Abstract
Despite wide scale assessments, it remains unclear how large-scale SARS-CoV-2 vaccination affected the wastewater concentration of the virus or the overall disease burden as measured by hospitalization rates. We used weekly SARS-CoV-2 wastewater concentration with a stratified random sampling of seroprevalence, and linked vaccination and hospitalization data, from April 2021–August 2021 in Jefferson County, Kentucky (USA). Our susceptible (S), vaccinated (V), variant-specific infected (I1 and I2), recovered (R), and seropositive (T) model (SVI2 RT) tracked prevalence longitudinally. This was related to wastewater concentration. The 64% county vaccination rate translated into about 61% decrease in SARS-CoV-2 incidence. The estimated effect of SARS-CoV-2 Delta variant emergence was a 24-fold increase of infection counts, which corresponded to an over 9-fold increase in wastewater concentration. Hospitalization burden and wastewater concentration had the strongest correlation (r = 0.95) at 1 week lag. Our study underscores the importance of continued environmental surveillance post-vaccine and provides a proof-of-concept for environmental epidemiology monitoring of infectious disease for future pandemic preparedness.
Competing Interest Statement
RJK declares participation on a Data Safety Monitoring Board or Advisory Board - Primary Health started March 2022 and runs through current. Primary health has a COVID testing platform for scheduling and reporting results. All other authors have no competing interests.
Funding Statement
Centers for Disease Control and Prevention (75D30121C10273), Louisville Metro Government, James Graham Brown Foundation, Owsley Brown II Family Foundation, Welch Family, Jewish Heritage Fund for Excellence, the National Institutes of Health, (P20GM103436), the Rockefeller Foundation, and the National Sciences Foundation (DMS-2027001).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
For the seroprevalence and data provided by the LMPHW under a Data Transfer Agreement, the University of Louisville Institutional Review Board approved this as Human Subjects Research (IRB number: 20.0393). For the wastewater data, the University of Louisville Institutional Review Board classified this as non-human subjects research (reference #: 717950).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵11 These authors jointly supervised this work: Ted Smith, Aruni Bhatnagar.
The manuscript has been revised.
Data availability
The seroprevalence, wastewater levels, and hospitalization information data used in the study can be accessed from the website https://github.com/cbskust/DSA_Seroprevalence. The computer code that implemented our model-based analysis will be made available immediately after publication.