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Abstract

In this paper, we consider the problem of enhancing
self-supervised visual-language pre-training (VLP) with
medical-specific knowledge, by exploiting the paired image-
text reports from the radiological daily practice. In par-
ticular, we make the following contributions: First, un-
like existing works that directly process the raw reports, we
adopt a novel report filter to extract the medical entities,
avoiding unnecessary complexity from language grammar
and enhancing the supervision signals; Second, we pro-
pose a novel entity embedding module by querying an ex-
ternal knowledge description base, to exploit the rich con-
text of additional information that the medical domain af-
fords, and implicitly build relationships between entities in
the language embedding space; Third, we propose a novel
Transformer-based fusion model for spatially aligning the
entity description with visual signals at the image patch
level only with self-supervised learning, thus enabling the
ability for spatial grounding; Fourth, we conduct thorough
experiments to validate the effectiveness of our proposed
architecture, and benchmark on numerous public bench-
marks e.g., ChestX-ray14, RSNA Pneumonia, SIIM-ACR
Pneumothorax, COVIDx CXR-2, COVID Rural, and Ede-
maSeverity. In both zero-shot and fine-tuning settings, our
model has demonstrated strong performance compared with
the former methods on disease classification and grounding.

1. Introduction
With the rapid development of deep learning, numerous

works have been proposed to facilitate computer-aided di-
agnosis in the medical field [16, 17, 39, 48]. Despite the
tremendous progress, these models are normally trained to
recognize or segment the structures that fall into a certain
closed set of anatomical or disease categories, whenever a
new disease comes to be of interest, a costly procedure for
data annotation, model re-training, and ethics proof will be
required, fundamentally limiting its practical values. As an
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Figure 1. Our method mainly considers combining medical knowl-
edge with VLP. a. shows the standard VLP flowchart which uses
text-image retrieval as a proxy task. b. is our MedKLIP flowchart.
We adopt a report filter module to decompose raw reports at entity
level and further use knowledge descriptions to explain entities.
Our model can realize zero-shot classification and grounding.

alternative, recent research considers to train the model by
exploiting a large number of multi-modal medical data, that
is generated from daily clinical routine, for example, the
most common example is the dataset of X-ray images with
paired radiological reports [15, 25, 28].

This paper focuses on self-supervised vision-language
representation learning in the medical domain, with the goal
of zero-shot disease diagnosis (classification) and ground-
ing. Undoubtedly, such tasks have also been widely inves-
tigated in the computer vision community, with significant
progress made in the past years, for example, CLIP [43],
ALBEF [30], BLIP [29], etc. However, to achieve such a
goal in the medical domain, different challenges must be
resolved, which requires research efforts from the commu-
nity: First, data availability, training Foundation Models in
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computer vision normally require over millions of image-
text pairs at ease, while in the medical domain, only a few
hundred thousand pairs are available [28]. The limited data
amount challenges language models to understand the re-
ports in free form [7]. Second, the problem considered in
medical diagnosis is naturally fine-grained, that requires
distinguishing between fine appearance details to under-
stand the disease, as a consequence, domain knowledge is
essential; Third, robustness is crucial, it is, therefore, prefer-
able to have explainability, where diagnosis results come
along with the visual grounding, to help radiologists to un-
derstand the system, and build trust between humans and
machines.

Unlike existing work in medical VLP (Vision-Language
Pre-training) [7, 22, 40, 56] that naı̈vely matches raw re-
ports with image scans, we propose a novel knowledge-
enhanced visual-language model that takes medical prior
into consideration and enables us to address the aforemen-
tioned challenges explicitly, as shown in Fig. 1: First, we
propose a report filter to extract useful medical entities,
and simplify each report into sets of triplets, denoted as
{entity,position, exist}. Consequently, decomposing re-
ports into entities leads to an effective representation of the
reports with minimal information loss, enriching supervi-
sion signals at the detailed entity level; Second, we map
these entities into fine-grained descriptions by querying a
well-defined medical knowledge base, and compute the text
embedding for these descriptions, to implicitly build rela-
tionships between entities; Third, we adopt a transformer-
based architecture for aligning the image patches with en-
tity descriptions, that simultaneously infer the likelihood of
certain diseases and the visual evidence in the form of a
spatial heatmap, i.e., providing grounding for explainability
purpose.

We train the model on the most widely-used medi-
cal image-report dataset MIMIC-CXR [28] and rigorously
evaluate on numerous public benchmarks, e.g., ChestX-
ray14 [50], RSNA Pneumonia [44], SIIM-ACR Pneumoth-
orax [1], COVIDx CXR-2 [41], COVID Rural [12, 47],
and EdemaSeverity [8]. We get a state-of-the-art zero-shot
classification and grounding performance on different dis-
eases, spanning different image distributions, with further
fine-tuning, our model still exceeds previous models signif-
icantly.

2. Related Work
Vision-Language Pre-training Models. Vision-Language
Pre-training (VLP) models have achieved great success in
natural scenarios. Generally, there are two typical structures
for VLP models. One is two-stream methods [5,27,30]. The
other is single-stream methods [10, 32]. These impressive
results promote VLP methods in medical. Different from
natural data, medical VLP suffers from a serious Lack of

Data (224k [28] vs 400M [5]). Most medical VLP meth-
ods follow the two-stream methods [8, 22, 40, 56]. Con-
VIRT [56] first proposed to use contrastive learning as a
proxy task in medical. LoVT and GLoRIA then focus on
improving the local alignment performance [8, 22]. BioViL
notices the language pattern in reports is different from
other natural texts and re-designs the language model used
for medical VLP [7]. These works have greatly contributed
to the development of this aspect. However, they still view
medical texts and images as common natural data and use a
classical pipeline to handle them, instead of leveraging the
rich prior knowledge in medical.

Medical Named-Entity-Recognition Models. Various
natural language processing (NLP) approaches have been
proposed to extract useful information from radiology re-
ports [25, 37, 42, 45]. These early methods considered only
the disease, causing they lose a lot of information. Some
Analysis tools [4,6] have also been developed to extract key
clinical concepts and their attributes from biomedical text.
Further state-of-the-art works [26, 51] are proposed to ex-
tract relationship between different entities without demand
of pre-defined close disease set, retaining most of useful in-
formation with high accuracy. This progress inspires us a
lot and provide a new perspective for VLP. However, how
to take advantage of this Named-Entity-Recognition (NER)
models have not been discussed sufficiently in VLP field.

Medical Knowledge Enhanced Models. Leveraging ex-
ternal medical knowledge to enhance deep learning models
is not a new topic [52]. Depending the approaches of us-
ing medical knowledge, They can be classified into model-
based and input-based two types. In model-based types, the
authors may imitate the radiological practice to design the
model [20, 23, 31, 49] or change the model structure based
on diagnostic patterns [11, 18, 38]. In input-based types,
the knowledge is viewed as an extra input to calculate fea-
tures [46, 53, 54] or to guide the final loss [9, 24]. Multi-
task learning and attention mechanism [33,34,36] are often
adopted to realize medical knowledge combination. How-
ever, most of these works are task-specific [52] because
medical knowledge lacks an effective shared representation
space across various diseases while we demonstrate that
leveraging medical entity descriptions with text encoding
has the potential to provide such a space.

