Use of cytokine-induced killer cell therapy in colorectal cancer patients: a systematic review and meta-analysis.

3 **Criteria:** Original Research (Immune Cell therapies and Immune Cell Engineering)

4 **Authors:** Celine Man Ying Li^{1,2*}, Yoko Tomita^{2,3*}, Bimala Dhakal^{1,2}, Runhao Li^{2,3},

- Jun Li⁴, Paul Drew^{1,2}, Timothy Price^{2,3}, Eric Smith^{1,2,3}, Guy J. Maddern^{1,2} and Kevin
 Fenix^{1,2}
- ⁷ ¹ Department of Surgery, Adelaide Medical School, The University of Adelaide,
- 8 Adelaide, SA, Australia
- ² The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth
 Hospital, Woodville, SA, Australia
- ¹¹ ³ Medical Oncology, The Queen Elizabeth Hospital, Woodville, SA, Australia
- ⁴ Urinary Surgery of Zhumadian Central Hospital, Zhumadian, Henan, China
- ¹³ * Authors contributed equally.
- 14 **Correspondence to:** Dr Kevin Fenix (kevin.fenix@adelaide.edu.au)
- 15 **Keywords:** colorectal cancer; cytokine-induced killer cell therapy; systematic review

16 Abstract

Background: The number of clinical studies evaluating the benefit of cytokineinduced killer cell (CIK) therapy, an adoptive immunotherapy, for colorectal cancer (CRC) are increasing. In many of these trials CIK therapy was co-administered with conventional cancer therapy. The aim of this review is to systematically assess the available literature, in which the majority were only in Chinese, on CIK therapy for the management of CRC using meta-analysis, and to identify parameters associated with successful CIK therapy implementation.

24 Methods: Prospective and retrospective clinical studies which compared CIK 25 therapy to non-CIK therapy in CRC patients were searched for electronically on MEDLINE, Embase, CNKI and Wanfang Data databases. The clinical endpoints of 26 27 overall survival (OS), progression-free survival (PFS), OS and PFS rates, overall response rate (ORR) and toxicity were meta-analysed using hazard (HR) and 28 relative ratios (RR), and subgroup analyses were performed using Chi-square (Chi²) 29 test and I-square (I²) statistics for study design, disease stage, co-therapy type, and 30 timing of administration. 31

Results: In total, 70 studies involving 6,743 patients were analysed. CIK therapy 32 33 was favoured over non-CIK therapy for OS (HR=0.59, 95% CI: 0.53-0.65), PFS (HR=0.55, 95% CI: 0.47-0.63), and ORR (RR=0.65, 95% CI: 0.57-0.74) without 34 increasing toxicity (HR=0.59, 95% CI 0.16-2.25). Subgroup analyses on OS and PFS 35 by study design (randomised versus non-randomised study design), disease stage 36 (Stage I-III versus Stage IV), co-treatment with dendritic cells (CIK versus DC-CIK 37 therapy), or timing of therapy administration (concurrent versus sequential with co-38 39 administered anti-cancer therapy) also showed that the clinical benefit of CIK therapy 40 was robust in any subgroup analysis. Furthermore, co-treatment with dendritic cells did not improve clinical outcomes over CIK therapy alone. 41

42 **Conclusions:** Compared with standard therapy, patients who received additional 43 CIK cell therapy had favourable outcomes without increased toxicity, warranting

- further investigation into CIK therapy for the treatment of CRC.
- 45
- 46 Abstract Word Count: 299
- 47 Manuscript Word Count: 4511

48 Key Message

49 What is already known on this topic:

Cytokine-induced killer cell (CIK) therapy is an adoptive immunotherapy used to treat 50 both solid and haematological cancers for over 20 years. It is predominantly used in 51 China, with multiple studies reporting benefit in colorectal cancer (CRC) patients. 52 Despite this, CIK therapy treatment regimens are not widely used, possibly due in 53 part to the majority of the literature about CIK therapy in CRC being reported in 54 Chinese. Further, CIK therapy is commonly combined with other therapies but it is 55 currently not known if there is a specific combination or treatment regimen that is 56 57 optimal for CRC.

58 What this study adds:

We report the most comprehensive systematic review to date of CIK therapy for CRC patients, combining both Chinese and English language reports. Patients with CRC who received additional CIK therapy had better survival outcomes than with standard therapy alone. We also showed that the addition of dendritic cells (DC) to CIK therapy, common for CRC treatment, did not provide any clinical benefit over CIK therapy alone, and that CIK therapy is effective whether given concurrently or sequentially to standard treatment regimens.

66 How this study might affect research, practice, or policy:

67 Our systematic review of Chinese and English publications shows that CRC patients 68 benefit from the addition of CIK therapy to standard treatment protocols and warrants 69 further international studies.

70 Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide¹. Patients with locally advanced CRC, including regional lymph node metastases, have a 5-year survival of 75%, which reduces to 15% if there are distant metastases². Survival outcomes for locally advanced and metastatic CRC have steadily improved due to advancements in surgical techniques, peri-operative care and therapeutic options. However, tumour recurrence and therapy resistance remain a challenge, creating the need for new treatment options³.

