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As improved healthcare leads to older populations, individuals will increasingly experience multiple diseases, possibly
concurrently (multimorbidity). This article explores whether age and established risk factors are sufficient to explain
the incidence rates of multiple, possibly coexisting diseases. By accounting for the limited age-range in UK Biobank
data, previous work demonstrated that a Weibull model could accurately describe the incidence of ∼ 60% of the
most common primary hospital diagnoses of diseases. These are used here to predict the age-dependent incidence of
diseases with adjustment for established risk factors. A “Poisson binomial” model is combined with these to predict
the total number of occurrences of each disease in the UK Biobank cohort that would be expected without pre-existing
(prior) disease. For 123 diseases in men and 99 diseases in women, the total observed new cases of each disease
(including those from individuals with pre-existing diseases and multimorbidity), were found to be approximately
1.5 times greater than that predicted for individuals without prior disease, and could not be explained by natural
statistical variation. The multiple of 1.5 was sufficiently consistent across different diseases to prevent its use for
classification of disease types, but there were differences for sub-groups such as smokers with high body mass index,
and for some classes of disease (as defined by the International Classification of Diseases version 10). The results
suggest that empirical modelling might allow reliable predictions of primary causes of hospital admissions, helping
to facilitate the planning of future healthcare needs.

Multi-morbidity is increasingly common in developed economies such as the United Kingdom. It is widely believed to
involve clusters of diseases and that disease risks are modified by underlying conditions [1–4]. Despite considerable work to
characterise multimorbidity in terms of clusters of diseases (e.g. see the recent review [4]), there have been comparatively few
recent studies to determine the influence of pre-existing conditions on the age-dependent incidence rates of disease [2, 5–11].
Here we restrict attention to primary hospital diagnoses of common diseases, and consider whether the number of disease
types that occur in individuals are consistent with expectations based on age and established risk factors. We use results from
a recent study [12] that used a Weibull distribution to explore whether the age-related incidence of diseases in UK Biobank
[13] are consistent with multistage disease processes [12, 14–16]. Of the 800 common diseases that were considered, 450
were consistent with the model, and there were sufficient cases for 172 (or 156) to be modelled with adjustment for 7 (or 9)
established risk factors in men (or women) [12]. By combining these results with a “Poisson Binomial” distribution [17, 18],
this article assesses whether differences in disease incidences are different to that expected from natural statistical variation.
An outline of the analysis is in figure 1. The statistical method is described next, the results are presented and discussed in
the following two sections, and the conclusions summarise the main results.

Independent disease incidence rates

Statistical background

We test the null hypothesis that the incidence rate of each disease type, is independent of the presence of different previous,
or co-existing diseases. Using incidence rates of each disease type, that are estimated for a scenario that approximates no
prior disease, we calculate the probability of observing Nj cases of disease type j in the UK Biobank cohort when there is
no prior disease. Let Sij(t) be the probability of person i surviving disease j until age t, then pij = Sij(t

start
i )−Sij(t

end
i ) is

the probability of person i first experiencing disease j between the ages tstarti and tendi during which they were in the study.
Let Xij = 1 if individual i has disease j, and zero otherwise. Then if disease risks are independent, the probability of i = 1
to i = n individuals observing the set of diseases {Xij}, is,

P (X1j = x1j , ..., Xnj = xnj) = Πip
xij

ij (1− pij)
1−xij (1)
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The probability of observing Nj =
∑

iXij , where Nj is the number of individuals who experience disease of type j, is
given by the “Poisson Binomial” distribution,

P (
∑

iXij = Nj) =∑
{xij=0,1} δ (Nj −

∑
i xij)Πip

xij

ij (1− pij)
1−xij

(2)

where δ(s) is the Dirac delta function that equals 1 when s = 0 but is zero otherwise, and the sum is over all values xij = 0
and 1, for i = 1..n. The mean and variance of the distribution are,

E[Nj |{pij}] =
∑
i

pij (3)

and,
V ar[Nj |{pij}] =

∑
i

pij (1− pij) (4)

Simple derivations of these results are given in the Materials and Methods. For pij ≪ 1, as is the case for most of the diseases
in most individuals considered here [12, 19, 20], then the distribution will approximate a Poisson distribution, which provides
another reason why the Poisson distribution is common - it approximates the distribution for the number of events arising
from rare independent processes.

