) and the
Categorical Cross Entropy loss function (Section 2.3.2).
Adam’s Optimizer was used to optimize the weights to
minimize the Categorical Cross Entropy loss function,
thereby achieving maximum accuracy. We used grid
searching to choose the best hyperparameters for Adam’s
Optimizer (methodin Section 2.3.3). The optimal
hyperparameters are summarized in Table 1. The network
reached a maximum accuracy of 92% and a loss of 0.12.

Figure 5. Accuracy of the CFNN in classifying the training
data across 50 epochs (left) and value of categorical
cross-entropy loss function for each epoch (right).

3. Results

3.1 CNN Testing

To test our CNN, we took an simple random
sample of 25,658 isolated CT slices from ourtesting set
created in Section 2.1. The breakdown of the testing data
are as follows: 12766 healthy (control), 7254 pneumonia,
and 5638 COVID-19. None of the slices used for testing
were a part of the training set to prevent overfitting to the
training data.  Results after classifying the testing images
are summarized in Figure 6 (confusion matrix).

Figure 6. Confusion matrix comparing the true labels for
the 25,658 CT scans and the predicted labels by our CNN.

For this multi-classification problem, we use
multiple metrics to determine the accuracy of our CNN in
differentiating between healthy lungs, lungs with
pneumonia, and lungs with COVID-19. One such metric is
the AUROC (area under receiver operating characteristic)
which is a graphical plot that illustrates the diagnostic
ability of a classifier system based on how well the CNN
differentiates between different classes. To graph AUROC,
we calculated the true positive rate (TPR), false positive
rate (FPR), true negative rate (TNR), and the false negative
rate (FNR) after we testing our CNN on the testing data.
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We calculate true positive, true negative, false
positive, and false negative rates by using the “one vs all”
method. For example, to calculate the cumulative false
positive value, we calculate the FP (6) for all three classes-
COVID, pneumonia, and healthy - and then average of all
three values to determine the final combined FP.
Specifically we take one class, for example, COVID, and
treat the combine pneumonia and healthy and treat it as the
“rest”. Thus we reduce the 3x3 confusion matrix (Figure 6)
to a 2x2 matrix and then we use Formulas 6 and 9 to
calculate the TPR and the FPR respectively. After
repeating this process for all three classes, we calculate the
sensitivity (cumulative FPR) using Formula 11, and
specificity (cumulative TPR) using Formula 12. For these
formulas, . Finally we𝑛 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =  3
graph the sensistivty and specificity to create the AUROC.

(6)𝑇𝑃𝑅 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(7)𝐹𝑁𝑅 =  𝐹𝑁
𝑇𝑃 + 𝐹𝑁

(8)𝑇𝑁𝑅 =  𝑇𝑁
𝐹𝑃 + 𝑇𝑁

(9)𝐹𝑃𝑅 =  𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(10)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝐹𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

(11)𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 1

𝑛

∑𝐹𝑃𝑅
𝑛

𝑛  

(12)𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1

𝑛

∑𝑇𝑃𝑅
𝑛

𝑛  

Figure 7. Visualization of the CNN’s AUROC versus a
random classifier (dashed lines). AUROCs closer to 1

indicate a greater ability to seperater the 3 different classes.

Hyperparamater Initial Learning Rate  (η) Beta 1 (β1) Beta 2 (β2) epsilon (ε)

CNN (CT Scans) 0.001 0.9 0.999 10-8

CFNN (Clinical Factors) 0.01 0.99 0.999 10-8

Table 1. CNN and CFNN Adam’s optimizer hyperparameter choices that achieved lowest RMSE after grid-searching

Condition Testing Training

CT Scans
COVID-19 35000 5638

Pneumonia 35000 7254

Healthy 35000 12766

Clinical Factors
COVID-19 9600 2400

Pneumonia 9600 2400

Healthy 9600 2400

Table 2. Breakdown of how many CT scans and clinical factors used for the testing and training of COVision.
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3.2 Comparison Against Radiologists

We performed a two sample z-test to determine
if our CNN outperforms 3 independent board-certified
radiologists with at least 10 years of clinical experience
with statistical significance. We took an simple random
sample of 297 images from our testing set and asked
three radiologists to blindly classify CT scans as either
COVID-19, bacterial pneumonia, or healthy. Radiologist
1 classified 97 images, Radiologist 2 classified 150
images, and Radiologist 3 classified 88 images. The
radioloigsts’ results are summarized in Figure 8.