3. Method

In this section, we start by describing our considered
problem scenario in Sec. 3.1, followed by the details of
our proposed Transformer-based architecture in Sec. 3.2,
including, the visual encoder, knowledge-enhanced text en-
coder, and the fusion module for aligning the visual and lan-
guage signals. In Sec. 3.3, we describe the training proce-
dure for our proposed model with the paired image-reports
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Figure 2. The whole framework of our method. The figure mainly contains the fourth module: Visual Encoder, Knowledge-enhanced
Language Encoding, Fusion Module. Knowledge-enhanced Language Encoding contains Text Encoder and Report Filter. Report Filter
extracts entities from the raw reports and Text Encoder further embeds them. Visual Encoder is used to encoder the input of visual
modalities and Fusion Module is used for cross-modality interaction. The details of Report Filter can be found in the right sub-figure. A
report is first filtered by a pre-trained filter and viewed as a set of triplets. The “Position” part is mixed with some negative positions for
contrastive loss and the “Exist” part is used for CE loss.

sourced from the daily routine X-ray scans.

3.1. Problem Scenario

Assuming we are given a training set with N samples,
i.e., Dtrain = {(X1, T1), . . . , (XN , TN )}, where Xi, Ti re-
fer to the X-ray image and its corresponding medical report
generated in the daily routine scans, respectively, our goal
is to train a visual-language model that enables us to diag-
nose the existence of certain diseases and localize the vi-
sual evidence spatially. Specifically, at inference time, we
can freely ask the system to identify the likelihood of the
patient getting a certain disease (may or may not be seen
during training), with its visual description for the disease
of interest:

ŝi, m̂i = Φfusion(Φvisual(Xi),Φtextual([description])), (1)

where Xi ∈ RH×W×3 refers to an image sample from the
test set, with H,W denoting height and width respectively.
ŝi ∈ [0, 1] refers to the inferred likelihood of the patient
having a certain disease indicated by the input description,
and m̂i ∈ RH×W×1 denotes a predicted spatial heatmap,
with high activation on pixels that potentially provide the
visual indication for such disease. In the following section,
we will detail the individual components of our architecture,
namely, the visual encoder, text encoder, and fusion mod-
ule, and training them with the available training set (Dtrain).

3.2. Architecture

In this section, we detail our proposed framework, con-
sisting of three main components, namely, visual encoding,
knowledge-enhanced language encoding, and fusion mod-
ule, as shown in Fig. 2. Note that, we hereon only consider
single sampled image-reports pair (Xi, Ti), and ignore the
subscript in notations for simplicity.

3.2.1. Visual Encoding

Given an X-ray image scan X ∈ RH×W×3, we can com-
pute the features with a visual backbone:

V = Φvisual(X ) ∈ Rh×w×d, (2)

h,w, d refer to the height, width, and feature dimension
of the output feature map, in our case, we adopt a stan-
dard ResNet-50 as the visual backbone, and take the out-
put from the 4th residual block. Note that, we make the
such an architectural choice for a fair comparison with ex-
isting work [7,22,40,56], while other visual backbones, e.g.,
ViT [14], can equally be applied.

3.2.2. Knowledge-enhanced Language Encoding

The goal of this module is to extract useful information
from the text report, by incorporating medical domain
knowledge. In particular, we design two stages, namely re-
port filtering, and entity encoding.

Report Filtering. To start with, we propose to condense
the report and transform it into a set of entity triplets, i.e.,
removing the unnecessary complexity from language gram-
mar, as shown in Figure 2 (right). In detail, we use a pre-
trained text filter [26, 55] to extract valuable information
from the report, for example, the medical entities and their
corresponding positions on the image.

Specifically, given a report T with a set of sentences,
T = {s1, s2, ..., sM}, the filter independently operates on
each of the sentences, and construct a number of triplets
from the report, with the extracted entity (most are dis-
eases), spatial position, and a label indicating the existence
of the disease:

Φfilter(sj) = {entityn, positionn, existn}, n ∈ [0, tj ], (3)
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where tj represents the total number of entities contained
in one sentence, with n = 0 indicating the special case that
there is no valid entity. Note that, the position refers to the
spatial position of the entity lying in an image, it is not to
be confused with the positional embedding in Transformer.

Entity Encoding. Here, we replace the entities by querying
detailed visual descriptions from a medical-purpose knowl-
edge base, for example, “Pneumonia” → “It is a condition
of the lung primarily affecting the small air sacs known as
alveolar. It may present with opacities and pleural effusion
and it can increase the diagnostic accuracy of lung consoli-
dation”. Note that, such descriptions for the medical termi-
nologies can easily be sourced from either existing educa-
tional textbooks or online resources12. Despite its simplic-
ity, converting the entities into descriptions is crucial for
more reliable and open-vocabulary diagnosis, as it further
decomposes the medical entities into visual attributes that
are shared by different diseases, encouraging the model to
capture a deep understanding of the visual evidence.

To encode the entity, we use the ClinicalBERT [3] as a
pre-trained text encoder, to first compute the embedding for
the entity description and position, and then adopt a linear
MLP to flexibly project the embedding to desired dims:

e = Φtextual([description]) ∈ Rd, (4)

p = Φtextual(“it is located at [position]”) ∈ Rd′
. (5)

Each triplet has now been converted into {e, p, l}, l ∈ {0, 1}
denotes the existence of the entity.

Discussion We have made two major differences compared
to the existing visual-language models in computer vision,
First, the information in medical reports is often more con-
densed, normally describing the existence of abnormality
and their positions in the image, thus, adopting the filter
operation can avoid unnecessary complexity from grammar,
while still retaining most of the useful information in re-
ports. Second, entities tend to be medical terminologies
that are only understandable to audiences with a medical
background, enrich the encoding by visual descriptions can
significantly help the model to capture a deep understand-
ing of the visual evidence for diseases, specifically, for seen
diseases, such shared visual attributes enable to build the
implicit relationship, while for unseen diseases, their visual
evidence may have already been well understood by pro-
cessing the descriptions of the seen ones, as they tend to be
shared among diseases.