During the last decade immunotherapy has revolutionised cancer treatment, with clinical efficacy established for multiple solid and haematological cancers⁴. Immune checkpoint inhibitors have provided significant clinical benefit, particularly in solid cancers with a high tumour mutation burden⁵. In advanced CRC cases they have become the standard of care for high microsatellite instability (MSI-high)/mismatch repair deficient (dMMR) tumours^{6,7}. Adoptive immunotherapy involves the administration of immune cells expanded and modified in *ex vivo* culture. Most
treatments have focused on chimeric antigen receptor T (CAR-T) cell therapy.
However, other technologies including dendritic cell (DC) therapy, natural killer (NK)
cell therapy, and cytokine-induced killer cell (CIK) therapy are being studied. Unlike
immune checkpoint inhibitors, none of the adaptive immunotherapy products are
Food and Drug Administration (FDA) approved for CRC treatment⁸.

90 CIK therapy is an autologous, adoptive immunotherapy generated by expanding a heterogeneous population of immune effector cells from peripheral blood 91 mononuclear cells (PBMC)⁹. The cell therapy product contains conventional T cells 92 (CD3+CD56-), natural killer (NK)-like T cells (CD3+CD56+) and NK cells (CD3-93 94 CD56+)¹⁰. NK-like T cells are considered the main effector cells in CIK therapy, being able to recognise tumour cells in a major-histocompatibility complex (MHC)-95 class I unrestricted manner^{11,12}. Hence, guidelines for CIK therapy patient 96 transfusion require that the cell therapy product contain at least 40% NK-like T cells¹³. 97 98 While CIK therapy is normally combined with conventional chemotherapy, multiple 99 trials which combine CIK therapy with other immunotherapies are being investigated. 100 One of the more popular combinations is combining CIK therapy with autologous DC therapy (DC-CIK therapy) with reports suggesting an improvement in anti-tumour 101 activity¹⁴. China has been a leader in CIK therapy trials for multiple solid tumours, 102 and CIK therapy is commonly provided for CRC treatment in some Chinese 103 hospitals^{15,16}. 104

105 To date there is a plethora of publications of varying study quality examining the clinical benefit of CIK therapy for CRC. The latest systematic review investigating the 106 clinical efficacy of CIK therapy with chemotherapy in CRC patients was published in 107 2017¹⁶. Since then more studies have been published which support its clinical 108 benefit^{17-19,31}, warranting an updated systematic review to consolidate the evidence 109 for CIK therapy in CRC management. Many of the reports originate in China and are 110 111 written in Chinese. The objective of this work, therefore, is to systematically assess by meta-analysis the available literature on CIK therapy for the management of CRC, 112 113 written in either English or Chinese. It includes both prospective and retrospective 114 studies, and also analysed the benefit of parameters commonly modified in trials 115 such as the addition of dendritic cells (DC-CIK therapy) or chemotherapy regimens.

116 Methods

117 This systematic review and meta-analysis was performed according to the Preferred 118 Reporting Items for Systematic Reviews and Meta-analysis statement²⁰.

119 Study selection and search

120 Studies which compared efficacy of CIK therapy, with or without another anti-cancer treatment, to no treatment or non-CIK anti-cancer treatment in adult patients with 121 122 CRC diagnosis were identified MEDLINE, Embase, China National Knowledge 123 Infrastructure (CNKI) and Wanfang Data databases. CNKI and Wanfang Data were 124 included as there were multiple studies published in Chinese alone, which were not 125 registered with Embase or MEDLINE. The search strategy for Embase and 126 MEDLINE is described in Supplementary Tables S1 and S2, respectively. For CNKI 127 and Wanfang Data, the following search keywords were used; "cytokine-induced 128 killer cells", "CIK", "rectal cancer", "colorectal cancer", "colon cancer", and "clinical trials". No limits were placed on the language in which studies were published and the final search was performed in July 2022. Both prospective and retrospective studies with a parallel-arm design were considered, and the CIK therapy arm included patients who received CIK or DC-CIK (CIK/DC-CIK) therapy. Studies that did not report efficacy endpoints were excluded from this systematic review.

134 Data extraction and quality assessment

135 Data collection was performed independently by two authors and discrepancies were resolved by discussion. For studies reported in Chinese, authors who are native in 136 the Chinese language performed the data extraction and translated them into 137 English for collation. The following information was extracted: (1) study 138 characteristics: study design, study site and recruitment period; (2) patient and 139 disease characteristics: number of patients, age, gender, primary tumour location 140 and tumour stage; (3) study intervention: type of CIK therapy and non-CIK anti-141 142 cancer therapy received; (4) clinical efficacy endpoints: overall survival (OS), progression-free survival (PFS), 1-, 3- and 5-year OS rates, 1-, 3-, 5-year PFS rates, 143 144 and overall response rate (ORR); and (6) toxicity.