Figure 8. Confusion matrix comparing the true labels for
297 CT scans and the predicted labels by 3 independent

radiologists. The radiologists’ accuracy was 73.4%.

We performed the two sample z-test at a
significance level of . Our CNN had anα =  0. 05
accuracy of  p1 = 0.958 on a testing sample size of n1 =
25658, and the radiologists had an accuracy of p2 =
0.734 on a testing sample size of n2 = 297. Our null
hypothesis was that the accuracy of our CNN is equal to
accuracy of the three radiologists ( ). Our𝑝1 =  𝑝2
alternate hypothesis was the accuracy of our CNN is
greater than accuracy of three radiologists ( ).𝑝1 >  𝑝2
All conditions were met for performing the test as both
samples were random (used the sample function from

the random library in Python). All calculations were
computed using the statsmodels library in Python.

 𝑝
0
 =  𝑥1 + 𝑥2

𝑛1 + 𝑛2 =  24589 + 218
25658 + 297  = 0. 956  

𝑧 =  𝑝1 − 𝑝2

 𝑝
0
 × (1 −  𝑝

0
) × ( 1

𝑛1 + 1
𝑛2 )

z = 18.66   so  𝑝(𝑧 ≥ 18. 66) ≃ 0

Since the p-value of approximately 0 is less than
the significance level of 0.05, there is significant
evidence to reject the null hypothesis. Specifically, there
is significant evidence that our CNN is more accurate
than the three radiologists in classifying chest CT scans
as COVID-19, bacterial pneumonia, or healthy. When
analyzing the confusion matrices (Figures 6 and 8), we
find that our CNN can differentiate COVID-19 from
pneumonia with 97.8% accuracy while the three trained
radiologists can differentiate with a 55.5% accuracy.

3.3 Grad-CAMs for CNN

To visualize the weights of the trained CNN we
created Gradient-Weighted Class Activation Mapping
(Grad-CAMs) for a stratified simple random sample of
3000 CT slices from our CT scan testing set without any
data augmentation (i.e. flips, rotations, etc.) because we
wanted to generalize our Grad-CAMs to a standard view
of Chest CT Scans. This resulted in 1000 healthy scans,
1000 pnuemonia scans, and 1000 COVID-19 scans.
Heat-maps of the activation map from the CNN’s last
convolutional layer were created with a CT scan as
input. This quantitative heat-map was then normalized to
a range of [0, 1] and transformed into a visualization
with a jet color scale from Matplotlib library in Python.
Superimposing these colored heat-maps onto the original
CT scan highlights regions of the CT scan that the model
perceives as significant for accurate classification. The
Grad-CAMS show that lesions are generally present in
the center of the lungs in bacterial pneumonia. Lesions
for COVID-19 typically present peripherally, closer to
the pleura. COVID-19 lesions are also shown to be much
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more scattered while lesions from bacterial pneumonia
are more localized. These human-interpretable image
features can be used by radiologists to improve the
accuracy of manual diagnosis of pulmonary conditions.

Figure 9. Grad-CAMs for bacterial pneumonia (left), and
a COVID-19 CT scans (right). Yellow pixels have a

higher weightage. Blue pixels have a lower weightage.

3.4 CFNN Testing

The clinical factors neural network (CFNN) was
blindly tested on the a testing set of 7200 clinical factor
sets (2400 for healthy, pneumonia, and COVID-19). The
CFNN achieved an accuracy of 88.75%, correctly
classifying 6390 sets of clinical factors. The highest
categorical accuracy of 97.58% came from the Healthy
class, followed by 85.46% for COVID-19 and 83.20%
for pneumonia. Therefore, our CFNN should be used in
conjugation with other models to produce the most
accurate diagnosis. To this end, we propose an ensemble
model combining our CNN and CFNN in Section 4.