1Wikipedia https://en.wikipedia.org/wiki/Wiki
2UMLS [6] https://www.nlm.nih.gov/research/umls/
index.html

3.2.3. Fusion Module

After extracting all the entities and their corresponding po-
sitions from the reports, we select the top |Q| most com-
monly appearing entities in reports, and compute the textual
embeddings for their corresponding descriptions, denoted
as an entity set Q = {e1, e2, ..., e|Q|}, and top |P | posi-
tion embeddings as a position set P = {p1, p2, ..., p|P |}.
For a certain image, its computed visual representation and
the entity set will be passed into a fusion module for align-
ment, consisting of multiple Transformer Decoder layers.
We treat the entity set Q as Query, and the image features
V as Key and Value into the Transformer decoders, the out-
puts from the fusion module are further fed into two linear
MLP layers, one is used for inferring the existence of the
entity, and the other generates an embedding to indicate the
entity’s spatial position:

{ŝ, p̂, m̂} = Φfusion(V, Q), (6)

where ŝ ∈ R|Q| represents the existence prediction for each
entity query, and p̂ ∈ R|Q|×d′

represents the prediction em-
bedding of spatial position for the entities. m̂ denotes the
average of the cross-attention maps sourced from Trans-
former Decoder layers. The training procedure will be de-
tailed in Sec. 3.3.

Discussion. In contrast to the existing approaches [56]
that aligns the reports with the entire image, our adopted
Transformer decoder enables to compute correspondences
between text and image at the patch level. Consequently,
the image features V are more suitable for downstream seg-
mentation tasks and the average of the cross-attention map
in each layers can be used directly for zero-shot grounding.

3.3. Training

To train the proposed model, we leverage the corre-
sponding triplets, for entities that are not mentioned in the
considered report, we simply ignore them while computing
loss. For simplicity, the following formulations are based
on the assumption that the considered query do have corre-
sponding triplets. In specific, for the existence prediction
ŝ, we use binary cross-entropy with the existence label, de-
noted as Lcls; to supervise the position prediction for each
entity query, we adopt contrastive learning, randomly sam-
ple M position embeddings from the position set:

Lloc = − 1

|Q|

|Q|∑
k=1

e⟨p̂k,pk⟩

e⟨p̂k,pk⟩ +
∑M

u=1 e
⟨p̂k,PI(k,u)⟩

, (7)

where ⟨·, ·⟩ represents the inner product of two vectors
and I(·, ·) is a random index sampling function. P is un-
normalized in calculation.

The final loss is the sum of the two:

Ltotal = α1Lloc + α2Lcls, (8)
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where α1, α2 refer to two hyper-parameters controlling the
ratio of the two losses, and we set them to be 1.0 by default.

4. Experiment

In this section, we start by introducing the dataset used
for experiments, e.g., pre-training, and various downstream
datasets. Then we describe the implementation details and
the considered baselines.

4.1. Pre-training Dataset

MIMIC-CXR v2 [19, 28] consists of over 227k studies of
paired image-report data, they are sourced from 65,379 pa-
tients at different scanning. Each study can have one or two
images (different scan views), totaling 377,110 images.

4.2. Datasets for Downstream Tasks

ChestX-ray14 [50] contains 112,120 frontal-view X-ray
images of 30,805 unique patients, collected from the year
of 1992 to 2015 by NIH(National Institutes of Health), with
labels of 14 common diseases provided. We split the dataset
into 0.8/0.1/0.1 for train/valid/test.

RSNA Pneumonia [44] contains more than 260k frontal-
view chest X-rays with corresponding pneumonia opac-
ity masks collected by RSNA (Radiological Society of
North America). Commonly, it is treated as a classifica-
tion tasks [7, 22]. We split the dataset into 0.6/0.2/0.2 for
train/valid/test.

SIIM-ACR Pneumothorax [1] contains more than 12k
frontal-view chest X-rays with pneumothorax masks col-
lected by SIIM-ACR (Society for Imaging Informatics in
Medicine and American College of Radiology). Similarly
to RSNA Pneumonia dataset, it can be both used as clas-
sification and segmentation tasks. We split the dataset into
0.6/0.2/0.2 for train/valid/test.

COVIDx CXR-2 [41] and COVID Rural [12, 47] aim to
evaluate on diagnosing COVID-19. COVIDx CXR-3 con-
tains 29,986 images from 16,648 patients with COVID-19
classification labels. We use it as a classification dataset and
split it into 0.7/0.2/0.1 for train/valid/test. Additionally,
we use COVID Rural dataset for COVID-19 segmentation.
It contains more than 200 chest X-rays with segmentation
masks, and we split it into 0.6/0.2/0.2 for train/valid/test.

Edema Severity [8] contains 6,524 examples from MIMIC-
CXR with pulmonary edema severity labels (0 to 3, increas-
ing severity) extracted from the radiology reports. Of these,
141 radiologists were examined by radiologists, and con-
sensus was reached on severity level. It can be seen as a
typical fine-grained classification task. We split the dataset
into 0.6/0.2/0.2 for train/valid/test.

4.3. Implementation Details

This section details the implementation for architecture,
pre-training, zero-shot inference and fine-tuning procedure.
Model architecture. As input to the model, images are re-
sized into 224 × 224 × 3. We use the first four layers of
ResNet50 [21] as our visual backbone (Φvisual), and adopt
a MLP layer to transform the output feature dimension into
d = 256. As a result, the output feature maps from vi-
sual encoder is V ∈ R14×14×256. On the report side, we
extract the entities with a pre-trained text filter, as described
in [26], and compute the entity and position embedding with
a pre-trained ClinicalBERT [2], its default embedding dim
is d′ = 768. We obtain |Q| = 75 entities and |P | = 51 po-
sitions that most frequently appear in the reports, following
[55]. We sample M = 7 negative positions for each en-
tity to calculate contrastive loss for training entity position
training. In the fusion module, We adopt 4 Transformer De-
coder layers with 4 heads in each layer.
Pre-training. At this stage, both the filtering operation and
language encoding use pre-trained networks, while the vi-
sual encoder and fusion module are trained end-to-end on
the image-text pairs. We use AdamW [35] optimizer with
lr = 1 × 10−4 and lrwarm up = 1 × 10−5. We train on a
GeForce RTX 3090 GPU with batch size 32 for 60 epochs.
The first 5 epochs are set for warming up.
Inference. At inference time, given a test image, we aim
to infer the existence of certain entity / disease, and ground
their visual evidence. For those entities that have appeared
at training time, we simply adopt the corresponding ele-
ments from the entity query set, while for those unseen
ones, we replace the entity with a brief description, and
treat that as an added query to the model. The existence
output can be directly applied for classification and the av-
erage cross-attention of different layers in the transformer-
based fusion module between specific query and the visual
features are used for grounding.
Fine-tuning. For the downstream tasks, with large amount
of training data, we can fine-tune the model end-to-
end, with our pre-trained visual backbone as initializa-
tion. Specifically, for image classification task, we adopt
ResNet50 [21] and initialize its first four layers with our
pre-trained visual encoder. For image segmentation task,
we use ResUNet [13] as backbone and initialize its encoder
with our pre-trained image encoder.