For studies where patients received curative-intent treatment, disease-free survival (DFS) and DFS rates were extracted as PFS and PFS rates. Risk of bias was assessed for the following domains and graded as high, low or unclear: (1) random sequence generation; (2) allocation concealment; (3) blinding of participants and personnel; (4) blinding of outcome assessment; (5) imbalance in baseline characteristics; (6) incomplete outcome data; and (7) uniformity of non-CIK/DC-CIK anti-cancer treatment administered between intervention and control arms.

152 Data synthesis and analysis

Review Manager 5.4.1²¹ was used for pooling data at the study level and statistical 153 analysis. For the multi-intervention-arm study, the control arm was split equally into 154 155 each intervention arm, so that each pair-wise comparison can be entered separately. Pooled estimates of effect were expressed as a hazard ratio (HR) calculated using 156 an inverse variance model for OS and PFS, and risk ratios (RRs) were calculated 157 using Mantel-Haenszel model for survival rates and ORRs. When individual studies 158 did not describe OS and/or PFS HRs and associated 95% confidence intervals (95% 159 CI), they were estimated from the published Kaplan-Meier curves using a previously 160 described method^{22,23}. The HR and 95% CI were estimated under the assumption for 161 Gaussian distribution for the study that reported median PFS with a p-value²⁴. 162

As heterogeneity due to clinical diversity was expected to be high, a random-effects model was used for all the quantitative analyses performed in this review. Heterogeneity across studies was further assessed by visual inspection and statistically using Chi-square (Chi²) test and I-square (I²) statistics for each analysis. A p-value threshold of 0.10 was employed to determine statistical significance for Chi² test and I² of 30% or less was considered to be a low degree of heterogeneity, 30% to 60% to be a moderate degree, and 60% or more to be a high degree.

Subgroup analyses were carried out on OS and PFS endpoints to investigate possible sources of heterogeneity. The following subgroup analyses were performed in this review: (1) quality of study design: randomised studies versus nonrandomised studies; (2) cancer staging: Stage I-III after resection of primary versus
Stage IV (unresectable, metastatic, or recurrent) CRC; (3) CIK therapy type: CIK
therapy versus DC-CIK therapy; and (4) CIK therapy administration timing in relation
to other anti-cancer therapy: concurrent vs sequential. The subgroup interactions
were tested by using the formal statistical test, Chi² test, with significance set at 10%.

178 **Results**

179 Search results

Through our electronic search 333 records were identified: 129 from Embase, 38 180 from MEDLINE, 60 from CNKI and 106 from Wanfang Data. After removing duplicate 181 publications and studies which titles and/or abstracts indicated were ineligible, 106 182 183 records were assessed in detail. An additional 36 records were excluded for: only a 184 single study arm; lack of information on clinical efficacy endpoints of interest; 185 overlapping patient cohorts with another publication; being unable to extract data specific to CRC patients; inability to locate original abstracts or full-text articles; 186 patients in all study arms receiving CIK therapy; and patients in the control arm being 187 healthy subjects. Thus, 70 studies containing 16 English^{17,19,25-38} and 44 Chinese^{24,39} 188 ⁹¹ language articles were selected for study synthesis (Figure 1). 189

190 Study and patient characteristics

Standardised study cohorts are summarised in Table 1. Two studies^{33,92} were abstracts with the rest being full-text articles. All studies were single-centre studies performed in mainland China. Fifty-four studies^{24-26,29,32,35,36,39,42,44-53,55,57-63,65-^{75,77,78,80-83,85-91} were prospective and 15 studies^{17,19,28,31,33,34,37,38,43,54,56,64,76,79,84} were retrospective in nature. Of the prospective studies, 38^{25,26,29,32,35,36,39,40,44-} ^{47,49,50,52,53,57,59,61-63,65-69,72-75,80-83,85,87,89,91} were randomised controlled studies.}

Overall, 6,743 CRC patients, 3,203 in CIK therapy (intervention) arm and 3,540 in 197 non-CIK therapy (control) arm were available for analysis. The median age ranged 198 199 from 43.2 to 80.0 years old with the youngest being 18 and the oldest being 92 years old. For studies which provided the patient's gender, 3,592 out of 6,017 patients 200 (59.7%) were males. Primary tumour location was reported in thirty studies, with 201 202 1,657 colon and 1,744 rectum cancer patients. CRC patients diagnosed with all cancer stages were considered for analysis. Three studies evaluated purely Stage III 203 patients^{52,54,65} CRC patients 52,54,65 , while 29 studies evaluated Stage IV CRC patients $^{25,27,29,31,36,38,42,46,48,50,53,59,60,62,68-70,75-78,80,84,85,87,89-91}$. The remaining studies 204 205 considered patients with multiple stages. Among patients with known cancer stages, 206 3109 (66.6%) of them had Stage IV disease, comprising the largest group followed 207 208 by 1,148 patients (24.5%) with Stage III disease, 375 patients with Stage II disease 209 and 46 patients with Stage I disease. Cancer staging for the remaining 1,672 210 patients were either unknown or reported in ranges.