3.5 CFNN Weights

The weights from the trained CFNN were
extracted from the model to determine the importance of
each clinical factor in making a prediction. These
weights for the neurons mathematically transform the
input into the output for the neuron and determine the
impact of the neuron on the next layer. Using the
get_weights function from the layers module in
tensorflow.keras, the weights across the first layer were
averaged for each of the 7 input neurons. After
normalizing the weights to a [0, 1] range, we found that
the most influential factor was “Shortness of Breath”.

4. Ensembling

To combine our CNN and CFNN which can both
independently differentiate between healthy, pneumonia,
and COVID-19 patients, we create an ensemble model.
Specifically, the predictions of each network are
combined using federated weight averaging
which determines a weight ) based off of the ratio of(𝑤

training data used for the model to total training𝐾𝑡ℎ (𝑛
𝑘
) 

data used for all models . For our ensemble model, K(𝑛)
= 2 for the two trained models and F(k) are the weights

for the trained model. = 105000 for the CNN𝑘𝑡ℎ 𝑛
𝐶𝑁𝑁

and = 36000 for the CFNN which forms a ratio of𝑛
𝐶𝐹𝑁𝑁

0.745 to 0.255 between the two models for the weighted
average. This formula for is shown in Formula 1314.𝑤

(13)𝑤 =  
𝑘=1

𝐾

∑
𝑛

𝑘

𝑛 * 𝐹(𝑘)

5. Discussion

Through our research, we developed a deep
learning framework to differentiate COVID-19 from
other common pulmonary conditions. Our framework
has two parts: a convolutional neural network (CNN)
that uses CT scans, and a clincal factors neural network
(CFNN) that uses clinical factors such as age, weight,
and symptoms to help differerntiate between healthy,
pneumonia, and COVID-19 patients. Together we call
this framework COVision. In the future, this framework
can be trained to differentiate other lung conditions apart
from bacterial pneumonia such as different types of lung
cancer. The CNN achieved an accuracy of 95.8%, an
AUROC of 0.970, and a specificit of 98% on 25658 CT
scans from our testing set. When compared to three
board certified radiologists with at least 10 years of
experience, our CNN has a statistically significant higher
accuracy (95.8% vs. 73.4%), especially in differentiating
COVID-19 from pneumonia and healthy CT Scans.
After analyzing our CNN’s activation maps, we found
evidence that COVID-19 lesions presented peripherally,
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closer to the pleura while pneumonia lesions presented
centrally on a chest CT scan of the lungs (coronal plane).
When analyzing the weights of our CFNN (clinical
factor neural network), “shortness of breath” was the
best indicator of diease. COVision has the potential to
save countless lives, particularly in developing nations
with a shortage of doctors and huge volume of patients
due to the coronavirus pandemic by assisting medical
professionals in the diagnosis process for these patients.

6. Data Availability

The CT Scans of COVID-19, pneumonia, and
healthy patients were obtained from the China
Consortium of Chest CT Image Investigation (CC-CCII)
dataset9. Ground truth for the CC-CCII dataset was
established via serology tests and confirmed by
laboratory findings. Clinical factors for COVID-19, and
pneumonia patients were obtained from the Khorshid
COVID Cohort (KCC)12. Clinical factors for healthy
patients were obtained from Israeli Ministry of Health
public dataset13. We compiled all the clinical factors data
into a CSV file using the pandas and numpy libraries in
Python. We removed the clinical factors from the dataset
that were not one of the following: shortness of breath,
cough, headache, fever, sore throat, age, and gender. We
binarized the ages of the patients by having a threshold
age of 60 years (1 assigned to age if age is greater than
60 years, 0 assigned if the age is less than 60 years).
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