4.4. Baselines

We compare with various existing state-of-the-art med-
ical image-text pre-train methods, namely, ConVIRT [56],
GLoRIA [22] and BioViL [7]. Since ConVIRT and GLo-
RIA are pre-trained on an in-house dataset, we re-train their
models on MIMIC-CXR dataset for fair comparison. For
BioViL, we use the officially released models by the au-
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Dataset RSNA Pneumonia SIIM-ACR Pneumothorax ChestX-ray14
Methods AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑

ConVIRT [56] 0.8042 0.5842 0.7611 0.6431 0.4329 0.5700 0.6101 0.1628 0.7102
GLoRIA [22] 0.7145 0.4901 0.7129 0.5342 0.3823 0.4047 0.6610 0.1732 0.7700

BioViL [7] 0.8280 0.5833 0.7669 0.7079 0.4855 0.6909 0.6912 0.1931 0.7916

Ours 0.8694 0.6342 0.8002 0.8924 0.6833 0.8428 0.7676 0.2525 0.8619

Table 1. Comparison with other state-of-the-art methods on zero-shot classification task. AUC, F1 and ACC scores are reported. For
ChestX-ray14, the metrics all refer to the macro average on the 14 diseases.

Prompt Type Direct Covid-19 Covid-19 Description
Methods AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑

ConVIRT [56] 0.6159 0.7057 0.6113 0.5208 0.6902 0.5266
GLoRIA [22] 0.6319 0.6938 0.5710 0.6659 0.7007 0.6083

BioViL [7] 0.6137 0.6958 0.5461 0.5382 0.6910 0.5375

Ours 0.6561 0.7066 0.5917 0.7396 0.7670 0.7006

Table 2. Comparison with other state-of-the-art
methods on zero-shot Covid-19 classification task.
AUC, F1 and ACC scores are reported. “Direct
covid-19” refers to directly use “Covid-19” to con-
struct the prompt sentence while “Covid-19 Descrip-
tion” refers to replace the name “Covid-19” with its
medical description.

thors. For zero-shot setting, we use the prompt as men-
tioned by BioViL [7]. For fine-tuning, we all use ResNet50
as the visual encoder as described in Sec. 4.3.

4.5. Metrics

AUC refers to the area under the receiver operating charac-
teristic (ROC) curve, that is commonly used for detection
and binary classification tasks.

F1 and ACC are used as supplementary metrics for classi-
fication tasks. Specifically, F1 comprehensively measures
the recall and precision of the model, and ACC is the short
of Accuracy. The final binary prediction threshold is chosen
to maximise the F1 score. The ACC score is also calculated
under this threshold.

Pointing Game is used for evaluating the grounding perfor-
mance. In specific, we extract the region with max response
in the output heat-map, for one instance, if the region hit
the ground-truth mask, it is considered a positive prediction,
otherwise negative. Finally, accuracy can be calculated as
the pointing game score.

Dice and IOU are commonly used for segmentation tasks.
For zero-shot segmentation, we search the segmentation
threshold with 0.01 interval for all methods, and report the
maximal Dice score for each model.

Precision and Recall refer to the detection Precision and
Recall. For medical, it is important that lesions are de-
tected even without fine segmentation. Additionally, in
some hard cases, especially for the zero-shot setting, Dice
and IOU may be too strict to reflect the performance differ-
ence. Precision and recall scores can compensate for these.
We choose the IOU threshold as 0.1 to calculate the scores.

5. Results
In this section, we will report the experimental results. In

general, we split the results into two parts: zero-shot setting

and fine-tuning setting. In the zero-shot case (Sec. 5.1), we
carry out the ablation study and compare it with the other
SOTA image-text pre-train methods. We mainly consider
classification and segmentation tasks; In the fine-tuning
case (Sec. 5.2), we evaluate the model’s transferability by
fine-tuning the model with 1%, 10%, and 100% data por-
tion. Additionally, we also add a disease grading down-
stream task, which can be seen as a fine-grade classification
task, showing that our pre-trained model can be transferred
to the downstream tasks at ease.

5.1. Zero-shot

In this section, we compare our method with the other
state-of-the-art methods under zero-shot setting, classifica-
tion, and grounding. Due to the space limitation, we include
the entire ablation study in the supplementary material, re-
ferring to it for more details and analysis, and all compar-
isons here are made using our best model with position con-
trastive loss and entity description encoder.

5.1.1. Classification

Seen Diseases. As shown in Tab. 1, we compare with ex-
isting methods on three widely-used datasets, demonstrat-
ing consistent performance improvement. Specifically, on
pneumonia and pneumothorax datasets, despite the images
being collected by different clinics with different diseases,
our model improves the AUC score from 0.83 to 0.87 on
RSNA pneumonia dataset and from 0.71 to 0.89 on SIIM-
ACR pneumothorax dataset, as shown in Tab. 1. This
shows that our method can better deal with the multi-center
and multi-disease data distribution in medical. While on
ChestX-ray14 dataset, we improve the average AUC scores
from 0.69 to 0.77, we refer the reader to supplementary ma-
terial for a more detailed comparison of 14 diseases.
Unseen Diseases. In particular, we use covid-19 to evaluate
the systems. Note that, our considered setting is different
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Methods Pointing Game↑ Recall↑ Precision↑ IoU↑ Dice↑
GLoRIA [22] 0.7607 0.8330 0.1621 0.2182 0.3468

BioViL [7] 0.8342 0.8521 0.5034 0.3029 0.4386

Ours 0.8721 0.8661 0.6420 0.3172 0.4649

(a) Zero-shot grounding on Pneumonia

Methods Pointing Game↑ Recall↑ Precision↑
GLoRIA [22] 0.0651 0.2377 0.0585

BioViL [7] 0.0252 0.1963 0.1429

Ours 0.1975 0.3562 0.1940

(b) Zero-shot grounding on Pneumothorax

Table 3. Comparison with other state-of-the-art methods on zero-shot region grounding tasks. (a) shows the results on RSNA Pneumonia
dataset. (b) shows the results on SIIM-ACR Pneumothorax dataset. The pneumothorax region tends to be thin and narrow and much more
challenging for grounding, we thus only consider pointing game, recall, and precision. Our method can achieve better performance on
different metrics, especially on the pointing game score. ConVIRT as the basic method proposed earliest can not realize this function.

Prompt Type Direct covid-19 Covid-19 Description
Methods Pointing Game↑ Recall↑ Precision↑ IoU↑ Dice↑ Pointing Game↑ AR↑ AP↑ IoU↑ Dice↑

GLoRIA [22] 0.0364 0.2906 0.1073 0.0645 0.1141 0.2727 0.2821 0.1336 0.0596 0.1075
BioViL [7] 0.4000 0.2564 0.2703 0.1198 0.1967 0.1818 0.2393 0.1637 0.0861 0.1427

Ours 0.1818 0.1880 0.1497 0.0747 0.1289 0.5818 0.5214 0.4959 0.1373 0.2278

Table 4. Comparison with other state-of-the-art methods on zero-shot covid-19 opacity region grounding task. “Direct covid-19” refers
to directly use “Covid-19” to construct the prompt sentence while “Covid-19 Description” refers to replace the name “Covid-19“ with its
medical description. Our method can achieve better performance on different metrics.

from existing approaches, where all entities have been ex-
posed to the model at training time, and prediction can be
made by a retrieval-type approach, i.e., compute the simi-
larity between the image and the entity embedding by en-
coding the disease name with a language encoder [7], while
we are considering a stricter setting for openset classifica-
tion. Covid-19 is a new disease that only appeared in 2019,
MIMIC-CXR reports collected in the year 2015 do not in-
clude any entity of covid-19, thus it requires the system to
have the ability to diagnose truly unseen diseases.