For each disease j and individual i, the multivariate δ-method [21] allows variances σij to be estimated for the probability
p̂ij of disease j during the time observed, with p̂ij ∼ N(pij , σ

2
ij). The law of total variance states that,

V ar[Nj ] = E[V ar(Nj |{pij})] + V ar[E(Nj |{pij})] (5)

that can be evaluated using Eqs. 3 and 4. Surprisingly perhaps, the variances σ2
ij that arise from integrals involving p2ij

cancel, and do not appear in the result, that is,

V ar[Nj ] =
∑
i

pij(1− pij) (6)

and can be estimated by “plugging in” the maximum likelihood estimates {p̂ij} for {pij}. In practice the estimated variances
{σ2

ij} were important for “quality control”, allowing the identification of poor quality estimates that are too imprecise, or
unlikely to satisfy the assumptions needed for application of the δ-method. Specifically, diseases were excluded if estimates
for parameters x = k or x = L had s.e.(x)/x > 0.5, or where the δ-method failed to give a numeric estimate, and it was
confirmed that the remaining estimates had

∑
i σ

2
ij/Nj < 0.05. The negative correlation between parameters k and L led to

smaller variances for estimates than might have been expected based on estimates for the variances of k and L individually.

Data analysis

Diseases included in the study were defined as a collection of one or more 3- and 4-digit disease codes from the International
Classification of Diseases Version 10 (ICD-10) [22], that were selected by three epidemiologists with individual backgrounds
in pathology, general practice, and statistics, based on a set of predetermined criteria as detailed previously [23]. Diagnoses
used primary cause of admission in hospital episode statistics, that ensured that the diseases had passed a threshold of
severity prior to diagnosis. The study period for an individual was between joining the study and 31st January 2020, after
which admission rates will be influenced by the Covid pandemic. To minimise the potential influence of prior diseases or
medications, individuals were excluded if they had a prior diagnosis of a cancer other than non-melanoma skin cancer before
the study started, or a report of cardiovascular disease (either self-reported or in hospital records).

The study considered all primary diagnoses within the study period (“all cases”), and similar to previous work [12,
19, 23], the first primary diagnosis that an individual receives in each ICD-10 chapter (“FIC”). By considering only the first
diagnosis in each ICD-10 chapter, the intention was to minimise confounding by prior disease, while maximising the number
of cases that are included in the study. Importantly, because the study considers the number of different diseases experienced
by an individual, counts do not include repeat admissions for the same disease in the same individual.

A previous study of UK Biobank data identified 450 diseases whose FIC incidence rates could be modelled by a Weibull
distribution [12],

S(t) = exp

(
−ex

T β

(
t

L

)k
)

(7)
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Figure 1: The table summarises the data and analysis methods used (top to bottom).

where t is age, k and L are parameters, and x, β are vectors of covariates and parameters. Individuals were excluded if they
had a report of the disease before the study’s start. Maximum likelihood estimates and their covariances were calculated
by left-truncating at the age when participants joined the study, taking age of event as the age of disease-onset, and right-
censoring if there is cancer, death or the study ends before disease onset. Adjustment was for the established risk factors of
smoking (never, previous, current), diabetes (yes, no), alcohol (rarely - less than 3 times per month, sometimes - more than
3 times per month but less than 3 times per week, regularly - more than 3 times per week), deprivation tertile (min, mid,
max), education (degree level, post-16, to age 16), and sex-specific tertiles of height and BMI (min, mid, max). Baseline
was never smoked, no diabetes, sometimes drink, min deprivation, degree-level education, middle BMI, minimum height
and deprivation tertiles, and women with no HRT use or children.

For each disease whose age-dependent incidence could be modelled sufficiently well, the observed number of cases in
the UK Biobank cohort was plotted versus the number of predicted cases assuming no confounding by prior disease (Figure
2). The results for men and women were plotted separately, and excluded diseases whose predicted case numbers differed
by more than 4 standard deviations (sd) from the observed numbers of first diseases in each ICD-10 chapter (with minimal
confounding by prior disease). The (lenient) threshold of 4 sd was intended to include as many diseases as possible, while
limiting the risk of outliers from substantially influencing subsequent results. In practice, for most of the diseases, 4 sd was
found to be much less than the differences between the number of observed and predicted cases.

Confidence intervals are reported as ±1.96σ, where σ is the estimated standard deviations of the maximum likelihood
estimate (MLE). For an MLE β̂i, β̂i ∼ N(βi, σ

2
i ), and tests for equality of MLEs use (β̂i − β̂j) ∼ N(0, σ2

i + σ2
j ), so

statistically significant differences at the 0.05 level will have |β̂i − β̂j | > 1.96
√

σ2
i + σ2

j .