211 Interventions

In 25 studies^{17,25,27,28,31-37,40,41,46,47,49-51,56,58,65,71,75,77,87}, patients in the intervention arm received CIK therapy, while in 45 studies^{19,24,26,29,30,38,39,42-45,48,52-55,57,59-64,66-70,72-74,76,78-86,88-91} DC-CIK therapy was administered. Chemotherapy was the most common co-treatment with CIK or DC-CIK therapy, being utilised in 66 studies^{17,19,24-} 26,28-55,57-80,82-90</sup>. The most commonly utilised chemotherapy regimens were FOLFOX and XELOX, being administered in 43^{17,24,28,29,31,32,34-37,39,41,43,45,48,50,51,55,57-66,69-71,73-}

^{76,78,79,82-85,88,91} and 24^{17,25,26,29,31,34,35,37,40-42,47,58,67,70,72,86,87,89} studies, respectively. 218 Other less commonly used regimens included 5-fluorouracil monotherapy in 6 studies^{29,34,37,41,55,79}, capecitabine monotherapy in 7 studies^{17,34,37,55,58,77,84}, FOLFIRI in 8 studies^{19,31,43,48,76,78,83,88} and FOLFOXIRI in 2 studies^{76,88}. In total, 2,847 patients 219 220 221 in the intervention arm and 3,033 patients in the control arm were confirmed to have 222 received chemotherapy as a part of study intervention. In 10 studies, local therapy 223 was administered together with CIK/DC-CIK therapy: radiofrequency ablation in 3 studies^{27,76,88}, radiotherapy in 6 studies^{19,49,52,56,58,79}, transarterial chemoembolization (TACE) in 1 study⁹⁰ and microwave hyperthermia in one study⁵⁶. In 2 studies, some 224 225 226 or all patients in the intervention arm received CIK/DC-CIK therapy alone 43,81 . 227

228 Risk of bias assessment

229 Risk of bias assessment is shown in Supplementary Figure 1. Among the 38 studies reported to be prospective randomised controlled studies, only 9 studies^{26,32,36,45,61,68,72,80,91} described the method of randomisation and no study 230 231 discussed allocation concealment. None of the included studies provided clarity on 232 233 blinding of patients, study personnel or investigators. However, it was considered 234 unlikely that a lack of blinding would affect the clinical efficacy endpoints evaluated in the review, namely OS, PFS, OS rate and PFS rate, and ORR. All the studies were 235 236 thus assessed to be at low risk of performance and detection bias secondary to insufficient blinding. Demographic and clinical characteristics of patients were 237 generally well-balanced across the studies. Four studies^{26,33,51,60} were at unclear risk 238 of selection bias due to a lack of patient characteristics information across treatment 239 arms. Imbalance in age, cancer stage and history of primary cancer resection was 240 noted for 3 studies^{17,37,38} and they were similarly assessed to be at unclear risk of 241 selection bias. Unclear risk of performance bias due to uncertainty around uniformity 242 of non-CIK/DC-CIK treatment across the intervention and control arms was identified in 21 studies^{26,29,31,33,34,38,43,44,48,52,53,55,58,62,76,79-81,83,84,88} with all the studies except 243 244 one failing to adequately describe study interventions or the proportion of patients 245 receiving various interventions. In the remaining 1 study⁸¹, patients in the 246 intervention arm received DC-CIK therapy alone, while those in the control arm 247 received best supportive care. The risk of attrition bias was rated unclear for 18 studies^{17,19,25,27,29,31-33,35-38,40,42,68,79,83,85,90} which did not reveal the number of patients 248 249 lost in follow-up and for 1 study³⁷ in which 18.8% of patients withdrew from the study 250 251 prematurely.

252 Overall survival and progression-free survival

There were 26 studies^{17,19,26,28,31,32,34,37,40,41,43,45,49,50,55,57-59,62,65,69,77,79,81,83,88} involving 3,303 patients which contributed data to the meta-analysis on OS (Figure 2A). The pooled HR was 0.59 (95% CI 0.53-0.65) indicating OS benefit of CIK/DC-CIK therapy over the control arm. Heterogeneity among the studies was low (I^2 =11%, p=0.30). For PFS, 20 studies^{19,25-29,31,33-37,58,64,74,76,78,79,84,86} involving 2,593 patients contributed the data to the meta-analysis (Figure 2B). The pooled HR was 0.55 (95%CI 0.47-0.63), again favouring CIK/DC-CIK therapy. Heterogeneity among the studies was moderate (I^2 =54%, p=0.002).

261 Overall survival rates

In total, 27 $(2,459 \text{ patients})^{17,19,26,28,31,32,34,37,40,41,43,45,49-51,55,57-59,62,65,69,77,79,81,83,88}$, 19 $(2,167 \text{ patients})^{17,19,26-28,31,33,34,36,37,40,41,43,50,51,58,69,79,88}$ and 10 $(1,401 \text{ patients})^{17,19,26,28,31,33,34,37,43,58}$ studies contributed data for 1-year, 3-year and 5-year OS rate 262 263 264 265 meta-analyses respectively (Supplementary Figure 2). The pooled RR for all the analyses favoured CIK/DC-CIK therapy. The 1-year OS rate was 91.7% in the 266 267 intervention arm and 79.4% in the control arm with a pooled RR of 0.47 (95% CI 268 0.32-0.67). Heterogeneity among the studies was moderate ($I^2=51\%$, p=0.002). The 269 3-year OS rate was 67.7% in the intervention arm and 51.8% in the control arm with the pooled RR of 0.67 (95% CI 0.59-0.77). There was a moderate level of 270 271 heterogeneity among the studies ($I^2 = 32\%$, p=0.09). The 5-year OS rate was 61.2% 272 in the intervention arm and 45.5% in the control arm with RR of 0.69 (95% CI 0.54-0.88). Heterogeneity among the studies was high ($I^2 = 73\%$, P = 0.0001). 273