As shown in Tab. 2, existing approaches that only rely
on disease name struggles to make the correct diagnosis.
While with our proposed approach by introducing medical
knowledge, i.e., using entity descriptions, our methods can
understand the complex medical entity descriptions unseen
in the training set, and significantly boost the performance
0.66 to 0.74 on AUC and from 0.59 to 0.70 on ACC.

5.1.2. Grounding

In addition to the plain diagnosis, explainability can be
equally critical in healthcare, improving the reliability and
trustiness of the machine learning systems. Here, we con-
sider providing explainability by grounding the abnormal-
ity in the prediction and compare against the existing ap-
proaches. Similarly, we split the diseases into seen and
unseen ones, depending on whether their names have ap-
peared in the medical reports. Specifically, “Pneumonia”
and “Pneumothorax” are viewed as seen, and “Covid-19” is
viewed as unseen. Due to the space limitation, we refer the
reader to supplementary material for visualization results.

Seen Diseases. We show the results for grounding on
RSNA Pneumonia opacity and SIIM-ACR Pneumothorax

collapse in Tab. 3. As shown in Tab. 3a, our proposed model
surpasses existing approaches on all metrics, for example,
we improve the pointing game score from 0.83 to 0.87, the
detection Recall from 0.85 to 0.87, the detection precision
from 0.50 to 0.64, the IOU from 0.30 to 0.32 and the Dice
from 0.44 to 0.46. While on SIIM-ACR dataset (Tab. 3b),
the pneumothorax region tends to be thin and narrow, local-
izing it can often be more challenging than that of opacity
grounding [7], we thus only consider pointing game, recall,
and precision. Similarly, our method can achieve signifi-
cantly better performance than prior approaches.

Unseen Diseases. We also conduct the zero-shot ground-
ing experiment on the unseen disease, namely, Covid-19, as
shown in Tab. 4. Our model has shown consistent improve-
ments in all metrics, e.g., boosting the pointing game score
from 0.40 to 0.58. One observation to be noticed is that, re-
sults in Tab. 4 are mostly consistent with those in Tab. 2, i.e.,
better classification results tend to lead to better grounding.
Overall, our model with knowledge-enhanced language en-
coding has facilitated the visual encoder to learn underlying
evidence relating to the diseases, therefore, leading to more
interpretable representations than prior approaches.

5.2. Fine-tuning

In this section, we consider the fine-tuning scenario, with
the pre-trained model as initialization, and trained end-to-
end on the downstream tasks. We test on three different
tasks, namely, classification, segmentation, and grading. In
classification and segmentation, the test splits and metrics
are the same as in the “zero-shot” section. Grading is a new
task we introduce in fine-tuning setting, which can be seen
as a fine-grained classification task.
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Dataset Pneumonia Pneumothorax Covid-19 ChestX-ray14
Data Portion 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

Scratch 0.7107 0.8150 0.8626 0.4347 0.6120 0.6571 0.7861 0.9162 0.9554 0.6005 0.7365 0.7924
ConVIRT [56] 0.8398 0.8562 0.8761 0.7134 0.7826 0.9004 0.8675 0.9541 0.9726 0.6615 0.7658 0.8128
GLoRIA [22] 0.8599 0.8666 0.8846 0.7439 0.8538 0.9014 0.9065 0.9381 0.9728 0.6710 0.7642 0.8184

BioViL [7] 0.8233 0.8538 0.8836 0.6948 0.7775 0.8689 0.8989 0.9529 0.9729 0.6952 0.7527 0.8245

Ours 0.8731 0.8799 0.8931 0.8527 0.9071 0.9188 0.9224 0.9657 0.9729 0.7721 0.7894 0.8323

Table 5. Comparison of AUC scores with other state-of-the-art methods on fine-tuning classification task. The macro average of AUC
scores on 14 diseases are reported for ChestX-ray14 dataset.

Diseases Pneumonia Pneumothorax Covid-19
Data Portion 1% 10% 100% 1% 10% 100% 1% 10% 100%

Scratch 0.4347 0.6047 0.7068 0.2133 0.3323 0.7447 0.1481 0.2367 0.3228
ConVIRT [56] 0.5706 0.6491 0.7201 0.5406 0.6121 0.7352 0.1995 0.2724 0.3737
GLoRIA [22] 0.6555 0.6907 0.7328 0.5673 0.5778 0.7694 0.1889 0.2809 0.3869

BioViL [7] 0.6824 0.7038 0.7249 0.6267 0.6998 0.7849 0.2113 0.3239 0.4162

Ours 0.7064 0.7162 0.7579 0.6659 0.7210 0.7937 0.2445 0.3539 0.4399

Table 6. Comparison of Dice scores with other state-of-the-art methods on fine-tuning segmentation tasks. Three diseases are reported,
and for each disease, three data portions, 1%, 10%, 100% are adopted to show the performance change under different data amounts.

Methods 0 1 2 3 AVG
AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑

Scratch 0.7631 0.7036 0.6738 0.5383 0.3593 0.3223 0.6692 0.4328 0.7012 0.8420 0.5694 0.8770 0.7031 0.5163 0.6436
ConVIRT [56] 0.8453 0.7769 0.7793 0.6099 0.3938 0.4629 0.7202 0.4843 0.6445 0.9047 0.6154 0.8809 0.7700 0.5676 0.6919
GLoRIA [22] 0.8304 0.7577 0.7520 0.6208 0.3991 0.4922 0.7339 0.4958 0.7037 0.9246 0.6667 0.9102 0.7774 0.5798 0.7145

BioViL [7] 0.8034 0.7378 0.7148 0.6035 0.3912 0.4570 0.6860 0.4497 0.6777 0.9229 0.6500 0.9160 0.7540 0.5572 0.6914

Ours 0.8502 0.7646 0.7539 0.6641 0.4140 0.5392 0.7605 0.5266 0.7031 0.8845 0.6250 0.9160 0.7898 0.5826 0.7280

Table 7. Comparison with other state-of-the-art methods on fine-tuning edema severity grading multi-class classification task. AUC score
is reported in the Table. “0,1,2,3” in the table represents the severity level and final macro average scores are reported.

