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Key messages 29 

What is already known on this topic 30 

Studies for Mexico and other countries have suggested that pre-existing conditions such as renal 31 

disease, diabetes, hypertension, and obesity are strongly associated with COVID-19 mortality. 32 

While age and the presence of pre-existing conditions have been shown to predict mortality, 33 

other studies have typically used less powerful statistical approaches, have had smaller sample 34 

sizes, and have not been able to describe changes over time. 35 

What this study adds 36 

This study examines mortality risk in a very large population (> 60 M); it uses powerful 37 

ensemble machine learning methods that outperform regression analyses; and it demonstrates 38 

marked changes over time in the degree to which different risk factors predict mortality.    39 

How this study might affect research, practice or policy 40 

Because we show an important improvement in predictive performance over traditional 41 

regression analyses, and the ability to update estimates as the pandemic evolves, we argue that 42 

these methods should be much more widely used to inform national programming in Mexico and 43 

elsewhere. Programs that assume that predictive models don’t change over time as variants 44 

emerge and as pre-existing immunity evolves due to vaccination and prior infection will not 45 

accurately predict mortality risk. 46 
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Abstract  49 

Background: COVID-19 would kill fewer people if health programs can predict who is at 50 

higher risk of mortality because resources can be targeted to protect those people from infection. 51 

We predict mortality in a very large population in Mexico with machine learning using 52 

demographic variables and pre-existing conditions. 53 

Methods: We conducted a population-based cohort study with over 1.4 million laboratory-54 

confirmed COVID-19 patients using the Mexican social security database. Analysis is performed 55 

on data from March 2020 to November 2021 and over three phases: (1) from March to October 56 

in 2020, (2) from November 2020 to March 2021, and (3) from April to November 2021. We 57 

predict mortality using an ensemble machine learning method, super learner, and independently 58 

estimate the adjusted mortality relative risk of each pre-existing condition using targeted 59 

maximum likelihood estimation.  60 

Results: Super learner fit has a high predictive performance (C-statistic: 0.907), where age is the 61 

most predictive factor for mortality. After adjusting for demographic factors, renal disease, 62 

hypertension, diabetes, and obesity are the most impactful pre-existing conditions. Phase analysis 63 

shows that the adjusted mortality risk decreased over time while relative risk increased for each 64 

pre-existing condition. 65 

Conclusions: While age is the most important predictor of mortality, younger individuals with 66 

hypertension, diabetes and obesity are at comparable mortality risk as individuals who are 20 67 

years older without any of the three conditions. Our model can be continuously updated to 68 

identify individuals who should most be protected against infection as the pandemic evolves. 69 

Keywords: mortality; death; COVID-19; biostatistics; international health 70 
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Introduction 71 

The probability that someone infected with SARS-CoV-2 dies has varied enormously 72 

over time, among countries, and among population groups within countries. Interest in 73 

understanding who is at a higher risk of death has grown as this heterogeneity became more 74 

apparent. Identifying people at higher risk of severe disease and death will help health systems 75 

better respond and focus prevention resources on protecting them. We examine Mexico, a 76 

country with a very high reported case-fatality rate (4.7%) among those who have laboratory-77 

confirmed coronavirus disease 2019 (COVID-19) as of September 23, 2022 [1]. 78 

Previous analyses in Mexico have found diabetes, obesity, hypertension, 79 

immunosuppression, and renal disease to be significant risk factors along with age and sex. 80 

Multiple authors have identified obesity and diabetes as important risk factors for mortality [2–5]. 81 

Escobedo de-la Peña et al. also found a strong association with hypertension, which is consistent 82 

with results from Giannouchos et al. [5,6]. Late-stage chronic kidney disease, although less 83 

prevalent, has also consistently been identified as a COVID-19 mortality risk factor . Older/ male 84 

patients tend to have higher mortality risks than younger/ female patients [3,5,6]. In a previous 85 

analysis, we found interactions between those comorbidities, suggesting a synergic effect when 86 

having more than one of diabetes, hypertension, and obesity (larger odds ratio when reporting the 87 

3 conditions vs. one or two) [7]. We also found that the odds ratio increased by age group with 88 

those over age 80 having 30-fold the risk of those 20 to 29 [7]. One important consideration is 89 

that the prevalence of diabetes and hypertension is positively associated with age, so it has not 90 

been clear how this interaction is related to mortality risk. A more adaptive analysis performed 91 

by Martínez-Martínez et al. developed a prediction model for severity of COVID-19, defined by 92 

hospitalization and/or mortality. They examined the relationship of 14 variables with 93 
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hospitalization and mortality using interaction terms and splines to account for non-linear 94 

relationships [8]. 95 

The pattern of age, sex, and comorbidities being associated with higher mortality risk is 96 

not specific to Mexico, and the global literature on such associations is extensive. Researchers 97 

have identified old age, diabetes, obesity, chronic renal failure, and congestive heart failure to be 98 

strongly associated with severe infection amongst both sexes in the Spanish population [9]. 99 

Researchers in Brazil showed that older age, male, kidney disease, obesity and/ or diabetes are 100 

strong predictors of mortality amongst other comorbidities such as chronic liver disease, 101 

immunosuppression, and cardiovascular disease [10,11]. Another study used United Kingdom 102 

Biobank data and showed that pre-existing dementia, diabetes, chronic obstructive pulmonary 103 

disease (COPD), pneumonia, and depression were positively associated with risk of 104 

hospitalization and death [12]. An analysis from France found age, diabetes, hypertension, 105 

obesity, cancer, and kidney and lung transplants to be associated with risk of COVID-19-related 106 

hospitalization and mortality, among others [13]. A Canadian study reported dementia, chronic 107 

kidney disease, cardiovascular disease, diabetes, COPD, severe mental illness, organ transplant, 108 

hypertension, and cancer to be significant predictors of mortality [14]. Our goal in this study is 109 

not only to predict mortality using demographic factors and comorbidities, but to show how 110 

those predictions change over time in this rapidly evolving pandemic. 111 

Although mortality risk estimation and risk factor identification have been examined in 112 

prior studies, we are concerned about the statistical validity and interpretation of the standard 113 

methods. A commonly used prediction tool, logistic regression, assumes a linear relationship of 114 

predictors against the log odds of mortality risk, but this logit-linear assumption will lead 115 

inevitably to biased estimates of risk (either under- or over-predict the risk) for subsets of the 116 
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population. We instead used flexible, data-adaptive methods that can capture non-linearities in 117 

the dose-response, such as potential nonlinear interactions between the predictors (e.g., the 118 

potential interaction of age and diabetes on predicting death) [15,16]. The better the model fits 119 

the study population; the more likely estimates are closer to the true joint relationship of 120 

mortality and risk factors.  121 

We included pre-existing conditions, demographic variables, the Mexican state where the 122 

patient was treated, and the month that the patient initiated care to fit our prediction algorithm. 123 

We conducted the analysis using an ensemble machine learning algorithm, super learner, to form 124 

optimal combination of predictions from multiple machine learning methods [15,16]. We also 125 

estimated the comparative importance of variables for mortality risk prediction (holding all other 126 

variables constant) by nonparametrically estimating quantities inspired by causal parameters 127 

(parameters that compare so-called counterfactual distributions, in our case, causal relative risks). 128 

The statistical goal is to estimate and provide robust inference for impact estimates of the 129 

predictors without the arbitrary modeling assumptions that characterize the great majority of 130 

prior work [17]. 131 

Methods  132 

Study population and design  133 

The study population is drawn from the Mexican Social Security Institute (IMSS), a 134 

vertically integrated insurance and health system that provides coverage for over 60 million 135 

private sector employees and their families, including their parents, children and spouse. IMSS 136 

also provided care as part of the COVID-19 response for some non-beneficiaries, who are also 137 

included in the dataset. 138 
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The data were recorded from March 1st, 2020, to November 3rd, 2021 in a platform 139 

called SINOLAVE. They reflect the entire population of 4,482,292 patients who were registered 140 

as receiving care for suspected COVID-19 at an IMSS facility. The dataset and the data entry 141 

process have been described previously [18]. The demographic variables include age, sex, 142 

insured by IMSS, and indigenous status. The data contains pre-existing conditions reported by 143 

the patient or the family at presentation: asthma, cardiovascular disease, chronic liver disease, 144 

chronic obstructive pulmonary disease, diabetes, hemolytic anemia, human immunodeficiency 145 

virus, hypertension, immunosuppression, neurological disease, obesity, cancer, renal disease and 146 

tuberculosis, as well as whether the patient currently smokes. Patients were asked at presentation 147 

about their pre-existing health conditions; these were not ascertained with reference to the 148 

patient’s medical record, even for those patients insured by the IMSS. The data also includes the 149 

Mexican state in which the patient received care, COVID-19 test results (from both polymerase 150 

chain reaction (PCR) tests and antigen tests), the month that the patient initiated care, and 151 

mortality. In addition, we extracted a different dataset from the National Council of Science and 152 

Technology to determine the dominant circulating variant in each month [19]. A short summary 153 

can be found in Table 1 (Supplemental Table S1). We define COVID-19 positive as a positive 154 

PCR or antigen test.  155 

From the full data set, we generated an analytic sample (n = 1,423,720) (Supplemental 156 

Figure S1). We exclude those under the age of 20 years, those without any positive COVID-19 157 

test result from either the PCR or antigen tests, and those with unknown pre-existing conditions. 158 

We also create a phase variable that corresponds to changes in the epidemic curve into three: 159 

phase 1 is from March 1st, 2020, to October 31st, 2020, phase 2 is from November 1st, 2020, to 160 
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March 31st, 2021, and phase 3 is from April 1st, 2021, to November 3rd, 2021 as previously 161 

described [18]. 162 

Statistical analysis 163 

Mortality risk prediction using super learner (SL) 164 

We predict mortality risks with SL [15,16], using predictors: pre-existing conditions, 165 

demographic variables, the Mexican state where the patient was treated, and the month that the 166 

patient initiated care. SL combines a set of user-supplied machine learning algorithms, which 167 

includes both simple, parametric fits and flexible algorithms, to create an optimally-weighted 168 

combination. This optimal fit is found by creating a combination of algorithms that minimize the 169 

cross-validated risk (in our case, the negative log-likelihood). SL has the property that 170 

asymptotically it will perform at least as well as the best fitting algorithm in the library [15,16]. 171 

Thus, it is important to include a diverse and large set of learners as candidates to ensure the 172 

model can fit complex patterns if warranted, but also, simpler, parametric models if simpler fits 173 

are sufficient. The following learners were included in the SL library: Bayesian additive 174 

regression trees [21], Bayesian generalized linear model [22], elastic net regression [23], 175 

empirical mean, generalized additive model [24], least absolute shrinkage and selection operator 176 

regression [25], logistic regression, multivariate adaptive regression splines [26], random forest 177 

[27], ridge regression [28], and extreme gradient boosting algorithms [29]. We estimate the 178 

prediction performance, via the AUC, and derive a 95% confidence interval for the estimated 179 

AUC [30]. We compare the SL fit using all predictors listed above to a logistic regression with 180 

only age entered as a linear term. We compute the AUC for the resulting SL/logistic regression 181 

fits with 3-fold cross validation on the 80%, both on the same data used to estimate SL/logistic 182 
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regression models (training AUC), as well as a more realistic assessment by using the test set – 183 

the left-out 20% of the available data (testing AUC). 184 

To interpret the final prediction model generated by the SL fit, we use the permutation-185 

based variable importance measure to identify variables that influence the SL model’s prediction 186 

[27]. This is performed by permuting the predictor variables one at a time (keeping the other 187 

variables fixed) and measuring the magnitude of the decline on the predictive performance (as 188 

measured by the change in the average negative log-likelihood). This provides a list of variables 189 

ranked by the relative importance to prediction fit but does not provide information on the 190 

variable impact on mortality, which led us to another measure of relative risk (RR) using targeted 191 

maximum likelihood estimation (TMLE). 192 

Pre-existing condition relative risk estimate through targeted maximum likelihood 193 

estimation  194 

For pre-existing conditions, we estimated a different variable importance measure that is 195 

not focused on prediction accuracy but on estimating potential impacts of pre-existing conditions 196 

on mortality risk. The impact is estimated by the RR of adjusted means (adjusted for baseline 197 

confounders) for the population if everyone had the specific pre-existing condition of interest 198 

(the numerator) versus the same population where no one has the specific pre-existing condition 199 

(the denominator). To estimate RRs, we used cross-validated targeted minimum-loss-based 200 

estimation (cross-validated TMLE). TMLE is a semiparametric, substitution estimator that has 201 

shown to be asymptotically efficient (unlike the inverse probability of treatment-weighting 202 

estimators [31]). It also has some robustness advantages over other semiparametric efficient 203 

approaches, such as augmented inverse probability weighting. TMLE estimates parameters that, 204 
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under certain assumptions, can be interpreted as potential causal impacts of these factors on 205 

mortality, in our case, in the form of a causal relative risk. Our ensemble machine learning is 206 

optimized for prediction, but it does not directly provide measures of individual variable 207 

importance. We conducted follow-up procedure (TMLE) to generate interpretable estimates of 208 

variable impact with robust standard errors [32, 33]. 209 

Results 210 

Descriptive results show the age distribution of laboratory-confirmed patients across the 211 

three different epidemic phases (Supplemental Figure S2). Phases 1 and 2 have similar 212 

distributions, and there are more young people (under 30) in phase 3. The six most prevalent pre-213 

existing conditions are hypertension, obesity, diabetes, smoking, asthma, and renal disease 214 

(Supplemental Figure S3). The prevalence of all pre-existing conditions decreased over the 215 

three phases, and prevalence of hypertension, obesity, and diabetes were drastically reduced in 216 

phase 3. 217 

Super learner (SL) prediction 218 

SL fit has high prediction accuracy on the testing set (AUC: 0.907 (95% CI: (0.905-219 

0.908)). SL leverages XGBoost models (Supplemental Table S2) and significantly outperforms 220 

the simple logistic regression model (testing AUC: 0.874 (95% CI: (0.872-0.876)) (Table 2). 221 

The logistic regression model overpredicts mortality risks for those roughly above age 75 222 

compared to the SL prediction (Fig. 1). Permuted variable importance shows, while holding 223 

other variables constant, age is consistently the most important for SL prediction in average 224 

mortality risk (Supplemental Figure S4 and Table S3). Having multiple comorbidities can 225 

dramatically increase risk for those individuals (Fig. 2). 226 
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Relative risks of pre-existing conditions 227 

To assess the impact of each pre-existing condition, we estimate their respective relative 228 

risks (RRs) of mortality, adjusting for demographic variables. We report the estimated RRs in 229 

Table 3, ordered by impact (most to least) (Supplemental Figure S5). The RRs compare the 230 

expected risk if all patients have the pre-existing condition (with) versus if all patients do not 231 

have the condition (without). The highest impact pre-existing condition is renal disease (RR: 232 

3.783, 95% CI: (3.705, 3.862)); diabetes, obesity, and hypertension also have high impact 233 

individually (RR: 1.432-1.847). Minimal differences between the risk estimates are shown for 234 

smoking and asthma (RR: 1.049 and 1.037, respectively). 235 

The phase analyses indicate pre-existing conditions are especially important in phase 3. 236 

Phase 1 and 2 are very similar in terms of both risk prediction and adjusted mortality risk 237 

estimates. However, in phase 3, age is less important in prediction (Supplemental Table S3) and 238 

RRs drastically increase for every comorbidity. The adjusted risks show the decrease for each 239 

pre-existing condition in phase 3 (Supplemental Table S4). 240 

Discussion  241 

Our analysis of (>1.4 million) laboratory-confirmed COVID-19 patients demonstrates 242 

that age is by far the most important predictor of average mortality. For those patients with renal 243 

disease, diabetes, hypertension, or obesity, having the comorbidity further increases their risk of 244 

mortality. A patient with diabetes, hypertension, and obesity is roughly comparable to a patient 245 

20 years older with none of the conditions, based on the predicted mortality (Fig. 2). Thus, 246 

having a comorbidity increases risk of mortality and should be considered at any age. The reason 247 

that comorbidities add little to the predictive power at younger ages is that hypertension and 248 
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diabetes are age-related and the reported onset is often for those over 30, so the pre-existing 249 

conditions are far less prevalent. 250 

Our prediction results using machine learning methods predict better than previous 251 

studies, and we demonstrated the feasibility and robustness of using machine learning methods 252 

targeted for prediction and variable impact. SL model prediction has an AUC of 0.907, which is 253 

higher than any previous Mexican study (AUCs from 0.634 to 0.824) [8,34]. Although age has 254 

been well reported by previous studies as important [5,34,35], our analysis is more robust 255 

because we do not assume a pre-specified functional relationship between the explanatory 256 

variables and the predicted variable, and thereby avoid any arbitrary groupings into age 257 

categories. Moreover, since those above age 60 have a higher prevalence of comorbidities, 258 

relying on simple logistic regression models can greatly overpredict the average mortality risk 259 

for the elder patients. Our study applies TMLE to estimate the adjusted mortality risk ratios for 260 

each comorbidity to provide more robust impact estimates that respect time ordering and account 261 

for background variables. 262 

We find consistent results of comorbidities compared to previous studies, and present 263 

phase analyses highlighting the changes in relative risks over time. Previous results from logistic 264 

regressions indicated odds ratios of 1.458-2.48 for renal disease, 1.237-1.74 for diabetes, 1.173-265 

1.47 for obesity, 1.194-1.315 for hypertension, 0.852-1.02 for smoking, and 0.74-1.420 for 266 

asthma [34–36]. Although our analysis is generally consistent with previous findings, our RR 267 

estimations have less uncertainty. Renal disease has the greatest impact on mortality, followed 268 

by diabetes, hypertension, and obesity; smoking and asthma have negligible impact on mortality 269 

risk. 270 
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This phase-specific analysis produced a seemingly paradoxical finding. The impact of 271 

comorbidities on predicted mortality decreased with time (primarily between the second and 272 

third wave), but the RR on mortality dramatically increased for the same conditions 273 

(Supplemental Table S4 and Figure S5). The apparent explanation is that mortality risk for 274 

people without the comorbidities fell faster than for people with them, increasing the relative risk. 275 

The decrease in mortality risk is multifactorial and includes a decrease in susceptibility over time 276 

(due to prior infection and vaccination), improved treatment, enhanced healthcare response and 277 

opportunity to be admitted to a hospital or ICU, and less virulent viral subtypes. This implies that 278 

as herd immunity increases, medical resources should focus even more on protecting vulnerable 279 

people at older age and those with comorbidities since they are even more likely to experience 280 

severe outcomes compared to those who are younger and/or healthier. 281 

Readers should be cautious about extrapolating our findings to other populations. 282 

Although our sample is large and includes patients from all parts of Mexico, most of the patients 283 

were IMSS beneficiaries. In order to access IMSS health services, patients require: a) be a 284 

formal-sector worker or retired, b) be a direct dependent of such an employee, c) be a bachelor or 285 

postgraduate student in a public institution, d) voluntarily enroll by paying a fee. Thus, the IMSS 286 

population skews toward the upper half of the income distribution. Populations without similar 287 

access to health services may have different results. It is also important to consider the potential 288 

impact of data quality. Pre-existing conditions were self-reported and likely also inconsistently 289 

recorded, perhaps in systematic ways that could have biased the results. For example, if people 290 

with severe diabetes were more likely to report diabetes as a pre-existing condition, we may 291 

overestimate the impact of diabetes on mortality.  292 
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It is also important to consider what predictive variables are included in this model. We 293 

sought to predict risk for an individual in the population using their characteristics prior to 294 

infection. In other words, what is this person’s risk of death from COVID-19 if they were to be 295 

infected? The answer to this question best informs the question of who should be prioritized for 296 

protection against infection or for early therapeutic interventions following infection. It does not 297 

attempt to predict the likely mortality of a patient who presents to the health services with 298 

COVID-19 because information about that patient’s severity of their COVID-19-related 299 

symptoms will represent important additional predictors of their mortality risk. 300 
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Table 1. Summary table of baseline variables and pre-existing conditions 
 

 

All time 
(2020/03-
2021/11) 

Phase 1 
(2020/03-
2020/10) 

Phase 2 
(2020/11-
2021/03) 

Phase 3 
(2021/04-
2021/11) 

Sample size 1,423,720 303,278 425,698 694,744 

Demographic variables     
Age in years (mean (SD)) 42.15 (15.70) 46.41 (16.04) 44.89 (16.27) 38.61 (14.34) 

Sex = male (%) 729,782 (51.3) 158,248 (52.2) 218,165 (51.2) 353,369 (50.9) 

Insured by IMSS = yes (%) 
1,358,440 
(95.4) 

288,588 (95.2) 402,754 (94.6) 667,098 (96.0) 

Indigenous = yes (%) 7,381 (0.5) 2,200 (0.7) 1,628 (0.4) 3,553 (0.5) 

Pre-existing conditions     
Hypertension = yes (%) 228,901 (16.1) 72,615 (23.9) 83,735 (19.7) 72,551 (10.4) 

Diabetes = yes (%) 169,869 (11.9) 55,551 (18.3) 61,120 (14.4) 53,198 (7.7) 

Obesity = yes (%) 181,736 (12.8) 55,965 (18.5) 60,217 (14.1) 65,554 (9.4) 

Smoking = yes (%) 87,161 (6.1) 21,253 (7.0) 28,346 (6.7) 37,562 (5.4) 

Asthma = yes (%) 25,297 (1.8) 7,951 (2.6) 7,765 (1.8) 9,581 (1.4) 

Renal Disease Diagnosis = 
yes (%) 

24,099 (1.7) 8,912 (2.9) 8,555 (2.0) 6,632 (1.0) 

Outcome     

Death = yes (%) 149,805 (10.5) 53,530 (17.7) 62,517 (14.7) 33,758 (4.9) 

 
IMSS: Mexican Institute of Social Security; SD: standard deviation 
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Table 2. Prediction results 
 

 All time  
(2020/03-
2021/11) 
AUC (95% CI) 

Phase 1 
(2020/03-
2020/10) 
AUC (95%CI) 

Phase 2 
(2020/11-
2021/03) 
AUC (95%CI) 

Phase 3 
(2021/04-
2021/11) 
AUC (95%CI) 

Super learner fit Training: 0.916 
(0.915-0.917) 
 
Testing: 0.907 
(0.905-0.908) 

Training: 0.887 
(0.885-0.888) 
 
Testing: 0.873 
(0.870-0.876) 

Training: 0.904 
(0.903-0.906) 
 
Testing: 0.895 
(0.892-0.897) 

Training: 0.914 
(0.913-0.916) 
 
Testing: 0.906 
(0.902-0.909) 

Age only logistic 
regression fit 

Training: 0.874 
(0.873-0.875) 
 
Testing: 0.874 
(0.872-0.876) 

Training: 0.845 
(0.843-0.846) 
 
Testing: 0.846 
(0.842-0.850) 

Training: 0.868 
(0.866-0.870) 
 
Testing: 0.871 
(0.868-0.874) 

Training: 0.867 
(0.865-0.869) 
 
Testing: 0.871 
(0.866-0.875) 

 
AUC: area under the receiver operating characteristic curve; CI: confidence interval 
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Table 3. Targeted maximum likelihood estimation relative risk results for each pre-existing 
condition 
 

 All time  
(2020/03-
2021/11) 
Relative Risk  
(95% CI) 

Phase 1  
(2020/03-2020/10) 
Relative Risk 
(95%CI) 

Phase 2 
(2020/11-2021/03) 
Relative Risk 
(95%CI) 

Phase 3  
(2021/04-2021/11) 
Relative Risk 
(95%CI) 

Renal 
disease 

3.783 
(3.705, 3.862)  

 2.588 
(2.521, 2.657)  

2.994 
(2.910, 3.080)  

 6.638 
(6.361, 6.927)  

Diabetes 1.847 
(1.820, 1.875)  

 1.536 
(1.508, 1.566)  

1.594 
(1.564, 1.625) 

 2.508 
(2.423, 2.596) 

Hypertension 1.745 
(1.721, 1.770)  

1.427 
(1.402, 1.452) 

1.500 
(1.474, 1.527) 

2.356 
(2.279, 2.436)  

Obesity 1.432 
(1.417, 1.447) 

1.269 
(1.249, 1.288)  

1.259 
(1.239, 1.279) 

1.794 
(1.750, 1.840)  

Smoking 1.049 
(1.030, 1.068)  

1.001 
(0.975, 1.028) 

 0.992 
(0.966, 1.018)  

1.158 
(1.107, 1.210) 

Asthma 1.037 
(1.002, 1.073)  

 0.941 
(0.895, 0.989)  

 0.942 
(0.892, 0.995) 

1.223 
(1.134, 1.319) 

 
CI: confidence interval 
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Fig. 1. Mortality risk prediction comparing age only logistic regression and super learner 
 
GAM: generalized additive model 
The smoothed true mortality risk curve is generated using a GAM with integrated smoothness 
estimation fitted with cubic splines.   
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Fig. 2. Super learner predicted mortality risk averaged by specific age in two subgroups: 
those having all obesity, diabetes, and hypertension pre-existing conditions versus those 
without  
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Supplemental Material 

SupplementalMaterial.pdf:  

Table S1. TableS1 – [Complete table of baseline variables and pre-existing conditions] 

Table S2. TableS2 – [Weighted combination of the super learner fit] 

Table S3. TableS3 – [Top 5 ranked most important variables for prediction] 

Table S4. TableS4 – [Targeted maximum likelihood estimation adjusted mortality risk, with or 

without the pre-existing condition]  

Figure S1. FigS1 – [Flowchart for analytic sample development] 

Figure S2. FigS2 – [Age distribution for laboratory-confirmed COVID-19 patients] 

Figure S3. FigS3 – [Prevalence of pre-existing conditions prevalence over time] 

Figure S4. FigS4 – [Prediction variable importance predicted using the super learner fit] 

Figure S5. FigS5 – [Relative risk for each pre-existing condition associated with mortality] 
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