274 Progression-free survival rates

We identified 10 $(1,166 \text{ patients})^{17,19,26,28,31,34,37,38,58,79}$, 10 $(1,156 \text{ patients})^{17,19,26,28,31,34,36,58,79}$ and 7 (872 patients) studies ^{17,19,26,28,31,34,58} that contributed data for 275 276 meta-analysis on 1-year, 3-year and 5-year PFS rates respectively (Supplementary 277 278 Figure 3). All the analyses indicated the superiority of CIK/DC-CIK therapy over non-279 CIK/DC-CIK therapy. The observed 1-year PFS rate was 86.5% in the intervention arm and 68.1% in the control with the pooled RR of 0.43 (95% CI 0.33-0.55). 280 281 Heterogeneity among the studies was low ($I^2 = 0\%$, p=0.48). The 3-year PFS rate was 47.8% in the intervention arm and 30.5% in the control arm. The pooled RR was 282 283 0.76 (95% CI 0.66-0.87) and heterogeneity among the studies was moderate 284 (I²=53%, p=0.02). At 5 years, PFS rate was 46.0% in the intervention arm and 25.9% in the control arm. The pooled RR was 0.71 (95% CI 0.59-0.87) and heterogeneity 285 among the studies was high ($I^2=68\%$, p=0.005). 286

287 Overall response rate

The ORR was 58.7% in the intervention (CIK/DC-CIK) and 39.8% in the control (non CIK/DC-CIK) arm for 3,860 patients from 45 studies^{24,25,30,36,39,42,44-49,52-56,61-68,70-78,80-}

^{85,87-91} (Figure 3). The pooled RR was 0.65 (95% CI 0.57-0.74) and heterogeneity among the studies was high ($I^2 = 85\%$, p<0.00001).

292 Toxicity

Toxicity during the study intervention was reported by 31 studies with the majority of 293 the data being provided in a descriptive manner. Two studies^{33,87} compared the rate 294 295 adverse events between the treatment arms of any and 11 studies^{29,36,39,41,42,44,56,61,62,70,72,89} reported adverse events of interest for each arm. 296 Many of the described side effects were thought to be related to chemotherapy 297 298 administered together with CIK/DC-CIK therapy, including bone marrow suppression, 299 nausea, vomiting, neuropathy, diarrhoea and liver dysfunction. Meta-analysis 300 undertaken indicated equivalent adverse event rate from CIK/DC-CIK and non-301 CIK/DC-CIK therapy (HR=0.59, 95% CI 016-2.25) with the pooled adverse event rate 302 of 53.5% and 68.3%, respectively (Supplementary Figure 4). Heterogeneity was high 303 between the studies (l^2 =80%, p=0.02). Fever was the most frequently reported adverse event associated with CIK/DC-CIK infusion, affecting 6.7% to 29.9% of 304 305 patients receiving CIK/DC-CIK therapy. Fever, in general, spontaneously resolved or 306 only required symptomatic management.

307 Subgroup analyses

Potential sources of heterogeneity were explored by performing subgroup analysis on OS and PFS by study design (randomised versus non-randomised study design), disease stage (Stage I-III versus Stage IV), CIK therapy type (CIK versus DC-CIK therapy), or timing of CIK/DC-CIK therapy administration (concurrent versus sequential with co-administered anti-cancer therapy).

313 Randomised studies versus non-randomised studies

Of the 25 studies which provided OS HRs, 8 studies^{29,32,35,36,65,68,69,74} involving 991 314 315 were prospective randomised and 17 patients studies studies^{17,19,26,28,31,33,34,38,43,58,60,64,76,78,79,84,86} 316 involving 2,252 patients were either prospective non-randomised or retrospective studies. An OS benefit of CIK/DC-CIK 317 therapy was demonstrated for both randomised studies (HR=0.57; 95% CI 0.50-0.66) 318 319 and non-randomised studies (HR=0.59, 95% CI 0.51-0.67) (Figure 4A). A test for subgroup difference did not reach statistical significance (I²=0%, p=0.80). For PFS subgroup analysis, 732 patients from 5 randomised studies^{25,29,35,36,74} and 1,801 patients from 14 non-randomised studies^{19,26,28,31,33,34,37,58,64,76,78,79,84,86} were 320 321 322 analysed. A benefit from CIK/DC-CIK therapy was again shown for both prospective 323 324 randomised (HR=0.47, 95% CI 0.31-0.72) and non-randomised studies (HR=0.59, 325 95% CI 0.47-0.63) (Figure 4B). A test for subgroup differences was not statistically 326 significant ($I^2=4.5\%$, p=0.31).