Results

Figure 2 plots the number of each disease type observed in the UK Biobank cohort, versus the predicted number of cases
if there is no confounding by prior disease, with poorly modelled data removed (as described above). A straight-line fit
through the origin estimated the number of observed diseases in men to be 1.50 [1.45,1.55] times the expected number of
diseases without prior disease, and 1.53 [1.47,1.59] in women (tables 1 and 2). There is no statistically significant difference
between the fits for men and women. The R-squared value for both fits was 0.96. Data for individual diseases are given in
the Supplementary Material.

Subgroups that were expected to include the highest and lowest risk groups were also considered (tables 1 and 2), these
included: non-smokers in the mid-BMI tertile, smokers in the mid-BMI tertile, non-smokers in the max-BMI tertile, and
smokers in the max-BMI tertile. Statistically significant differences between estimates for men and women (at the 0.05
level), are only found for the non-smoking, mid-BMI group, that have lower estimates for females. For both men and women
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Figure 2: For each disease, the number of individual incidences are predicted in the absence of prior disease (Expected
number), and plotted against the total observed number of cases (black) and observed number of cases where the disease
is the first an individual experiences in each ICD-10 chapter (blue). 95% confidence intervals are estimated using Eq. 6 as
±1.96

√
V ar (blue), and for predictive confidence intervals of the linear fit (black).

Group Coef C.I. R-squared
Everyone 1.50 [1.45,1.56] 0.96
Non-smoker, mid-BMI 1.52 [1.46,1.58] 0.95
Smoker, mid-BMI 1.56 [1.48,1.63] 0.93
Non-smoker, max-BMI 1.69 [1.62,1.76] 0.95
Smoker, max-BMI 1.87 [1.77,1.98] 0.91

Table 1: Increased incidence associated with prior disease in men. The estimated slope (Coef), its confidence intervals (C.I.),
and R-squared coefficients for Everyone (Figure 2), and sub-groups.

there were statistically significant differences between the group including everyone, and the subgroup of smokers in the
max-BMI tertile. For men only, there were statistically significant differences between the group including everyone, and
non-smokers in the max-BMI tertile. Overall the increase in disease rates above those expected without prior disease, tended
to be higher for groups that would already be expected to have higher disease risk (e.g. smokers and, or, the top BMI tertile).

The ICD-10 coding system groups disease hierarchically into chapters that are intended to capture the dominant disease
types such as cancers (chapter III) or cardiovascular diseases (chapter IX) for example. There were comparatively few
diseases representing some ICD-10 chapters (see figure 3), but with that caveat, figure 3 indicates which disease risks
appear to be most susceptible to prior disease. Some chapters such as diseases of the ear (VIII), or of the nervous system
(VI), had case numbers similar to that expected without prior disease. In contrast, diseases of the digestive system (XI),
circulatory diseases in men (IX), genitourinary diseases (XIV), musculoskeletal diseases (XIII), and unclassified symptoms
of potentially unknown origin (XVIII), have case numbers that are all increased in risk by a factor of more than 1.5 above
that expected in someone without pre-existing disease.
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Group Coef C.I. R-squared
Everyone 1.53 [1.47,1.6] 0.96
Non-smoker, mid-BMI 1.42 [1.36,1.48] 0.96
Smoker, mid-BMI 1.60 [1.51,1.69] 0.92
Non-smoker, max-BMI 1.61 [1.52,1.70] 0.94
Smoker, max-BMI 1.74 [1.61,1.87] 0.88

Table 2: Increased incidence associated with prior disease in women. The estimated slope (Coef), its confidence intervals
(C.I.), and R-squared coefficients for Everyone (Figure 2), and sub-groups.

Women: Top bar
Men: Bottom bar

I Certain infectious and parasitic diseases, N=4(F),1(M)

II Neoplasms, N=18(F),17(M)

IV Endocrine, nutritional and metabolic diseases, N=1(F),2(M)

VI Diseases of the nervous system, N=4(F),1(M)

VII Diseases of the eye and adnexa, N=12(F),11(M)

VIII Diseases of the ear and mastoid process, N=3(F),2(M)

IX Diseases of the circulatory system, N=9(F),10(M)

X Diseases of the respiratory system, N=4(F),2(M)

XI Diseases of the digestive system, N=16(F),12(M)

XII Diseases of the skin and subcutaneous tissue, N=6(F),4(M)

XIII Diseases of the musculoskeletal system and connective tissue, N=13(F),9(M)

XIV Diseases of the genitourinary system, N=6(F),5(M)

XVIII Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified, N=19(F),17(M)

XIX Injury, poisoning and certain other consequences of external causes, N=7(F),6(M)

0.
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Figure 3: The mean increase in observed cases of disease above that predicted without prior disease, plotted by ICD-10
chapters (women top, men bottom). Numbers of diseases in each bar are indicated by N, with (F) for women and (M) for
men. Data for individual diseases are in the Supplementary Material.

Discussion

It had originally been expected that prior disease would increase disease rates, and that these increases would vary substan-
tially between disease types. This could have allowed diseases to be characterised and classified by their sensitivity to prior
disease. Instead the increases in disease risk were similar and evenly spread across the diseases considered, and between
both men and women. This raises the possibility of using empirical modelling to link estimated disease rates without prior
disease that are estimated by conventional epidemiological studies, to those that are observed in practice. Furthermore, in
contrast to methods that use present trends to predict future demand [6], the (risk-factor adjusted) models here can be used
in counterfactual modelling [24–26] of potential interventions.

There were however, statistically significant differences between the increased risks in subgroups of individuals such
as smokers with high BMI, and the cause of these differences are unclear. It could be that the risk factors are increasing
both the underlying disease risk (without prior disease), and the influence of prior disease on your subsequent disease risk.
Alternately, the increase in underlying disease risk could lead to a greater number of co-existing disease conditions, that
together increase disease risk more than for someone with fewer prior diseases. The particular diseases and mechanisms by
which prior disease modifies future disease risk need to be identified and understood. Nonetheless, figure 2 suggests that
your overall disease risk is driven by your underlying (disease-free) disease risk, and reducing well-understood disease risks
will reduce your overall expected burden of disease in old age.

Figure 3 clearly suggests differences in susceptibility of disease risk to prior diseases, based on existing ICD-10 classifi-
cations. However, no obvious clusters of diseases were found based on the increased rate of disease, although it is possible
that differences could develop if more diseases were able to be included in the study. The figure also suggests that predictions
for observed disease rates might be improved by considering predictions within ICD-10 chapters.
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Limitations

This study considered data in UK Biobank, and approximately 60% of the 400 most common diseases whose incidence rates
could be modelled accurately with a Weibull distribution [12]. Of these, more stringent fitting requirements detailed in the
Methods reduced the number of diseases considered to 123 in men and 99 in women (222 in total). Future work may be able
to improve the modelling of disease onset rates, that would allow a more comprehensive study. In addition, the UK Biobank
cohort is known to be a poor representation of the UK population as a whole, and it is possible that results might differ for
a different cohort. For these reasons, the estimates in figure 2 and tables 1, 2, are likely to be modified for analyses with
different cohorts and different collections of diseases. Studies in different cohorts, and with different periods of follow-up,
will be needed to explore the generality of these results.

The main purpose of this article was to explore how expected disease rates due to established risk factors and old age, are
modified by prior disease. Future work will be needed to establish the diseases and disease-mechanisms that are responsible
for modifying subsequent disease risk. Drug use and poly-pharmacy are also likely to be important. It is certain that some
medications, such as statins, can modify risks of diseases other than those that they are primarily intended to treat.

Conclusions

By combining a Poisson-Binomial distribution with a Weibull model for the age-related incidence of disease, this study
considered how much disease risk in the UK Biobank cohort could be explained by age and established risk factors. For the
222 diseases considered, it was found that disease rates were much greater than would be expected without prior disease, or
than could be explained by natural statistical variation. The increases in risk were comparatively uniform across the diseases
considered, and between men and women, but appeared to differ between ICD-10 classifications of disease types and for
subgroups such as smokers with high BMI. However, there were no obvious clusters of diseases in terms of increases in
disease risk, that was found to be approximately 1.5 times those expected of individuals without prior disease. In other
words, for the 222 diseases considered, approximately two thirds of primary hospital admissions in the UK Biobank cohort
were as expected based on age and established risk factors, with the additional third presumed to involve an increased risk
that is directly or indirectly associated with prior diseases.

More generally, if the overall disease risks were (approximately) proportional to disease risks without prior disease, there
would be several important implications. Firstly, avoiding known risk factors for disease would also reduce the risk, or delay
the onset, of multiple diseases in old age. Secondly, it would reaffirm the value of conventional epidemiological studies of
disease risk that deliberately avoid potential confounding by prior disease. Thirdly, because the (risk-factor adjusted) model
can extrapolate beyond the end of the study period, and the confidence intervals in figure 2 are all comparatively narrow,
reliable empirical modelling of future disease rates might be possible. This would be helpful for future healthcare planning.

Further studies are needed to increase the breadth of diseases that can be modelled, to explore the generality of the
results in other cohorts, and to test the model’s predictive performance. Despite the present limitations, the results provide
the first quantitative characterisation of how prior disease modifies the incidence rates of a wide range of disease types, and
a methodology that can be used or developed in future studies.

The Poisson-Binomial model

Simple derivations of the key properties of the “Poisson Binomial” distribution are outlined below, with comprehensive
proofs given elsewhere [17, 18].

As discussed in the main text, the probability of observing Nj =
∑

iNij , where Nij is the number of different diseases
observed in individual i, is given by the “Poisson Binomial” distribution,

P (
∑

iXij = N) =∑
{xij=0,1} δ

(
N −

∑
i,j xi

)
Πip

xij

ij (1− pij)
1−xij

(8)

where δ(s) is the Dirac delta function that equals 1 when s = 0 but is zero otherwise, and the sum is over all xij for i = 1..n.
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The generating function for 8 is,

G =
∑n

k=0 e
ksP (

∑
iXij = k)

=
∑n

k=0

∑
{xij=0,1} e

ksδ (k =
∑

i xij)Πip
xij

ij (1− pij)
1−xij

=
∑

{xij=0,1} e
s
∑

i xijΠip
xij

ij (1− pij)
1−xij

=
∑

{xij=0,1}Πie
sxijp

xij

ij (1− pij)
1−xij

= Πi (e
spij + 1− pij)

(9)

where Eq. 8 was included in the second line, the Dirac delta-function led to eks being replaced by ek
∑

i xij when summing
over k in the third line, the fourth line includes ek

∑
i xij within the product over i and j, and the final line has summed over

each xij taking values of 0 and 1 with the sum’s evaluation seen most easily by explicitly considering i = 1 and factorising
the result. Moments of Eq. 8 can be obtained by taking derivatives of Eq. 9 with respect to s, and then evaluating them at
s = 0, with for example,

E[Nj ] = ∂G
∂s

∣∣
s=0

=
∑

i pije
sΠq ̸=i (e

spqj + 1− pqj)|s=0
=
∑

ij pijΠq ̸=i (pqj + 1− pqj)

=
∑

i pij

(10)

Similarly the second moment is,

E[N2
j ] = ∂2G

∂s2

∣∣∣
s=0

= ∂
∂s

∑
i pije

sΠq ̸=i (e
spqj + 1− pqj)

∣∣
s=0

= ∂
∂s

∑
i

pije
s

espij+1−pij
Πq (e

spqj + 1− pqj)
∣∣∣
s=0

= −
∑

i p
2
ij +

∑
i pij + (

∑
i pij)

2

content... (11)

where in the final line the first term arises from the derivative of the denominator of the first term in line 3, the second term
from the derivative of the numerator of the first term in line 3, and the final term is from the derivative of the product in line
3 similarly to evaluating E[Nj ]. Combining Eq. 10 with Eq. 11, the variance can be evaluated as,

E[N2
j ]− E[Nj ]

2 =
∑
i

pij (1− pij) (12)

E[Nj ] and V ar[Nj ] can alternatively be written as E[Nj ] = np̄ and V ar[Nj ] = nV ar(p), where the bars denote averages.
If pij ≪ 1, then the variance Eq. 12 has V ar[Nj ] ≃

∑
i pij = E[Nj ], as would be the case for a Poisson distribution with

rate λj =
∑

i pij and P (Nj) = λ
Nj

j e−λj/Nj !. In fact, when pij ≪ 1, the Poisson-Binomial distribution tends to the Poisson
distribution [17], as can be seen from the moment generation function Eq. 9, that approximates the Possion distribution for
pij → 0. Using Eq. 9 and expanding in terms of pij ,

G = Πi (1 + pij(e
s − 1))

= exp {
∑

i log (1 + pij(e
s − 1))}

= exp
{∑

i pij(e
s − 1) +O(p2ij)

}
= exp

(
(es − 1)λj +O(p2ij)

) (13)

where λj =
∑

i pij , and the generating function for a Poisson distribution is exp ((es − 1)λj). The above argument suggests
that provided pij ≪ 1, then a Poisson distribution can model the number of events due to n independent processes that each
have different but low probabilities pij of occurring.

Code and data availability

UK Biobank data can be accessed by application through www.ukbiobank.ac.uk. UK Biobank has approval by the Research
Ethics Committee (REC) under approval number 16/NW/0274. UK Biobank obtained participant’s consent for the data to be
used for health-related research, and all methods were performed in accordance with the relevant guidelines and regulations.
R code used to produce figures from summary data will be made available from https://osf.io. R packages used in this study
include survival[27], grr[28], data.table[29], and maxLik[30].
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