5.2.1. Classification

We experiment on four different datasets, using 1%, 10%,
100% of the data for fine-tuning, that is consistent with the
existing work [7,22,56]. As shown in Tab. 5, our model has
demonstrated substantial improvements in the AUC scores
over the existing approaches across all datasets, reflecting
that our pre-trained representation is of higher quality than
existing models. We refer the readers to the supplementary
material for more detailed comparison results.

5.2.2. Segmentation

In Tab. 6, we conduct fine-tuning experiments on three dif-
ferent diseases for segmentation. We pick 1%, 10%, 100%
of the data for fine-tuning. For all three different diseases
with different image distributions, our methods surpass the
existing state-of-the-art methods by a large margin, espe-
cially under the low-data regime.

5.2.3. Grading

Besides diagnosis, grading the disease severity level also
plays an important role. Here, we adopt our pre-trained fea-
tures and train them for the multi-class classification task,

with 0 to 3 representing different severity levels. As shown
in Tab. 7, for each level, the AUC, F1, and ACC scores are
calculated as one class against all other ones, for example,
0 vs {1, 2, 3}. Final macro average scores of four levels are
computed. On the majority of severity levels, our method
can achieve the best results.

6. Conclusion
In this paper, we introduce a novel medical knowledge

enhanced VLP model. First, we propose a report filter to
extract useful medical entities with more useful supervi-
sion signals, simplifying complex raw reports with mini-
mal information loss. Second, we translate entities into de-
tailed medical descriptions and embed them with a text en-
coder enabling the network to understand complex medical
expert-level knowledge. Finally, a transformer-based struc-
ture is proposed to do local region alignment. In experi-
ments, We evaluate our method on different datasets under
various settings. Our method shows strong zero-shot clas-
sification and grounding abilities, even facing unseen dis-
eases. Besides, in fine-tuning setting, our method still out-
performs state-of-the-art methods significantly, showing the
superiority of our method.
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A. The Entity Description Base and Position Set
Tab. 8 shows the descriptions we used to translate different entities. We have kept 75 entities in query set Q, following [55].

“Tail abnorm obs” entity represents some tailed entities and “exluded obs” represents some entities useless for diagnosis.
The last “covid-19” description row is only referred to for inference since it does not appear in pre-train reports.

Table 8. The Entity description used for translate single entity name. The description can be easily found from the open website.

Entity Description

normal It means the absence of diseases and infirmity, indicating the structure is normal.
clear The lungs are clear and normal. No evidence for other diseases on lung.
sharp This means that an anatomical structure s boundary or edge is clear and normal, meaning it is free of diseases.
sharply “Sharply seen means that an anatomical structure is clearly visible.
unremarkable This represents some anatomical structures are normal, usually modifying cardiac and mediastinal silhouettes.
intact The bonny structure is complete and normal, meaning no fractures.
stable The modified anatomical structures are normal and stable. No evidence for diseases.
free It usually refers to free air and is associate with pneumothorax, atelectasis, pneumoperitoneum and emphysema.
effusion A pleural effusion is accumulation of excessive fluid in the pleural space, the potential space that surrounds each lung. A pleural

effusion infiltrates the space between the visceral pleura and the parietal pleura.
opacity It is defined as an area of hazy opacification due to air displacement by fluid, airway collapse, fibrosis, or a neoplastic process. It is

causes include infections, interstitial lung disease, and pulmonary edema.
pneumothorax A pneumothorax is an abnormal collection of air in the pleural space between the lung and the chest wall. It may be caused by

pneumonia or fibrosis and other diseases.
edema Pulmonary edema, also known as pulmonary congestion, is excessive liquid accumulation in the tissue and air spaces of the lungs. It

will show fluid in the alveolar walls.
atelectasis It is the collapse or closure of a lung resulting in reduced or absent gas exchange. Findings can include lung opacification and loss of

lung volume.
tube It is a surgical drain that is inserted through the chest wall and into the pleural space or the mediastinum to remove undesired substances

such as air.
consolidation It is a region of normally compressible lung tissue that has filled with liquid instead of air. Consolidation must be present to diagnose

pneumonia: the signs of lobar pneumonia are characteristic and clinically referred to as consolidation.
process Acute process means there is abnormality in the anotomy structure.
abnormality It means the exist of diseases and infirmity, indicating the structure is abnormal.
enlarge It usually modifies cardiac silhouette and heart. Cardiomegaly is a medical condition in which the heart is enlarged.
tip It refers to the top head of the tube.
low The presence of low lung volumes may be a sign of a restrictive lung condition such as pulmonary fibrosis or sarcoidosis.
pneumonia Pneumonia is an inflammatory condition of the lung primarily small air sacs known as alveoli. Pneumonia may present with opacities.

Complications such as pleural effusion may also be found increasing the diagnostic accuracy of lung consolidation and pleural effusion
line It refers to venous access line ot PICC lines.
congestion Pulmonary congestion is defined as accumulation of fluid in the lungs, resulting in impaired gas exchange and arterial hypoxemia.
catheter catheter is a tube placed in the body to drain and collect urine from the bladder
cardiomegaly Cardiomegaly (sometimes megacardia or megalocardia) is a medical condition in which the heart is enlarged.
fracture Fracture is a break in a rib bone.
air It refers to the free air or gas in pleural space, indicating pneumothorax. Air displacement by fluid may lead to opacity.
tortuous The Aorta is slightly tortuous. Sometimes it may refer to varicose veins
lead It refers to the leading head of the tube.
disease It means the exist of diseases and abnormalty, indicating the structure is abnormal.
calcification Pulmonary calcification is a common asymptomatic finding. Pulmonary calcifications are caused mainly by two mechanisms: the

dystrophic form and the metastatic form
prominence It means the exist of some observation.
device It refer to some equipments like picc tub, valve catheter, pacemaker hardware, arthroplastmarker icd defib, device support equipment

and mediport
engorgement Pulmonary vascular engorgement means obstruction of the normal flux of blood within the blood vessel network of the lung resulting

in engorgement of pulmonary vessels
picc A peripherally inserted central catheter (PICC), also called a PICC line, is a long, thin tube that s inserted through a vein in your arm

and passed through to the larger veins near your heart.
clip Surgical clips or vascular clips usually represent the one kind of medical equipments.
elevation If tissues or anatomical structures are elevated, they are raised up higher than the normal location.
expand It means the lungs are normally expanded and clear, indicating the absence of pneumothorax.
nodule A lung nodule or pulmonary nodule is a relatively small focal density in the lung. it may be confused with the projection of a structure

of the chest wall or skin, such as a nipple, a healing rib fracture or lung cancer.
wire Sternotomis wires means the center line of the chest.
fluid It refers to the water of liquid in the lung and it may indicate edema and other diseases.
degenerative Degenerative disease is the result of a continuous process based on degenerative cell changes
pacemaker pacemaker device usually represents the one kind of medical equipments.
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Entity Description

thicken Pleural thickening is an increase in the bulkiness of one or both of the pulmonary pleurae. It may cause by pulmonary Infection,
empyema, tuberculosis or lung cancer.

marking It represents interstitial markings or bronchovascular markings
scar A scar (or scar tissue) is an area of fibrous tissue that replaces normal tissues after an injury.
hyperinflate Hyperinflated lungs are larger-than-normal lungs as a result of trapped air.
blunt Blunting of the costophrenic angles is usually caused by a pleural effusion, as already discussed. Other causes of costophrenic angle

blunting include lung disease in the region of the costophrenic angle, and lung hyperexpansion.
loss The etiology of lung volume loss can be listed as follow: airway obstruction or compression, obesity, scoliosis, restrictive diseases

such as pulmonary fibrosis and interstitial lung disease, tuberculosis.
widen The mediastinum is not widened or enlarged.
collapse Collapse lung refers to pneumothorax or atelectasis.
density The density (more precisely, the volumetric mass density; also known as specific mass), of a substance is its mass per unit volume.
emphysema Emphysema, or pulmonary emphysema, is a lower respiratory tract disease, characterized by air-filled spaces (pneumatosis) in the

lungs, that can vary in size and may be very large.
aerate Aeration (also called aerification or aeriation) is the process by which air is circulated through, mixed with or dissolved in a liquid or

other substances that act as a fluid (such as soil).
mass A lung mass is an abnormal growth or area in the lungs and it can also view as lung cancer.
crowd Crowding of the bronchovascular structures is an important direct sign of volume loss. The atelectatic lung enhances densely after

contrast administration because of closeness of the pulmonary arteries and arterioles within the collapsed lobe.
infiltrate A pulmonary infiltrate is a substance denser than air, such as pus, blood, or protein, which lingers within the parenchyma of the lungs.

Pulmonary infiltrates are associated with pneumonia, tuberculosis and sarcoidosis.
obscure Some anatomy structures are not clear and is difficult to understand or see.
deformity It means some body parts are abnormal or unjuried.
hernia Lung hernia (Sibson hernia) is a protrusion of lung outside of thoracic wall. the hernia is noted after chest trauma, thoracic surgery or

certain pulmonary diseases.
drainage Tube drainage represents the one kind of medical equipment.
distention Distension generally refers to an enlargement, dilation, or ballooning effect. It may refer to: Abdominal distension.
shift The mediastinal shift is the deviation of the mediastinal structures towards one side of the chest cavity, usually seen on chest radiograph.

It indicates a severe asymmetry of intrathoracic pressures.
stent Tracheal stent represents the one kind of medical equipments
pressure Pulmonary venous pressure is intermediate between mean PAP and LAP over all physiologic pressures
lesion Lung nodules, pulmonary nodules, white spots, lesions—these terms all describe the same phenomenon: an abnormality in the lungs.
finding Some observation on body parts, usually indicating abnormalty.
borderline Borderline size of the cardiac silhouette means the cardiac silhouette is not enlarged and normal.
hardware It represents the one kind of medical equipments.
dilation The state of being larger or more open than normal
chf Heart failure — sometimes known as congestive heart failure — occurs when the heart muscle doesn’t pump blood as well as it should.

When this happens, blood often backs up and fluid can build up in the lungs, causing shortness of breath.
redistribution If the pulmonary edema is due to heart failure or fluid overload, you may also see cardiomegaly and distension of the pulmonary veins,

particularly in the upper lung fields.
aspiration Aspiration pneumonia occurs when food or liquid is breathed into the airways or lungs, instead of being swallowed.
tail abnorm obs Some very rare diseases.
excluded obs Some meaningless observations.

covid-19 It is a contagious disease caused by a virus. Ground-glass opacities, consolidation, thickening, pleural effusions commonly appear in
infection.

Additionally, we keep 51 positive positions, following [55], to form the position set P , as {trachea, left hilar, right hilar,
hilar unspec, left pleural, right pleural, pleural unspec, heart size, heart border, left diaphragm, right diaphragm, di-
aphragm unspec, retrocardiac, lower left lobe, upper left lobe, lower right lobe middle right lobe, upper right lobe,
left lower lung, left mid lung, left upper lung left apical lung, left lung unspec, right lower lung, right mid lung,
right upper lung right apical lung, right lung unspec, lung apices, lung bases, left costophrenic right costophrenic,
costophrenic unspec, cardiophrenic sulcus, mediastinal, spine clavicle, rib, stomach, right atrium, right ventricle, aorta,
svc, interstitium, parenchymal, cavoatrial junction, cardiopulmonary, pulmonary, lung volumes, unspecified, other}.
“Other” is used to reprepresnt some tailed positions.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.23284412doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.10.23284412
http://creativecommons.org/licenses/by-nc-nd/4.0/


B. Details of Fusion Module
In the transformer-based fusion module, the queries are first passed through a self-attention layer and then followed by a

multi-head attention layer between the modified queries and image features. In each head, the image features are processed
by a linear key head and a linear value head as key embeddings and value embeddings independently. The value is weighted-
added based on the attention map, which is calculated by the soft-max dot product of the keys and queries. Finally, a feed-
forward network gathers the vector of different heads resulting in the output of this layer. The output vector of the former
layer is considered as the entity query vector of the next layer. In formulation, if denoting Φi

fusion(·, ·) : RN×D2 ×RP 2×D2 7→
RN×D2 as the i-th layer, the procedure is expressed as:

Φi
fusion(ri−1,V) = ri, r0 = Q. (9)

C. Ablation Study
Our final method mainly contains three key parts, transformer-based fusion module, position location contrastive

loss (PosCL), and entity description encoder (DE). We gradually remove the modules to analyze their effectiveness.
“w/o (DE)” refers to removing DE module and “w/o (PosCL+DE)” refers to only maintaining the fusion module with basic
CE loss. Tab. 9 and Tab. 10 shows the quantitative results.

Transformer Decoder. The lines about “w/o (PosCL + DE)” in tables demonstrate the performance of the basic model
modified only by base CE loss. This model can exceed many former methods. This indicates the complex syntax will hurt
the network to capture the useful entities significantly and our filtering operation combined with medical NER can greatly
relieve the problem.

Position Contrastive Loss. The PosCL can significantly help the network to ground the abnormalities. As shown in the
results by adding PosCL the classification results can be further improved, e.g., from 0.75 to 0.76 on AUC in ChestX-ray14
dataset. Besides classification, location contrastive loss can bring more gain in grounding. These results show position is
another vital element in reports especially for grounding tasks. Our filtered triplets can conclude and clean the reports with
little information loss and make the network learn the report information more straightforward.

Entity Description Encoder. By adding entity descriptions, we want to realize two goals. First, in addition to just learning
from the image-report data, the network can actively learn the relationship between different entities based on the entity
descriptions. As shown in tables, adding descriptions in most scenarios can help the network better understand the entity and
bring gain to the final metric scores. Second,the description encoder enables our model to handle openset new diseases.
Since the entity list is a close set during pre-training, our method will be only able to handle the seen diseases without
DE, while, with a description encoder, our method can handle unseen diseases and understand complex medical disease
knowledge.

Dataset RSNA Pneumonia SIIM-ACR Pneumothorax ChestX-ray14
Methods AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑ AUC↑ F1↑ ACC↑

w/o (PosCL + DE) 0.8532 0.6079 0.7669 0.8768 0.6672 0.8187 0.7502 0.2374 0.8541
w/o (DE) 0.8537 0.6241 0.8146 0.9017 0.7008 0.8584 0.7621 0.2452 0.8606

Ours 0.8694 0.6342 0.8002 0.8924 0.6833 0.8428 0.7676 0.2525 0.8619

Table 9. Ablation study on zero-shot classification task. AUC, F1 and ACC scores are reported. For ChestX-ray 14, the metrics all refer to
the macro average on the 14 diseases.

Methods Pointing Game↑ Recall↑ Precision↑ IoU↑ Dice↑
w/o (PosCL + DE) 0.7979 0.8961 0.4036 0.2783 0.4230

w/o (DE) 0.8424 0.8226 0.6520 0.3118 0.4610
Ours 0.8721 0.8661 0.6420 0.3172 0.4649

(a) Zero-shot grounding on Pneumonia

Methods Pointing Game↑ Recall↑ Precision↑
w/o (PosCL + DE) 0.1786 0.3151 0.1336

w/o (DE) 0.2080 0.3178 0.1711
Ours 0.1975 0.3562 0.1940

(b) Zero-shot grounding on Pneumothorax

Table 10. Ablation study on zero-shot grounding tasks. (a) shows the results on RSNA Pneumonia dataset. (b) shows the results on
SIIM-ACR Pneumothorax dataset.
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D. Detailed results on ChestX-ray14
We further show the detailed performance of 14 different diseases on ChestX-ray14 dataset. Tab. 11 shows the results on

the zero-shot setting. Our method can exceed the former methods for most diseases. The radar Fig. 3Y shows more visually
how our model compares with other solutions under the zero-shot setting. Our method can exceed the former methods for
most diseases. Under 100% fine-tuning settings, we achieved similarly excellent results as shown in Tab. 12.

Methods Ate. Car. Eff. Inf. Mas. Nod. Pna. Pnx. Con. Ede. Emp. Fib. Thi. Her. AVG

ConVIRT [56] 0.4533 0.4601 0.7262 0.6238 0.6790 0.6322 0.6097 0.6698 0.6855 0.7699 0.4701 0.5293 0.6098 0.6220 0.6101
GLoRIA [22] 0.6680 0.7647 0.7975 0.6159 0.6722 0.5293 0.6755 0.4785 0.7306 0.8212 0.6033 0.5104 0.6721 0.7144 0.6610

BioViL [7] 0.5026 0.6328 0.7914 0.5791 0.7029 0.6126 0.6866 0.7516 0.7455 0.8533 0.7136 0.6751 0.6560 0.7692 0.6909

w/o (PosCL + DE) 0.7131 0.8100 0.8635 0.6361 0.7776 0.6740 0.6903 0.8124 0.7915 0.8869 0.7480 0.6780 0.6429 0.7784 0.7502
w/o (DE) 0.7420 0.8270 0.8663 0.6336 0.7867 0.6974 0.7238 0.8310 0.8037 0.8887 0.7865 0.6715 0.5414 0.8691 0.7621

ours 0.7506 0.8299 0.8636 0.6280 0.7885 0.6947 0.7236 0.8361 0.8079 0.8888 0.7950 0.6511 0.5783 0.9097 0.7676

Table 11. Comparison with other state-of-the-art methods on zero-shot ChestX-ray 14 diseases classification task. For each disease,
AUC score is reported and the macro average AUC score is also reported. We use the first three letters to represent one disease but for
“pneumonia” and “pneumothorax” we use the first two and the last letters.

Methods Ate. Car. Eff. Inf. Mas. Nod. Pna. Pnx. Con. Ede. Emp. Fib. Thi. Her. AVG

Scratch 0.7835 0.8116 0.8563 0.6537 0.7788 0.6912 0.7004 0.8561 0.8090 0.8869 0.8564 0.7534 0.7454 0.9106 0.7924
ConVIRT [56] 0.8012 0.8360 0.8511 0.6613 0.8004 0.7490 0.6998 0.8666 0.8079 0.9023 0.9014 0.7933 0.7468 0.9627 0.8128
GLoRIA [22] 0.8263 0.8326 0.8596 0.6641 0.8179 0.7348 0.7104 0.8452 0.8129 0.8977 0.9310 0.7886 0.7608 0.9750 0.8184

BioViL [7] 0.8185 0.8543 0.8607 0.6660 0.8302 0.7633 0.7090 0.8595 0.8287 0.9031 0.9251 0.7912 0.7638 0.9696 0.8245

ours 0.8291 0.8594 0.8719 0.6565 0.8382 0.7647 0.7378 0.8807 0.8275 0.9083 0.9224 0.7977 0.7784 0.9796 0.8323

Table 12. Comparison with other state-of-the-art methods on fine-tuning ChestX-ray 14 diseases classification task. For each disease,
AUC score is reported and the macro average AUC score is also reported. We use the first three letters to represent one disease but for
“pneumonia” and “pneumothorax” we use the first two and the last letters.

Figure 3. The radar figure of our method and other
methods of ChestX-ray14 14 diseases. AUC scores
are reported and, as shown, our method exceeds the
previous state-of-the-art on most diseases.
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E. Visualization Results
Fig. 4 shows visualization results of our model on zero-shot grounding task. As shown in figure, the ground truth of

“Pneumonia” is given by bounding box and generally related to a large area region. Thus the metrics on this are higher than
other two datasets. Our network captures its regions very well. For “Pneumothorax”, its abnormality pattern is different from
other diseases, which aim to capturing the collapsed part of the lung, rendering darker areas on the images rather than brighter
opacity. Its ground-truth masks are generally thin and narrow while our network can still highlight its location. For “Covid-
19”, its image textual was similar to “Pneumonia”, but since this is a totally new disease, grounding its regions is much more
challenging. It requires the model to build relationships between them based on their complex definition and symptoms. The
visualization results suggest that our model successfully achieve this, supporting that, for other unseen diseases, our model
can also understand their complex descriptions.

(a) Pneumonia (b) Pneumothorax (c) Covid-19

GT PredictionGT Prediction GT PredictionGT Prediction GT PredictionGT Prediction

(a) Pneumonia (b) Pneumothorax (c) Covid-19

GT Prediction GT Prediction GT Prediction

Figure 4. The visualization of zero-shot grounding results of our method. Each column represents the results on one disease and the left
in it is the ground-truth and right is the heatmap predication of our model. The brighter the red on the figure, the more likely the model
considering this region to be associated with abnormalities.
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