327 Stage I-III versus Stage IV

Four studies^{32,58,65,79} involving 363 patients with Stage I-III CRC and 12 328 studies^{27,29,31,34,36,38,60,68,69,76,78,84} involving 1,595 Stage IV patients contributed data to 329 the subgroup analysis on OS by the disease stage. HR for Stage I-III patients was 330 331 0.64 (95% CI 0.48-0.85), while that for Stage IV patients was 0.57 (95% CI 0.50-0.65) 332 and the benefit of CIK/DC-CIK therapy was observed across all stages of CRC 333 (Supplementary Figure 5A). Test for subgroup differences failed to reach statistical significance (I²=0%, p=0.48), although the observed 95% CI was much narrower for 334 Stage IV patients. For the subgroup analysis on PFS, 4 studies^{26,34,58,79} involving 321 patients with Stage I-III disease and 8 studies^{25,27,29,31,36,76,78,84} involving 1,045 Stage 335 336 337 IV patients were analysed. A benefit from CIK/DC-CIK therapy was demonstrated for 338 both Stage I-III (HR=0.60, 95% CI 0.40-0.88) and Stage IV disease (HR=0.59, 95% 339 CI 0.52-0.67) (Supplementary Figure 5B). A test for subgroup difference was not 340 statistically significant (I²=0%, p=0.94).

341 CIK therapy versus DC-CIK therapy

studies^{17,27,28,31-33,35,36,58,65} (1.391)342 Ten patients) 16 and studies^{19,26,29,34,38,43,60,64,68,69,74,76,78,79,84,86} (1,912 patients) which evaluated CIK and 343 344 DC-CIK therapy respectively were assessed in the subgroup analysis on OS by type 345 of CIK therapy. HR for studies examining CIK therapy was 0.57 (95% CI 0.47-0.69), 346 while that for studies examining DC-CIK therapy was 0.61 (95% CI 0.54-0.69) (Figure 5A). Both types of CIK therapy were found to benefit OS. A test for subgroup 347 differences did not reach statistical significance (I²=0%, p=0.58). Subgroup analysis on PFS by CIK therapy type contained 9 studies^{25,27,28,31,33,35-37,58} involving 1,294 348 349 350 patients, where the intervention arm contained CIK therapy, and 11

studies^{19,26,29,34,64,74,76,78,79,84,86} involving 1,299 patients, where the intervention arm contained DC-CIK therapy. PFS benefit was demonstrated for both CIK-examining (HR=0.63, 95% CI 0.53-0.74) and DC-CIK-examining studies (HR=0.50, 95% CIK 0.41-0.61) (Figure 5B). A test for subgroup differences met statistical significance (I²=66.5%, p=0.08) with improved HR seen for DC-CIK, although HRs for the 2 subgroups overlapped each other, suggesting that the advantage of DC-CIK over CIK therapy alone may not be clinically meaningful.

358 Concurrent CIK/DC-CIK therapy vs sequential CIK/DC-CIK therapy

Subgroup analysis was performed comparing studies where CIK/DC-CIK therapy 359 was administered either concurrently or sequentially with the non-CIK/DC-CIK therapy. For OS analysis, 16 studies^{19,27,31,34,36,38,43,58,60,64,65,69,74,76,84,86} involving 360 361 2,000 patients with concurrent administration and 8 studies^{17,26,28,29,32,35,68,79} involving 362 363 846 patients with sequential administration were considered (Figure 6A). CIK/DC-CIK therapy administered in either manner improved OS; the HR was 0.63 (95% CI 364 365 0.56-071) for concurrent administration and 0.59 (95% CI 0.53-0.65) for sequential 366 administration. A test for subgroup differences reached statistical significance 367 (I²=76.3%, p=0.04) with lower HR being observed for sequential administration, although 95% CIs of the 2 subgroups overlapped each other. Subgroup analysis on 368 369 PFS was similarly in favour of CIK/DC-CIK therapy for both concurrent (HR=0.56, 95% CI 0.46-0.67) and sequential administration (HR=0.54, 95% CI 0.46-0.63) (Figure 6B). Twelve studies 19,25,27,31,34,36,58,64,74,76,84,86 involving 1460 patients who had concurrent administration and 5 studies 26,28,29,35,79 involving 580 patients who 370 371 372 373 had sequential administration were evaluated and a test for subgroup differences did 374 not meet statistical significance ($l^2=0\%$, p=0.43).

375 Discussion

376 Chemotherapy with/without biological therapy remains the standard treatment for 377 CRC patients with high-risk resected disease, and the majority of those with 378 advanced disease. This therapeutic approach is associated with limited survival benefit, unlike immunotherapy, which has demonstrated long-term survival outcome 379 in some solid tumours owing to its mechanism of action^{93,94}. New therapeutic 380 approaches which involve modulation of the immune system may provide new 381 382 treatment options for a broader range of CRC patients, and improve their survival outcome. Autologous adoptive immunotherapy such as CIK therapy represents a 383 highly personalised cancer treatment. While it remains a non-standard treatment 384 385 option for solid cancers, there are a growing number of clinical trials examining such immunotherapy⁹⁵. 386

387 Our study demonstrated that providing CIK or DC-CIK therapy to CRC patients 388 improved OS, PFS and ORR compared standard treatment. The upper 95% CI of 389 pooled HRs for 5-year OS rate and 3- and 5-year PFS rates exceeded 0.85, a 390 commonly applied cut-off to delineate no effect from an important effect, raising the 391 possibility that the observed benefit for these endpoints may not be precise. 392 However, for all the other endpoints, the observed HRs favouring CIK/DC-CIK 393 therapy appeared robust. The OS and PFS benefit of CIK/DC-CIK therapy persisted 394 when prospective randomised studies alone were examined in the subgroup analysis. 395 with no subgroup differences being identified compared to non-randomised studies. 396 While the number of randomised studies assessed was small, HRs and associated

397 95% CIs reported by each study, especially for the OS endpoint, were all
 398 comparable, indicating consistency in the results and so strengthening the overall
 399 finding.

400 Subgroup analysis by CRC disease stage indicated a lack of differences for both OS and PFS. However, the observed 95% CIs associated with the pooled HRs were 401 persistently narrower for Stage IV patients compared to Stage I-III patients, with the 402 403 upper limits of 95% CIs for Stage I-III patients exceeding 0.85 for both endpoints. 404 Together with the uncertainties around the best way to incorporate CIK/DC-CIK therapy into the established 3-6 months of mono- or doublet- adjuvant chemotherapy, 405 depending on the disease stage and accompanying other prognostic factors, our 406 study highlights that patients with Stage IV disease may be a more suitable target to 407 evaluate CIK/DC-CIK therapy application, at least initially. The immunosuppressive 408 effect of cancer surgery, including T cell and NK cell dysfunction and expansion of 409 410 myeloid-derived suppressor cells and regulatory T cells in the postoperative period, has been described previously⁹⁶, although how this affects the anti-tumour activity of 411 412 CIK/DC-CIK therapy is not known.

Subgroup analysis based on combining DC therapy with CIK therapy revealed 413 414 statistically significant subgroup differences in favour of DC-CIK over CIK therapy for PFS, but not for OS. DCs are major antigen-presenting cells and the essential link 415 between the innate and adaptive immune systems⁹⁷. Co-culturing of CIK cells with 416 DCs results in increased CIK cytolytic function, including cytotoxic activity against a 417 tumour cell line resistant to CIK cells cultured in absence of DCs¹⁴. This review 418 419 observed more patients who received DC-CIK therapy than CIK therapy, however, 420 the results suggest that the addition of DC therapy to CIK therapy does not have a strong clinical benefit, as only statistical significance was observed for PFS and not 421 OS. This result points to the need for future clinical trials investigating the benefit of 422 423 including DC therapy in CIK therapy, and whether other combinations such as 424 immune checkpoint inhibitors or CAR-T incorporation with CIK therapy may be of 425 better value for CRC patients.

Subgroup differences were similarly detected for OS for concurrent versus sequential administration of CIK/DC-CIK. Subgroup analyses for both PFS by CIK therapy type and for OS by CIK therapy administration timing had similar HRs with highly overlapping 95% CIs, making it unclear whether the differences are clinically meaningful. The timing of CIK/DC-CIK delivery for CRC patients may not be critical and could be selected based on logistical issues.

432 There have been two previous publications that systematically reviewed the literature for CIK/DC-CIK therapy in CRC^{16,98}. In 2010, Zhang and Schmidt-Wolf, in 433 434 cooperation with Stanford University, established the International Registry on CIK Cells (IRCC) to evaluate clinical trials of CIK therapy^{98,99}. The registry identifies both 435 436 prospective and retrospective clinical trials involving CIK therapy for cancer treatment from PubMed, Web of Science Core Collection, WHO International Clinical 437 438 Trials Registry Platform, Clinical Trials.gov as well as proceedings of the American 439 Society of Clinical Oncology and European Cancer Conference Annual Scientific Meetings. In addition, the IRCC incorporates clinical trials submitted by individual 440 researchers for inclusion¹⁰⁰. In 2020 the registry recorded 106 clinical trials, of which 441 only six examined CIK therapy in CRC patients⁹⁸. This contrasts with the twenty-nine 442 443 trials including 2,610 CRC patients reported in the published systematic review and

meta-analysis in 2017 by Zhang *et al.*, which purely compared the clinical benefit of
 CIK therapy plus chemotherapy to CIK therapy in CRC patients with advanced
 disease¹⁶. They also utilised two Chinese databases, CNKI and Wanfang Data, in
 addition to the English databases Cochrane Library, Embase and PubMed. The
 majority of the studies were published in Chinese similar to our findings.

449 To date China has taken the lead in research of adoptive immunotherapy including CIK therapy^{15,101}. Therefore, the inclusion of articles published in Chinese was 450 necessary to comprehensively review the currently available literature examining 451 clinical efficacy of CIK therapy in CRC. Additionally, the current work included clinical 452 453 trials which compared CIK therapy to non-CIK treatment not limited to chemotherapy, 454 to increase the number of trials assessed. Consequently, the review considered 70 455 studies involving 6,743 patients and is the largest systemic review on CIK/DC-CIK 456 therapy in CRC. It meta-analysed OS and PFS, the two most important clinical endpoints in assessing efficacy of any cancer therapy. Endpoints covered by 457 458 Zhang¹⁶ were limited to OS and DFS rates as well as ORR. The CRC population 459 covered by this review is also broader having included patients at all stages.

460 This study has a number of limitations. The heterogeneity observed in the clinical 461 study design requires caution when interpreting results. There are general guidelines for the production of the CIK therapy. The CIK therapy product is generated from 462 463 PBMCs cultured for 21-28 days in the presence of anti-CD3 stimulation and the cytokines interferon-gamma and interleukin-2. Prior to transfusion, the therapy 464 465 product is expected to have minimum percentage of NK-like T cells¹⁰². While having basic production guidelines makes reproducing this therapy achievable, we observed 466 heterogeneity in the culture systems used to generate these cells, including the 467 media, concentration of stimuli and cytokines used, and intervals of cytokine addition 468 469 in culture. Characterisation of the cell therapy product prior to transfusion to meet the 470 guidelines was normally not provided. Clinical parameters such as anti-cancer 471 treatment history, demographics, and number of treatment cycles were also 472 observed to be heterogenous among the studies analysed. These variables could 473 contribute to the heterogeneity observed in our analysis that was not rectified by our 474 subgroup analyses. As the studies identified were all undertaken in China, clinical 475 trials in non-Chinese ethnicity are needed to confirm its efficacy outside of Chinese 476 patients. Finally, the possibility of publication bias was raised as only a handful of 477 studies reported negative outcomes of CIK/DC-CIK therapy for the efficacy 478 endpoints assessed.

Despite these limitations, our data strongly support that complementing conventional treatment regimens with CIK/DC-CIK therapy in patients with CRC provides clinical benefits. By highlighting the parameters that contribute to the heterogeneity in the study designs, we suggest that standardisation of these will lead to greater adoption of CIK therapy worldwide.

484 Conclusion

CIK therapy in combination with standard treatments, in particular chemotherapy,
 provides clinical benefit for CRC patients. The benefit existed whether the included
 studies were prospective and randomised or not, strengthening the finding. CIK
 therapy was well tolerated, with fever being the most common adverse event. While
 DC therapy is commonly combined with CIK therapy for CRC patients, our study

490 suggests that this may not provide extra benefit. The findings support further491 evaluation of the clinical utility of CIK therapy in CRC.

492 493

494 **Declarations**

495 Contributors: Conception Design: CMYL, YT and KF. Collection and/or assembly of
496 data: CMYL, YT, RL, and JL. Data analysis and interpretation: CMYL, YT, BD, ES
497 and KF. Manuscript Writing: CMYL, YT, ES, PD, and KF. Final Approval of
498 Manuscript: CMYL, YT, BD, RL, JL, PD, ES, TP, GM, and KF.

Funding: This work was supported by The Hospital Research Foundation
 (THRF)/Cancer Council SA Beat Cancer Hospital Research Package (GM) and a
 Tour de Cure Early Career Grant (KF). BD was supported by a Schlumberger
 Foundation Faculty For Future Fellowship and KF was supported by a THRF Early
 Career Fellowship.

504 **Competing Interests:** The authors have no relevant financial or non-financial 505 interests to disclose.

Data Availability: All data generated or analysed during this study are included in this published article and its supplementary material. The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

510

511 Reference

- 512 International Agency for Research on Cancer. The Global Cancer Observatory 2020; 1 513 Colorectal Cancer, https://gco.iarc.fr/today/data/factsheets/cancers/10 9-Colorectum-514 fact-sheet.pdf> (2020). 515 2 National Cancer Institute. SEER Cancer Stat Facts: Colorectal Cancer, 516 <<u>https://seer.cancer.gov/statfacts/html/colorect.html</u>> (2022). 517 3 Sievers, C. K. et al. The Multidisciplinary Management of Colorectal Cancer: Present and 518 Future Paradigms. Clin Colon Rectal Surg 29, 232-238, doi:10.1055/s-0036-1584292 (2016). Kruger, S. et al. Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer 519 4 520 *Res* **38**, 268, doi:10.1186/s13046-019-1266-0 (2019). 521 5 Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: 522 utility for the oncology clinic. Annals of oncology : official journal of the European Society for 523 Medical Oncology 30, 44-56, doi:10.1093/annonc/mdy495 (2019). 524 6 Andre, T. et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. 525 N Engl J Med 383, 2207-2218, doi:10.1056/NEJMoa2017699 (2020). 7 526 Lenz, H. J. et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-527 High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 528 Study. Journal of clinical oncology : official journal of the American Society of Clinical 529 Oncology 40, 161-170, doi:10.1200/JCO.21.01015 (2022).
- 5308Fan, A. *et al.* Immunotherapy in colorectal cancer: current achievements and future531perspective. