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Abstract 

The present work describes a statistical model to account for sequencing information of 

SARS-CoV-2 variants in wastewater samples. The model expresses the joint probability 

distribution of the number of genomic reads corresponding to mutations and non-

mutations in every locus in terms of the variant proportions and the joint mutation 

distribution within every variant. Since the variant joint mutation distribution can be 

estimated using GISAID data, the only unknown parameters in the model are the variant 

proportions. These are estimated using maximum likelihood. The method is applied to 

monitor the evolution of variant proportions using genomic data coming from 

wastewater samples collected in A Coruña (NW Spain) in the period May 2021 – March 

2022. Although the procedure is applied assuming independence among the number of 
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reads along the genome, it is also extended to account for Markovian dependence of 

counts along loci in the aggregated information coming from wastewater samples. 

 

Motivation and background 

During the last decade, wastewater-based epidemiological surveillance has emerged as a 

highly relevant discipline, with the potential to provide information by combining the 

use of analytical methods with the development of ad hoc modelling approaches. This 

surveillance has been widely used in recent years to accurately predict consumption 

patterns for numerous substances (EMCDDA, 2020). During the COVID-19 pandemic, 

processes for monitoring the viral load of SARS-CoV-2 in wastewater were developed 

for the first time in the Netherlands (Medema et al., 2020). 

Around a third of the people primarily infected with SARS-CoV-2 in Spain were 

asymptomatic (Pollán et al., 2020). However, the percentage of asymptomatic cases 

depends on many factors, such as the average age and the degree of natural or artificial 

immunity in each population. In addition, a significant proportion of people infected 

with COVID-19, including symptomatic and asymptomatic, who were tested for fecal 

viral RNA tested positive from the initial steps of infection (Gupta et al., 2020) and 

tested positive persistently in rectal swabs even after nasopharyngeal testing was 

negative (Chen et al., 2020; Xing et al., 2020; Xu et al., 2020; Zhang et al., 2020; Cevik 

et al., 2021; Miura et al., 2021). 

Due to all of the above, the genetic material of SARS-CoV-2 can be found in 

wastewater (Lodder and de Roda Husman, 2020), which has made the monitoring of the 

RNA viral load in wastewater an excellent tool for the epidemiological monitoring of 

the COVID-19 pandemic, as well as an efficient early warning method for the detection 

of outbreaks (Randazzo et al., 2020; Ahmed et al., 2020; Medema et al., 2020; Peccia et 

al., 2020; F Wu et al., 2020; Wurtzer et al., 2020). Likewise, the methods of massive 

sequencing of aggregate samples collected in wastewater treatment plants or in the 

sanitation network itself make it possible to obtain readings that include the mutations 

observed in the SARS-CoV-2 genome. With the help of appropriate statistical models 

and methods, estimates of the number of active cases of patients with COVID-19 can be 

obtained from the viral load quantification data at Wastewater Treatment Plants 

(WWTPs) (Vallejo et al. 2022). 
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On the other hand, as a result of the proliferation of SARS-CoV-2 variants, specific 

mutations have been monitored to study the evolution of variants (Bar-Or et al. 2021) 

and the total SARS-CoV-2 concentration (Radu et al. 2022). Recently, statistical 

methods have been proposed that make it possible to analyze the readings of mutation 

frequencies in the virus genome in order to obtain precise estimates of the proportions 

of variants (Barbeito et al. 2022, Gafurov et al. 2022, Karthikeyan et al. 2022, Radu et 

al. 2022, Valieris et al. 2022). In this paper, the joint mutation distribution is estimated 

using GISAID data and the variant proportions are estimated using maximum 

likelihood. The model can be formulated either assuming independence among the 

number of reads along the genome or allowing for Markovian dependence of counts 

along loci. 

 

Methodology 

Since the genetic material of the samples collected at the WWTP is degraded as a 

consequence of the passage of wastewater through the sanitation network, the genomes 

collected are remarkably fragmented. On the other hand, each sample corresponds to the 

genetic material of the thousands of infected human beings among the almost 400,000 

inhabitants of the metropolitan area of A Coruña. As a consequence of all this and of the 

amplicon technology used for massive sequencing (see Section 4), the available 

information corresponds to counts of mutation reads throughout a number of positions 

(loci) in the virus genome.  

In the case in which clinical samples could be taken from individual patients, it would 

be possible to observe the complete RNA strand (or at least very large fragments of it 

that could be juxtaposed), which means having observations of the vector variable that 

considers which type of mutation has occurred at each locus. However, for the samples 

obtained at the WWTP, it is only possible to observe the frequencies of mutations in 

each of these loci in an aggregated manner on the set of individuals that have excreted 

that genetic material. As a consequence, the statistical methods for estimating the 

proportions of variants have to be designed for the data-generating process, aggregated, 

in individuals, and marginal, in loci, that occurs in this setup. We will now formulate 

this data-generating process. 
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A viral haplotype can be expressed as a vector � � ���, … , ���, � being the number of 

genomic positions or loci. The set of feasible values for locus �� is �� � 	0, … , ���, 

where 0 refers to the reference allele and 1, … , �� are indices identifying the alternative 

alleles (i.e. different types of mutations at locus i=1,…,l). As a consequence, � � �, � 

being the Cartesian product �� � � � ��. We denote by � and �, respectively, discrete 

random variables modeling a haplotype and a viral variant sampled at random from the 

viral genomes in wastewater. For � viral variants �� , … , �� , the quantities ��
���, for 

� � 1, … , �, are defined as ��� � � | � � ���. So ��
���, when � � �, is just the 

haplotype distribution of variant ��. By the total probability law, �� � ��� � �� �
∑ ����

����
�	� , where �� � ��� � ��� is the unknown probability of the �-th variant. It is 

important to remark that, although the ��
���are also unknown, they can be estimated very 

easily without using the wastewater samples, e.g., from the viral genomes available at 

GISAID’s EpiCoV database. 

If the viral genomic sequences could be fully observed in wastewater, the data would 

consist of a sample of � haplotype vectors ��, … , �
. Given this “ideal sample” (not 

observable in wastewater, just for clinical patients), the observed sample can be 

modeled as follows. Consider, for each locus �, for � � 1, … , �, the probability �� that 

the �-th locus of a viral genome selected at random is observed in the sample. The 

number of observations for locus � is  � � ∑ !�

���

�	� , where !�

��� is a binary random 

variable indicating whether the "-th “ideally observed” haplotype has been actually 

observed at locus �. It is natural to model  � as a random variable with binomial 

distribution, B(�, ���, � being the expected number of reads at locus �. Its mean � �� 

depends on the �� probabilities, which are strongly determined by the sequencing 

technology and may greatly differ across loci. Since the  � are observable, in the 

following we condition on their observed values. 

Given  �, for � � 1, … , �, and assuming that the sequencing technology does not affect 

the marginal distribution of �, it is possible to derive the distribution of the observed 

allele frequencies for each locus in the sample, # � �#�, … , #��, where, for � � 1, … , �, 
#� � $#�,�, … , #�,��

% and #�,� � ∑ !�
���


�	� &'��

��� � (). In the last expression, to avoid 

ambiguity, the superscript ��� is used to refer to the �-th component of ��, and &��� is 

the indicator of event �. Clearly, ∑ #�,� �  � �
�	� and, conditionally on  �, #� has 
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multinomial distribution M� � , +��, where +� � $+�,�, … , +�,��
% is a vector whose (-th 

component is +�,� � �$���� � (% � ∑ &��� � (���� ∑ ����
����

�	� . 

Thus, the distribution of # depends on the “known” haplotype probabilities within every 

viral variant estimated from available data (��
���, � � 1, … , �), the number of reads at 

every locus ( �, � � 1, … , ��, and the unknown variant probabilities (��, � � 1, … , �) in 

the population of viral genomes sampled. The �� can be estimated using available 

information and the observed allele frequencies in the wastewater sample. Assuming 

independence of the random variables #�, � � 1, … , �, and having observed the allele 

mutation frequencies collected in the vector , � �,� , … , ,��, the likelihood (conditional 

on  �, � � 1, … , �) is: 

-��� , … , ��� � ��# � ,� � .  �,�,�! � ,�,��
!

�

�	�

. 01 &��� � (�
���

1 ����
���

�

�	�

2
��,� .��

�	�

 

Maximum conditional likelihood estimates of  ���, … , ��� are obtained by maximizing -��� , … , ��� constrained to �� 4 0, … , �� 4 0, ∑ ��
�
�	� � 1, e.g., using an augmented 

Lagrangian method. 

Markovian dependence among loci 

The independence assumption among the random variables #�, � � 1, … , �, can be 

relaxed by just assuming a Markovian condition for the random vector #:  

��#� � ,� | #��� � ,���, … , #� � ,�� � ��#� � ,� | #��� � ,����, � � 1, … , �. 
By assuming this condition, the likelihood becomes:  

-��� , … , ��� � ��# � ,� � ��#� � ,�� . ��#� � ,� | #��� � ,�����

�	�

, 
which just requires to deal with the conditional probabilities of the form ��#� �,� | #��� � ,���� , for � � 2, … , �. Without loss of generality and for simplifying the 

notation, we consider ��#� � ,� | #� � ,�� and assume that �� � �� � 1, i.e. just one 

type of possible mutation at loci � � 1, 2. As a consequence, the joint distribution of 
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�#� , #�� � $#�,�, #�,�, #�,� , #�,�% can be expressed in terms of the random vector 6 �
$6�,� , 6�,�, 6�,�, 6�,�%, where the random variable 6�,� denotes the number of co-

occurrences of mutation i in locus 1 and mutation j in locus 2.  Indeed 

#�,� � 6�,� 7 6�,�, #�,� � 6�,� 7 6�,�, #�,� � 6�,� 7 6�,�, #�,� � 6�,� 7 6�,�.   
Now, since the random vector 6 has a multinomial distribution: 

M ' �,�, $��,�, ��,�, ��,� , ��,�%), where  �,� is the number of joint reads at loci 1 and 2 

and $��,� , ��,�, ��,� , ��,�% is the vector with the probability mass corresponding to 

mutations (0 or 1) at loci 1 and 2, the joint probability mass of  �#� , #�� is then 

straightforward:  

�$#�,� � ,�,� , #�,� � ,�,�, #�,� � ,�,� , #�,� � ,�,�% � 1  �,�! �
�,�

��,� �
�,�

��,�  �
�,�

��,�  �
�,�

��,� 8�,�! 8�,�! 8�,�! 8�,�!
������

, 
where 8 � 9�,� in the sum means that the values of z ranges over all possibilities such 

that ,�,� � 8�,� 7 8�,�, ,�,� � 8�,� 7 8�,�, ,�,� � 8�,� 7 8�,�, ,�,� � 8�,� 7 ,�,�. The 

marginal probability mass of  #� is even simpler:  

�$#�,� � ,�,� , #�,� � ,�,�% �  �,�! $��,� 7 ��,�%��,�$��,� 7 ��,�%��,� ,�,�! ,�,�! . 
Using the definition of conditional probability, the conditional distribution becomes: 

��#� � ,� | #� � ,�� � ∑  �,�! ��,�

��,� ��,�

��,�  ��,�

��,� ��,�

��,� 8�,�! 8�,�! 8�,�! 8�,�!������

 �,�! $��,� 7 ��,�%��,�$��,� 7 ��,�%��,� ,�,�! ,�,�!
, 

where the co-occurrence probabilities can be easily expressed in terms of the variants 

bivariate haplotype distributions, ���,��

�,���, and the variant marginal distribution: 

��,� � ���� � ", �� � � � � 1 ��

�

�	�

1 &��� � ", �� � ����
���

���

� 1 ��

�

�	�

���,��

�,���. 
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As a consequence, the likelihood in the Markovian dependence case can be written just 

in terms of the variants bivariate haplotype distributions and the unknown variant 

probabilities. 

 

Simulations 

Simulated data, as well as synthetic data coming from in vitro experiments, where the 

proportion of every variant is known, have been used to assess the quality of the 

method. We considered four scenarios. 

Dataset #1 consists of simulated reads of 1 genome per variant without sequencing 

errors. The data were created from four different genomes from GISAID (consensus 

sequences), each genome corresponding to a different variant. A simulator of amplicon 

reads (with no sequencing errors) is applied based on the real coverage/depth profiles of 

ARCTIC protocol (obtained from real reads) and then those simulated reads are mixed 

in the percentages included in Table 1, which also contains the estimated percentages. 

 

Variant B.1.1.7 B.1.617.2 B.1.621 C.37 

True percentages 64% 21% 12% 3% 

Estimated percentages 61.70% 22.35% 13.70% 2.25% 

Table 1: Mixing variant percentages and their estimations for Dataset #1. 

Dataset #2 also contains simulated reads without sequencing errors but of multiple 

genomes per variant. The data were created from four different genomes from GISAID 

(consensus sequences), each genome corresponding to a different variant. As for the 

previous dataset, a simulator of amplicon reads is applied based on the real 

coverage/depth profiles of ARCTIC protocol, obtained from real reads. The simulated 

reads are mixed in the percentages included in Table 2, which also contains the 

estimated percentages.  
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Variant B.1.1.318 B.1.1.7 B.1.351 B.1.617.1 B.1.617.2 B.1.621 C.37 

Real 

percentages 

0.00% 53.00% 0.00% 0.00% 27.00% 7.00% 13.00% 

Estimated 

percentages 

0.95% 52.17% 0.91% 1.17% 24.88% 7.05% 12.86% 

Table 2: Mixing variant percentages and their estimations for Dataset #2. 

Dataset #3 consists of mixing clinical samples created from real genomes reads obtained 

in the project EPICOVIGAL. For each variant, just one dataset is used and then the 

reads were mixed according to the percentages presented in Table 3. This table also 

includes the estimated percentages. 

 

Variant A.28 B.1.1.7 B.1.525 B.1.617.2 B.1.620 B.1.621 C.37 P.3 

Real 

percentages 

0.00% 45.00% 0.00% 35.00% 0.00% 15.00% 5.00% 0.00% 

Estimated 

percentages 

0.04% 39.68% 0.10% 38.55% 1.54% 14.57% 5.47% 0.05% 

Table 3: Mixing variant percentages and their estimations for Dataset #3. 

Dataset #4 was also constructed by mixing clinical samples. It was created from real 

genomes reads obtained in the project EPICOVIGAL mixed in the percentages 

collected in Table 4, which also includes the estimated percentages. 

Variant B.1.1.7 B.1.351 B.1.617.2 P.1 

Real percentages 40.00% 10.00% 30.00% 20.00% 

Estimated percentages 39.41%  9.47% 32.63% 18.49% 

Table 4: Mixing variant percentages and their estimations for Dataset #4. 
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The results in Tables 1-4 show that the estimation error of the variant percentages is 

always below 2.7% for all the variants in Datasets #1, #2 and #4. For Dataset #3, the 

largest estimation error is around 5.3%. This happens for B.1.1.7, with a real percentage 

of 45%. This implies a relative estimation error of around 1/9. 

 

Monitoring the evolution of variant proportions 

The method presented is applied to monitoring the evolution of variant proportions 

using genomic data coming from weekly wastewater samples collected in A Coruña 

(NW Spain) in the period May 2021 – March 2022. This monitoring was part of the 

COVIDBENS project. It was an initiative carried out from April 2020 to March 2022 

and financed by the public company WWTP Bens S.A., responsible for managing the 

WWTP in charge of purifying wastewater from the municipalities of A Coruña, 

Arteixo, Cambre, Culleredo and Oleiros, which comprise a population of nearly 

400,000 inhabitants of the metropolitan area of A Coruña (NW Spain). The main 

objective of the project was to monitor the SARS-CoV-2 coronavirus epidemic in the 

metropolitan area of A Coruña. 

COVIDBENS served as an early warning against possible outbreaks, since it proved to 

be able to anticipate between 2 and 3 weeks in the beginning of the pandemic waves 

with respect to the data on active cases reported by the health system (Trigo-Tasende et 

al. 2022). In addition, using the amount of genetic material of the virus present in the 

wastewater, nonparametric statistical models were used to estimate the number of 

infected people in the population (Vallejo et al. 2022).  

Since December 2020, complying with the recommendation of the European 

Commission 

(https://ec.europa.eu/environment/pdf/water/recommendation_covid19_monitoring_was

tewaters.pdf), the COVIDBENS team has been in charge of monitoring the emergence 

of new mutations and variants of SARS-CoV-2 in the wastewater arriving at the Bens 

WWTP using massive sequencing technologies. With the collaboration of Aguas de 

Galicia and EDAR Bens S.A., this challenge was tackled using two different strategies: 

1) amplicon sequencing and 2) shotgun sequencing with enrichment of human 

respiratory viruses. The results obtained by the COVIDBENS team showed that both 
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technologies are effective for the detection of SARS-CoV-2 mutations. Amplicon 

sequencing works very effectively to specifically detect SARS-CoV-2 mutations and 

variants, while shotgun sequencing should be oriented towards the epidemiological 

monitoring of respiratory viruses in general (SARS-CoV-2, influenza, RSV, etc.). It 

should be noted that these techniques made it possible to retrospectively detect 

mutations of the Alfa variant in samples from the metropolitan area of A Coruña at the 

beginning of December, a month before that variant was detected in clinical samples, 

demonstrating the great potential of genome analysis of SARS-CoV-2 in wastewater for 

early epidemiological detection of variants. Once the methodology was fine-tuned and 

contrasted, it was decided to implement amplicon sequencing as a routine mutation 

tracking method. The genetic material was extracted and sequenced from samples 

obtained weekly. Data were analysed for surveillance mutations recommended by 

ECDC (European Center for Disease Prevention and Control), guidelines updated on 

March 11, 2022 (https://www.ecdc.europa.eu/en/covid-19/variants-concern). 

In the period May 2021 – March 2020, the SARS-CoV-2 sequencing work in 

wastewater carried out by COVIDBENS enabled reporting on the evolution in the 

presence of mutations and variants in the metropolitan area of A Coruña on a weekly 

basis. The data obtained through sequencing and analysis of mutations and variants of 

the virus can be viewed at the link http://www.edarbens.es/covid19.  

The statistical methods presented in the second section were used to estimate weekly the 

proportions of SARS-CoV-2 variants in the metropolitan area of A Coruña. For 

facilitating visual interpretation, the estimates of the proportions along time were 

smoothed with a local polynomial regression estimator. The smoothing parameters were 

selected using plug-in methods (see Loader, 1999).  

Figure 1 contains the smoothed estimates of the SARS-CoV-2 variant proportions along 

time in the period May 2021 – March 2022. The decrease of the Alpha variant (B.1.1.7) 

is shown at the beginning of the time period under study. The irruption of the Delta 

variant (B.1.617.2), its subsequent predominance and final vanishing are observed 

during this period. In the time interval December 2021 – January 2022, the Omicron 

variant  (B.1.1.529) appeared and abruptly increased, which was parallel to a sudden 

decrease of the Delta variant. The BA.2 Omicron subvariant also exhibits a sudden 

increase in February 2022.  
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Figure 1: Smooth estimation of the SARS-CoV-2 variant proportions along time in the 

metropolitan area of A Coruña in the period May 2021 – March 2020. 
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