Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Addressing spatial misalignment in population health research: a case study of US congressional district political metrics and county health data

View ORCID ProfileRachel C. Nethery, Christian Testa, Loni P. Tabb, William P. Hanage, Jarvis T. Chen, Nancy Krieger
doi: https://doi.org/10.1101/2023.01.10.23284410
Rachel C. Nethery
1Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Rachel C. Nethery
  • For correspondence: rnethery@hsph.harvard.edu
Christian Testa
2Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Loni P. Tabb
3Department of Epidemiology and Biostatistics, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William P. Hanage
4Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jarvis T. Chen
2Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nancy Krieger
2Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Areal spatial misalignment, which occurs when data on multiple variables are collected using mismatched boundary definitions, is a ubiquitous obstacle to data analysis in public health and social science research. As one example, the emerging sub-field studying the links between political context and health in the United States faces significant spatial misalignment-related challenges, as the congressional districts (CDs) over which political metrics are measured and administrative units, e.g., counties, for which health data are typically released, have a complex misalignment structure. Standard population-weighted data realignment procedures can induce measurement error and invalidate inference, which has prompted the development of fully model-based approaches for analyzing spatially misaligned data. One such approach, atom-based regression models (ABRM), holds particular promise but has scarcely been used in practice due to the lack of appropriate software or examples of implementation. ABRM use “atoms”, the areas created by intersecting all sets of units on which variables of interest are measured, as the units of analysis and build models for the atom-level data, treating the atom-level variables (generally unmeasured) as latent variables. In this paper, we demonstrate the feasibility and strengths of the ABRM in a case study of the association between political representatives’ voting behavior (CD-level) and COVID-19 mortality rates (county-level) in a post-vaccine period. The adjusted ABRM results suggest that more conservative voting record is associated with an increase in COVID-19 mortality rates, with estimated associations smaller in magnitude but consistent in direction with those of standard realignment methods. The results also indicate that ABRM may enable more robust confounding adjustment and more realistic uncertainty estimates, properly representing the uncertainties arising from all analytic procedures. We also implement the ABRM in modern optimized Bayesian computing programs and make our code publicly available, which may enable these methods to be more widely adopted.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was funded by NIH grant 1K0ES032458.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The study used only openly available human data that were obtained from CDC Wonder (https://wonder.cdc.gov/mcd-icd10-provisional.html) and the US Census Bureau (https://data.census.gov/).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data used in the present study are publicly available and can be obtained from CDC Wonder (https://wonder.cdc.gov/mcd-icd10-provisional.html) and the US Census Bureau (https://data.census.gov/).

https://github.com/rachelnethery/atom_model

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted January 11, 2023.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Addressing spatial misalignment in population health research: a case study of US congressional district political metrics and county health data
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Addressing spatial misalignment in population health research: a case study of US congressional district political metrics and county health data
Rachel C. Nethery, Christian Testa, Loni P. Tabb, William P. Hanage, Jarvis T. Chen, Nancy Krieger
medRxiv 2023.01.10.23284410; doi: https://doi.org/10.1101/2023.01.10.23284410
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Addressing spatial misalignment in population health research: a case study of US congressional district political metrics and county health data
Rachel C. Nethery, Christian Testa, Loni P. Tabb, William P. Hanage, Jarvis T. Chen, Nancy Krieger
medRxiv 2023.01.10.23284410; doi: https://doi.org/10.1101/2023.01.10.23284410

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (228)
  • Allergy and Immunology (504)
  • Anesthesia (110)
  • Cardiovascular Medicine (1238)
  • Dentistry and Oral Medicine (206)
  • Dermatology (147)
  • Emergency Medicine (282)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (531)
  • Epidemiology (10021)
  • Forensic Medicine (5)
  • Gastroenterology (499)
  • Genetic and Genomic Medicine (2453)
  • Geriatric Medicine (238)
  • Health Economics (479)
  • Health Informatics (1643)
  • Health Policy (752)
  • Health Systems and Quality Improvement (636)
  • Hematology (248)
  • HIV/AIDS (533)
  • Infectious Diseases (except HIV/AIDS) (11864)
  • Intensive Care and Critical Care Medicine (626)
  • Medical Education (252)
  • Medical Ethics (75)
  • Nephrology (268)
  • Neurology (2280)
  • Nursing (139)
  • Nutrition (352)
  • Obstetrics and Gynecology (454)
  • Occupational and Environmental Health (536)
  • Oncology (1245)
  • Ophthalmology (377)
  • Orthopedics (134)
  • Otolaryngology (226)
  • Pain Medicine (157)
  • Palliative Medicine (50)
  • Pathology (324)
  • Pediatrics (730)
  • Pharmacology and Therapeutics (313)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2280)
  • Public and Global Health (4833)
  • Radiology and Imaging (837)
  • Rehabilitation Medicine and Physical Therapy (491)
  • Respiratory Medicine (651)
  • Rheumatology (285)
  • Sexual and Reproductive Health (238)
  • Sports Medicine (227)
  • Surgery (267)
  • Toxicology (44)
  • Transplantation (125)
  • Urology (99)