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21

22 Abstract

23 The climate crisis will have an increasingly profound effect on the global distribution and burden 

24 of infectious diseases. Climate-sensitive diseases can serve as critical case studies for assessing public 

25 health priorities in the face of epidemics. Preliminary results denote that machine learning-based 

26 predictive modeling measures can be successfully applied to understanding environmental disease 

27 transmission dynamics. Ultimately, machine learning models can be trained to detect climate-sensitive 

28 diseases early, diseases which might represent serious threats to human health, food safety, and 

29 economies. We explore how machine learning can serve as a tool for better understanding climate-

30 sensitive diseases, taking dengue dynamics along the Godavari River of coastal India as our case study. 

31 We hypothesize that a climate-driven predictive model with controlled calibration can help us 

32 understand several of the most critical relationships and climate characteristics of climate-sensitive 

33 disease dynamics.

34

35 1. Introduction

36 1.1 The role of climate in ecosystem dynamics.

37 Climate has always played a critical role in ecosystem dynamics, including in population 

38 dynamics and species interactions (1). However, the mechanisms underlying climate variability and its 

39 consequences remain poorly understood and infrequently field-tested (2). This is particularly true 

40 because climate effects often appear context specific (3). Multiple climate variables can act 

41 synergistically, individual climate variables can affect multiple aspects of ecosystem dynamics, and 

42 impacts can often be nonlinear, challenging to predict in the face of the climate crisis, and presented 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.18.23284134doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.18.23284134
http://creativecommons.org/licenses/by/4.0/


3

43 across a gradient of important conditions (4). Therefore, surprisingly, while climate is known to be one 

44 of the most prominent influencers of ecological processes, its dynamical and directional effects on 

45 ecosystems are often poorly understood and challenging to predict. This has become increasingly true 

46 against the backdrop of the climate crisis and increasing anthropogenic stressors and especially so for 

47 coastal communities (5).

48 1.2 Climate-sensitive diseases.

49 Climate-sensitive diseases provide a critical case study to model and measure whether climate-

50 sensitive traits simulated in models can help us more accurately assess the multitude of dynamics 

51 observed in the field. For mosquito-borne diseases in particular, rising average temperatures have often 

52 led to geographic range expansions of disease vectors, decreased incubation periods of some pathogens, 

53 and increased rates of contact of some mosquito species that prey on humans (6). Recent knowledge 

54 provides evidence that many ranges of mosquito-borne diseases will expand dramatically in response to 

55 the climate crisis (7). Models have also helped scientists better understand how average sea levels can 

56 also influence the density of salinity-tolerant climate-sensitive pathogens, namely, mosquitos, along 

57 coastlines (8). Statistical simulations have helped point science to better quantify the influence of 

58 increasingly warmer climates on the hydrological cycle, a phenomenon which has been in part discussed 

59 in the context of the extreme weather events observed increasingly frequently over the last few decades 

60 (9).

61 1.3 Mosquito-borne diseases.

62 The impacts of climate change on mosquito-borne diseases are intensified by shifting economic, 

63 demographic, and social factors making it even more necessary to better model how environmental 

64 patterns may be shifting in areas that are increasingly prone to climate-sensitive infectious diseases (10). 
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65 Even going a few decades back, Johansson et al. and Moore et al. discuss evidence of unpredictable 

66 temperature and precipitation influencing the transmission and abundance potential of Aedes aegypti in 

67 Puerto Rico (11,6). Suggestive relationships have also been discovered between coastal dengue 

68 outbreaks and sea surface temperatures in places such as New Caledonia and Mexico (12–14). The 

69 transmission of mosquito-borne, viral, climate-sensitive diseases such as dengue occur along a spectrum, 

70 from low levels of year-round endemic transmission (15) to larger-scale period or interannual outbreaks 

71 (16). We hypothesize that the range of dynamics of mosquito-borne disease dynamics are a result of 

72 regional or seasonal differences in climate, where the magnitude or direction of climate effects on 

73 mosquito-borne vectors differ (17–19).

74 1.4 Prediction and intervention of disease dynamics along coastlines.

75 Systematically understanding the drivers of climate-sensitive mosquito-borne disease dynamics 

76 will significantly support two core scientific outcomes: the prediction of the climate crisis’ effect on 

77 disease dynamics, especially along coastlines, and the intervention and management strategies required 

78 to prevent detrimental outbreaks (20). For instance, predictive models of dengue dynamics that can 

79 capture small-scale mosquito population dynamics along coastal India can be applied to more realistic 

80 projections for outbreaks dynamics across other tropical coastal regions (21,22). 

81 Despite the vitality of predictive approaches, validation with vector and disease data remain 

82 limited given the challenges of obtaining and processing such data. Thus, it raises the question of 

83 necessity in that scientists must assess which disease variables a model should capture based on model 

84 parameterization. This must be either scalable or independent from the transmission system researchers 

85 aim to predict. Since disease dynamics cannot be studied in the context of every possible permutation of 

86 climate parameters, transmission setting, or scale, understanding the extent to which models derived 

87 from fundamental science or modeling-based traits will be critical for translational and scalable 
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88 modeling of future climate-sensitive mosquito-borne disease dynamics (23,24). We hypothesize that a 

89 climate-driven predictive model with controlled calibration can help us understand several of the most 

90 critical relationships and climate characteristics of climate-sensitive disease dynamics. 

91 1.5 Dengue outbreaks along coastlines.

92 In this work, we test the extent to which climate-driven mosquito traits drive disease dynamics 

93 across a coastal region of eastern India, given the climate dynamics of the Bay of Bengal and the 

94 opportunity to characterize additional climatological and ecological factors that may mediate the effects 

95 of climate on dengue disease dynamics. Given the ecology of the primary disease vector of dengue, 

96 Aedes aegypti, and the fact that they are anthropophilic, their traits are important for the transmission of 

97 dengue. These traits include their reproduction, survival, development, biting date, and extrinsic 

98 incubation periods. Studies have demonstrated that these traits are heavily temperature-dependent with 

99 an intermediate thermal optimum (25,26). Humidity has been positively associated with mosquito 

100 survival because of the high surface area to volume ratio of mosquitos exposed to desiccation (27). 

101 Standing or stagnating water resulting from rainfall also provides ideal pupal and larval habitats for 

102 mosquitos (28). The relationship is also challenging because heavy rainfall or extreme weather events 

103 off the Bay of Bengal (i.e., cyclones) can also flush away Ae. aegypti breeding habitats. Recent studies 

104 have demonstrated that models incorporating temperature-based climate traits can provide insights on 

105 some critical features of dengue disease dynamics (29).

106 1.6 Historical understanding of dengue and climate in India.

107 Previous studies have attempted to understand the relationship between climate and the presence 

108 of dengue in India by means of statistical and mathematical models. These techniques have included 

109 Poisson regression (30), Naïve Bayes and multivariable regression (31), Bayesian models such as spatial 
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110 autoregressive (SAR) models or conditional autoregressive (CAR) models (Mudele et al., 2021), 

111 autoregressive integrated moving average (ARIMA) models (32), generalized linear models (33), 

112 Extreme Gradient Boosting and rule-based classification (34), and other types of mathematical modeling 

113 (35). The above methods have focused on multiple parameters influencing dengue and on the discovery 

114 of the climate variables that most influence dengue disease dynamics (36).

115 From our literature review, we observed the establishment of many statistical and mathematical 

116 models, which address stochastic, mechanistic, and deterministic dengue disease models, among others. 

117 However, there is still limited research probing the predictive modeling of the complexities of dengue 

118 disease models with the backdrop of climatically critical variables. One tool that has recently surfaced as 

119 an emerging modeling strategy is machine learning modeling for predictive dengue disease dynamics 

120 (37). While there exists research into the effects of dengue dynamics in relation to climate, these are 

121 often backed by traditional statistical models. Machine learning tools offer a critical opportunity on 

122 capitalize on greater predictive ability. This can expand the literature to include state-of-the-art models 

123 for assessing dengue disease dynamics. In this study, we used advanced machine learning techniques to 

124 assess the impact of hydroclimatic and extreme weather climate parameters on dengue disease dynamics 

125 and outbreak predictions.

126 2. Materials and Methods

127 2.1. Data development and visualization

128 2.1.1 Data cleaning and augmentation

129 Our data were hand-collected on the ground between 2019-2020, in Andhra Pradesh, India. 

130 Along with historic data collected at those points in time as well, the dataset spans 2016-2020 with 

131 weekly frequency. The months of January to March were not examined in this study due to data quality 
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132 and collection issues. The following climatic parameters were used in our model: windspeed, pH level, 

133 dissolved oxygen, temperature, total number of extreme weather (measured via cyclonic) events that 

134 took place, rainfall, precipitation. They were chosen based on previous literature and on hypothesized 

135 relationships to dengue fever. The climatic data were collected from the surrounding area of the 

136 Godavari River with primary focus in subsections of the rivers in Andhra Pradesh, India. To evaluate the 

137 accuracy of models in determining the relationship between these variables and dengue disease 

138 dynamics, we used dengue case counts as our predictor benchmarks for both regression and 

139 classification tasks (explained further in Section 2.2).

140 2.1.2 Model parameters.

141 Wind speed.

142 The model parameter “wind speed” was added based on the provided wind speed data. In the 

143 original dataset, wind speed was represented by weekly occurrence and measurements. After several 

144 model iterations, it became apparent that those weekly changes were unsuitable for the nature of this 

145 long-term dataset. Therefore, when a cyclone was documented, the full month of its occurrence was 

146 labeled with the respective wind speed. For months during the dataset that had multiple cyclones occur, 

147 2-week or 3-week intervals were labeled with the wind speed of the cyclone. For months where no 

148 cyclones occurred, the default value was set to be a normal wind speed of 20 kilometers / hour. The 

149 methodology has potential for further fine-tuning during future model iterations.

150 pH and dissolved oxygen levels

151 pH and dissolved oxygen levels were obtained using data from a subsection of River Godavari at 

152 Rajahmundry (16.714456°, 82.331298°). The measurements were originally obtained in monthly 

153 intervals. For the purposes of our model, we had to down-sample the data to weekly intervals. Hence, in 
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154 the final dataset, the weekly data points are grouped by month. The data was obtained near the outtakes 

155 of water treatment stations through the Water Resource Board of Andhra Pradesh.

156 Dengue counts

157 Dengue fever is a highly seasonal disease and, for our purposes, is spread through the bite of an 

158 Aedes aegypti (Ae. aegypti hereafter) mosquito. Being a mosquito-borne disease, dengue demonstrates 

159 high correlation to the mosquito population in the region (38). Ae. aegypti populations thrive within 

160 conditions created by monsoons (humid, damp, brackish waters). As such, increased dengue cases, and 

161 more frequent dengue outbreaks, usually occur during the monsoon season.

162 Additional Model Parameters

163 For model features not mentioned above, they were collected by the lead author and sourced 

164 during the time spent in the region of Andhra Pradesh.

165 2.1.3 Time series analysis

166 A high degree of seasonality was exhibited across all features. For all climatic variables, we 

167 observed a yearly spike during the months of April through July. The rapid spike in this period for all 

168 variables indicates active environmental activity in the form of increased rainfall and large numbers of 

169 storms and cyclones. These are indicative of typical tropical climates, especially in the monsoon season, 

170 although with climate change have increased severely in the last decade. Moreover, the number of 

171 dengue cases also shows a spike in these months, which suggests there is a correlation between extreme 

172 weather events and dengue outbreak risk in the region. This can be further interpreted as allowing for an 

173 increased exposure to Ae. aegypti mosquitoes due to the ideal breeding conditions facilitated by climate 

174 conditions (damp, humid, and stagnant water bodies). Our models show that this often leads to an 

175 overall increased in mosquito population in the region and increased risk of dengue cases [Figure 1].
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176 By observing the trend lines more closely, there exists a strong correlation between rainfall, 

177 precipitation, water temperature and dengue counts. It is worth noting how dengue counts demonstrate a 

178 lag of 2-4 weeks after a spike in rainfall and precipitation [Figure 1].

179 Fig 1. Our time series analysis of the variables used in our study.

180 In 2019, we note a particularly abnormal increase in the number of dengue cases, with 

181 approximately 40 percent more cases than the average number of cases in previous years. The outlier 

182 years in dengue cases were also followed by the highest spike in other climatic environmental variables. 

183 This could indicate that there was a heavy dengue outbreak in the region that was likely, at least in 

184 significant part, influenced by climate. Given this, we broke down a correlation matrix to observe the 

185 individual relationships between variables [Figure 2].

186 Fig 2. The correlation matrix of all climatic variables in the study.

187 2.1.4 Correlation analysis

188 We note the strong positive correlation between number of cyclones and wind speed [Figure 3]. 

189 This is logical given the that cyclonic activities would cause fluctuation in wind speed data. We also 

190 observe the strong positive correlation between precipitation and water temperature, and a strong 

191 positive correlation between total number of cyclones and ocean water pH levels. There is a moderate 

192 positive correlation between wind speed and water temperature. There exists a strong negative 

193 correlation between precipitation and dissolved oxygen levels.

194 Fig 3. Correlogram of all climatic variables in the study.

195 For the other features of the model, there was a relatively weak correlation between each 

196 variable, indicating that each of those variables showed greater independence from one another. 

197 However, we use this to our advantage as it can provide clearer insight into what influenced dengue 

198 counts and resulting outbreaks in the region. This is critical for scalability and transferability of our 
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199 dengue model because it will produce generalized results that are not biased towards a single climatic 

200 feature.

201 2.2 Machine learning models: data augmentation

202 2.2.1 Experimental Setup and Software

203 Both classification and regression methods were performed during analysis. In this study, all data 

204 processing and analysis was conducted using Python 3.9 on Google Colab. To produce results, NumPy, 

205 scikit-learn, Keras libraries were employed in the cleaning and model development process.

206 2.2.2 Balancing the dataset

207 We observed a relatively imbalanced dataset. Hence, we resampled our dataset using a Python 

208 scikit-learn class known as Synthetic Minority Oversampling Technique (SMOTE), which acts as a data 

209 transform object for classification datasets that observe imbalance in their datasets (39). SMOTE 

210 duplicates examples in the minority class and new examples can be synthesized from the existing 

211 examples. We note the newly generated dataset has a near balanced number of samples, with 288 

212 samples in total used for both the training and testing datasets.

213 2.2.3 Data Preprocessing

214 Given the data collection process, normalization of variables is necessary. As different variables 

215 were measured on different scales such as mm for rainfall and km/h for cyclone speeds, these 

216 differences may influence the weighting of each parameter so that the models are heavily influenced by 

217 variables maximum values, creating bias. Moreover, normalization helps models detect hidden pattern in 

218 data more easily as they helps detect the minor variations in data such as in pH levels more easily. We 

219 normalize all our variables using Min-Max normalization on our dataset to ensure each data point was 

220 scaled to the same range from 0 to 1. Min-max normalization is a common way to normalize data, where 

221 for every feature, the minimum value of that feature gets transformed to 0, the maximum value gets 
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222 transformed into a 1, and every other value is transformed into a decimal between the scale of 0 and 1. 

223 The Min-Max normalization function is defined as equation:

224

225 x_scaled = (x – x_min) / (x_max – x_min)

226

227 Where x is the variable being scaled, x_max is the maximum value x over all observation of the 

228 variable, x_min is the minimum value x over all observation of the variable and x_scaled is our result.

229 2.2.4 Time-lagged dataset

230 For both of our classification and regression tasks, a 4-week time-lagged dataset was used. The 

231 rationale behind choosing such a timeframe was both from a machine learning and ecology standpoint. 

232 We note that after trialing different time spans for the lagged dataset, the 4-week time lagged dataset 

233 offered the best performance for the models while it did not cause the models to overfit due to having 

234 many parameters the models were inputted. From an ecology standpoint, 4-week time lag would capture 

235 the growth cycle of the Ae. aegypti mosquito after laying eggs in brackish water. Dengue transmission 

236 requires multiple developmental processes to occur in the mosquito and parasite, resulting in time lags 

237 that vary with temperature. Time lags also arise between climate and dengue transmission because 

238 temperature affects mosquito development rates in maturing stages, as well as during the oviposition 

239 cycle and during pathogen extrinsic incubation periods (28).

240 2.3. Machine Learning Models

241 2.3.1 Regression Methodology

242 We aimed to produce predictive forecasting curves of dengue counts using long short-term 

243 memory networks (LSTM) models. LSTM models are used in deep learning and machine learning as a 

244 variety of recurrent neural networks (RNNs) capable of learning long-term dependencies, especially in 
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245 sequence prediction problems. We used a time-lagged dataset (explained in Section 2.2). The dataset 

246 was built using the 4-week lag time frame, as it turned out to be most adequate in representing 

247 seasonality of dengue transmission, while not still preventing the model from overfitting, which we 

248 discovered from both our own data and other studies (25). We employed the Root Mean Square Error 

249 (RMSE) to calculate the prediction errors of the model. We trained the model on 100 epochs.

250 With initial experimentation, the models indicated a high degree of overfitting. This is seen 

251 through validation scores not decreasing in accordance with a decrease in training score. In fact, it would 

252 increase with more training epochs. This is common in machine learning tasks due to various reason 

253 including noisy data or small datasets.

254 To amend the situation, we added dropout layers to help decrease overfitting. We also designed 

255 multi-layered LSTM model, with 3-layered setup so that each LSTM is independently trained from each 

256 other so that it could generalize more and learn better. Parametric Rectified Linear Unit (PRelu) as an 

257 activation function is used due to its ability to prevent overfitting and because it is commonly used in 

258 similar time series models (40).

259 2.3.2 Model Metrics

260 RMSE (Root mean squared error)

261 RMSE is one of the most used measures for evaluating the quality of predictions. RMSE is equal 

262 to the square root of the average of squared residuals. The RMSE penalizes heavily on large errors as the 

263 residuals are squared before taking the average. In the case of our model, it is particularly useful when 

264 large errors are undesirable as it helps model to produce better predictions (41). High reliability is 

265 particularly desirable as dengue forecasting is used for policy changes, which requires accurate 

266 information to maximize effectiveness.

267 2.3.3 Models
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268 Recurrent Neural Network (RNN) Models

269 RNN is a type of neural network that handles previous outputs as inputs, factoring in historical 

270 information into the model. As a neural network model, they provide researchers the ability the ability to 

271 extract relationship between complex climatic, hydrological variables and dengue fever risk. The RNN 

272 model allowed for greater predictive ability given the highly seasonal nature of dengue fever, as it is 

273 developed to handle timeseries data (Feng et al, 2021). In this study, we opted to only develop an LSTM 

274 model, an extension of RNN model, as RNN models face vanishing gradient problems. This influences 

275 their ability to work with long-term historical data. That is, the influence of the earlier inputs 'disappears' 

276 when the hidden layer is overwritten with new inputs, this causes the network to 'forget', which hampers 

277 the ability of an RNN to handle higher long-term dependencies.

278 Long-Short Term Memory (LSTM) Models

279 LSTM is a type of RNN developed to overcome the vanishing gradient problem faced in 

280 traditional RNN models (Hochreiter & Schmidhuber, 1997). LSTM models learn long-term 

281 dependencies and extract and retain information from a much longer timeframe compared to RNN. 

282 LSTM models achieve this with the introduction of memory blocks eliminating the vanishing gradient 

283 problem (Sundermeyer, 2012). In doing so, LSTM models better captured the relationship between 

284 historical trends of dengue cases and the complex climatic conditions for the purposes of our model.

285 LSTM with Attention

286 LSTM models can also lose important information when passing information across multiple 

287 sequence steps, Moreover, LSTM models primarily work with fixed-length time sequences without 

288 special consideration of the different time of the year, such as pre-monsoon or monsoon season which 

289 influences the importance of different climatic variables. LSTM with Attention is an extension of LSTM 

290 models which introduces attention mechanism which is a method to deal to with non-fixed length 
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291 sequences of time and allows LSTM models to selectively pay attention to the current input. This 

292 ultimately enabled a stronger understanding of our timeseries data. In our study, LSTM and LSTM with 

293 Attention were also compared to determine the suitability of each model in predicting number of dengue 

294 cases (Shook et al, 2021). 

295 2.3.4 Classification Methodology

296 Instead of using binary classification to identify which weeks are more prone to dengue case 

297 increases, we decided to use multiclass labels to better represent dengue risks of a specific week or set of 

298 weeks. The categories were: low risk, medium risk, and high risk (with corresponding labels of 0, 1, and 

299 2).

300 We chose to use dengue prediction counts of specific months to categorize our data. Low risk 

301 weeks were weeks with lower dengue counts than the mean dengue counts, medium risk weeks were at 

302 most ¼ standard deviation higher than the mean dengue counts, and high-risk weeks were weeks with 

303 more than ¼ higher standard deviation higher dengue counts than the mean dengue counts.

304 The threshold was defined in the following ways based on prior research on the matter (Pham et 

305 al, 2022). We also considered the outlier weeks where extreme numbers of dengue cases were presented 

306 (i.e., counts that were several times the mean).

307 2.3.5 Metrics 

308 Accuracy

309 (1)    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  

310

311 Equation (1) demonstrates how well a classifier model will perform in our multiclass 

312 classification problem. Its calculation provides a clear indicator to the performance of a model as it 
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313 computes the total number of correct predictions divided by the total number of predictions made. 

314 Accuracy is the most often used metrics in classification problems.

315 2.3.6 Models

316 SVM

317 Support Vector Machine (SVM) models are methods designed for classification and regression 

318 problems. The algorithm performs predictions by establishing the best hyperplane or hyperplanes that 

319 minimize the loss function over the feature space. An SVM would determine the hyperplane by 

320 calculating the maximal margin of the classes which is the maximum distance of the nearest element to 

321 the hyperplane for each class, with the nearest element of each class to the hyperplane being called 

322 support vector as the affects the orientation of an SVM. However, this can only be effectively done if the 

323 relationship between variables for each feature are linear, for non-linear inputs this problem is resolved 

324 via a kernel. A kernel is a function which allows the model to project the feature space into higher 

325 dimension until each class is linearly separable. The choice for kernel function in this article was radial 

326 basis function based on previous related literature.

327 KNN

328 K-Nearest-Neighbor (KNN) is used for a variety of problems in ML. KNN is a stable 

329 deterministic algorithm which produces the same result across trial runs and is computationally efficient, 

330 only needing to calculate the relationship of an observation and “k” of its nearest neighbor. K here is 

331 defined as the number of neighbors being weighted in calculating the cost of each sample point. Here k 

332 = 7 was used to generate the most optimal result (Gauahr et al, 2021). The algorithm works by 

333 calculating the distance functions between each of the nearest neighbors and then classifying them based 

334 on a majority vote based on distance weights.

335 Random Forest
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336 Random forest models are ensemble models that compute results based on the aggregate of 

337 multiple random decision tree classifiers. The decision trees in random forest are generated from a 

338 random subset of features, compared to normal decision trees which are generated from the entire 

339 dataset. The decision trees in a random forest model are created to have low correlation between one 

340 another, which helps the random forest model perform better than decision tree models (42). Random 

341 forest models are particularly useful in dealing with predicting dengue fever case variability, as they can 

342 deal with numerous independent variables efficiently. Another benefit is that when multiclass 

343 classification is employed, random forest models performed well given that they are designed to handle 

344 such problems without much extension being required of the base model.

345 3. Results

346 3.1. Results of regression models

347 From Table 1, we can see that the LSTM captures the trend of cases increasing, indicating the 

348 high spread of dengue cases during in monsoon season. It was interesting to discover that each model 

349 provides similar regression curve with the LSTM with Attention model even providing a worse RMSE 

350 score in the validation dataset compared to the standard LSTM model. A potential explanation can be 

351 attributed to the fact that the time frame used was limited using only 4 years, as such the added 

352 complexity of LSTM with Attention hinders its predictive ability. The dataset is also limited for a 

353 machine learning algorithm. It was also found that the upward and downward trends simulated and 

354 forecasted by the LSTM model provides a reasonable approximation to the reported points, especially 

355 for the identification of high incidence peaks, which supports the results where LSTM can better capture 

356 the trends in dengue cases. Another noteworthy feature is that models can accurately capture the high 

357 jump in dengue cases at 120 weeks after the start of the dataset, the outlier high of dengue cases we see 

358 here can be attributed as a major dengue fever outbreak in the region and the regression results indicate 
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359 the models can follow such trend accurately, proving their usage in outbreak detection. This study serves 

360 as support that deep learning models such as LSTM can be beneficial in forecasting dengue outbreak, 

361 allowing for authorities to better prevent dengue cases.

Model Train Score Test Score

LSTM 0.04 0.12

LSTM With 

Attention

0.04 0.17

362

363 Table 1. RMSE scores of all regression models.

364 3.2. Result of the classification models

365 Overall, all models show promising classification results [Figure 4]. The accuracy of all models 

366 indicated were above 90 percent, with most misclassifications being in low risk and medium risk weeks 

367 with high reliability. It means that the parameters selected on the time-lagged dataset have contributed 

368 information for the models to analyze and improve from. In the SVM models, there were the most 

369 totaling 3 misclassifications on low dengue risk week prediction, indicating that the model would have 

370 some difficulty differentiating between low dengue risk week and medium risk. An explanation for this 

371 would be due the thresholding value as it medium risk prediction has a smaller range compared to high 

372 risk and low risk value causing models to make wrong predictions more frequently, which indicates that 

373 current models still lack the ability to discern smaller variation in changes between climatic variables 

374 that causes changes between each type of dengue risk classification. Moreover, SVM models do not 

375 support multiclass classification natively which could mean that the extension to handle multiclass 

376 labels which hamper to performance of SVM models.
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377 Fig 4. The regression curve of the LSTM and LSTM with Attention.

378 Comparatively, both KNN and Random Forest models performed much better in classifying both 

379 low risk and medium risk weeks [Figure 5]. All models show capacity to predict high risk dengue week. 

380 This can be attributed to extreme weather events influencing climatic hyperparameters, allowing for 

381 models to better detect high risk weeks. From the current results, it can determine that the models 

382 employed can generate accurate predictions with some models performing at 97 percent prediction on a 

383 time-lagged climatic dataset.

384 Fig 5. The confusion matrices detailing the prediction result of each model: (a) Confusion Matrix of 

385 SVM. (b) Confusion Matrix of KNN. (c) Confusion Matrix of Random Forest.

386 4. Discussion

387 4.1 Summary of our results.

388 The purpose of this study was to dynamically model dengue transmission dynamics in tropical 

389 India by the contributing temperature-dependent entomological parameters of Aedes aegypti. Our study 

390 provides a dynamic model of dengue transmission along the Godavari River district of eastern coastal 

391 India. We incorporate seven climate parameters into a predictive transmission model and consider the 

392 sensitivity analysis of dengue cases. The benefits of this model are that they can present how dengue 

393 transmission dynamics are influenced by factors such as extreme weather events (i.e., cyclones). This 

394 model only considered limited climate and dengue parameters to provide a proof-of-concept for more 

395 complex models in the future. Moreover, our models operate without examining less accessible satellite 

396 imagery and GIS data. As these models are operate with only numerical 1-d data points, it provides a 

397 low barriers of entry methodology for integrating ML models and further research in dengue forecasting.
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398 To demonstrate the feasibility of the models, we explored dengue modeling through both 

399 regression and classification lenses, to showcase the many potential development further research can 

400 dive deeper in the field. In regression, both LSTM and LSTM with Attention models were explored. 

401 These models produced extremely desirable results in determining the dengue cases in the regions with 

402 RMSE below 0.2. These scores are comparable to similar models explored in different regions (Pham et 

403 al., 2022). In classification, it is determined that SVM and Random Forest models provide the most 

404 accurate result and most suited to identifying and differentiating between low risk and high-risk months 

405 and dealing with multiclass labels. This is due to the nature of these algorithms as they are developed to 

406 natively support the classifying multiclass labels.

407 The results of the study provide interesting insights into dengue fever forecast. Through feature 

408 ranking, it was determined that temperature, windspeed and rainfall are variables of the most important 

409 overall to dengue prediction models. Their value to models can be easily explained through observing 

410 the extreme weather events in India and their effects on Aedes aegypti population in the region. 

411 Cyclones often introduces environments where mosquitos’ population thrives, therefore increasing the 

412 spread of mosquito-borne diseases. Moreover, these models work well with classifying outliers’ dengue 

413 cases week. This means that ML models can handle the task of determining outbreak time periods as 

414 they have shown the ability to both capture and predict radical changes in dengue fever case counts and 

415 accurately classifying high dengue risk week.

416 4.2 Applications of Machine Learning Models in dengue outbreak forecasting

417 Climatic variables provide suitable indicators for machine learning models to take advantage of 

418 its predictive ability (43). Given the increasingly unpredictable nature of climate change, traditional 

419 statistical models and master systems that rely heavily upon human calibration and expert knowledge are 

420 increasingly unsuitable and inflexible to changes in environmental systems (44). ML models provide a 
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421 solution in the face of a rapidly changing environment. As such, these models seek to determine the 

422 indirect relationships between climatic variables and climate-sensitive mosquito-borne disease dynamics 

423 without the need for heavy human monitoring. This minimizes the biases influencing predictive models, 

424 while enabling such models to rapidly adapt to changing ecological systems through continuous updated 

425 data and replenished training. Moreover, ML models can extend well to different conditioning factors 

426 without the need to redesign model architecture (45).

427 ML models can extract information on much more extensive set of inputs as compared to 

428 mathematical models and statistical models. A diverse set of inputs, including hydrological and extreme 

429 weather data, helps models generalize better forecast dengue outbreaks. This is because they can better 

430 simulate ecological changes that influence Ae. aegypti populations (25). While more traditional models 

431 operate on more fixed inputs and required extensive efforts to extend their feature space, ML models can 

432 easily work with multiple conditioning factors without much additional extension to the base model, 

433 enabling for better development time and adaptability. 

434 ML can provide prediction results on imperfect or missing information, a necessity given that 

435 environmental data is often not extensively available, even more so in rural or under-resourced regions. 

436 This enables better reach and understanding of epidemic diseases as it is often in these regions that these 

437 outbreaks are most widespread and most destructive, given a lack of medical resources and disease 

438 monitoring capabilities. Delayed dengue case reporting or incomplete meteorological data can influence 

439 the effectiveness of ML models; however, such a tradeoff is acceptable in real-world implementation of 

440 the ML models presented in this study, as more traditional models often cannot forecast on missing data.

441 4.3 Dengue and climate change
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442 It is established that we are in a increasing climate crisis and that will influence climate-sensitive 

443 mosquito-borne disease dynamics in different capacities across the world (8). There are many mosquito 

444 vectors that transmit important human parasitic and arboviral diseases, but dengue remains the most 

445 common human arboviral disease. It is reported to have a prevalence of 50 million cases in more than 

446 100 countries, with about 500,000 persons requiring hospitalization each year for dengue hemorrhagic 

447 fever/dengue shock syndrome that has overall case fatality rate of 2.5 percent (46). The mounting 

448 evidence around climate-disease relationships raises many important issues about the potential effects of 

449 global climate changes on the transmission of dengue.

450 Although there is growing statistical evidence indicating that dengue outbreaks are associated 

451 with temperature, rainfall, and humidity, few studies have examined this relationship along coastlines 

452 and with the inclusion of extreme weather events, including both a critical spatial component (47) and a 

453 critical climate event worth examining (37). The authors have identified that other variables such as 

454 river levels are also included along with climate variables (48), however, these studies are out of the 

455 study scope. From our study, it is critical to include a variety of geographic topographies and regions in 

456 dengue transmission dynamics models moving forward, but it is also critical to model which climate 

457 variables are the best predictors of dengue transmission. The research in this study indicates that 

458 cyclones are significant contributors to dengue prediction models and must be included going forward.

459 4.4 Dengue and Coastlines

460 Dengue demonstrated an uneven distribution along the Godavari River of Andhra Pradesh and 

461 expressed differently on the spatial gradient from coast to inland. The temporal trends for coastal dengue 

462 showed cyclical trends with 3 to 5-week lags between cyclonic events and a peak in dengue counts. This 

463 is interesting because inland, the inland lag time has been estimated to be an average of up to two 

464 months (25) but coastal lags appear to be much smaller time frames in this case. Our findings 
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465 demonstrate that coastal dengue transmission dynamics showcase faster transmission rates than dengue 

466 occurring deeper inland. Our results also demonstrate that extreme weather events play a role in the 

467 acceleration of dengue transmission along coastlines. Given the similarities between multiple mosquito-

468 borne diseases, it is important to consider this trend for other diseases such as Zika and chikungunya.

469 Dengue transmission dynamics along coasts are characterized by non-linear dynamics with 

470 strong seasonality, multi-annual oscillations, and non-stationary temporal variation (49). Seasonal and 

471 muti-annual cycles are fluctuating more unpredictably in the face of climate change, and more irregular 

472 intervals of outbreaks are increasingly observed along coastlines (50).

473 4.4 Lag times and dengue transmission dynamics

474 The time lag or delayed effect of the climatic variables on dengue counts in our model can be 

475 reasoned by the factors that indirectly influence dengue counts and transmission. This can happen 

476 through effects on vector and virus life-cycle dynamics. The lag is anticipated to be a shorter duration 

477 for minimum temperatures that are usually related to the mortality of an adult mosquito, and humidity 

478 plays a role in influencing this (29). On the other hand, the lag showed that it would be longer for higher 

479 relative water temperatures. Our model shows that the average temperatures, on the other hand, will take 

480 longer to influence dengue counts because it is involved in all biological cycles of Ae. aegypti (3).

481 4.5 Other factors associated with dengue transmission

482 There are other factors that must be considered in context of these results, such as socio-

483 economic and demographic factors associated with dengue transmission, as well as the relative 

484 contribution of these factors based on scale and geographic topography. These include mosquito 

485 management, screen dwellings, the use of insect repellants, protection and prevention programs, bed 
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486 nets, etc., as well as garden accoutrements, storing water in open containers, etc. These are outside of the 

487 scope of our current project, but models should take such data into account.
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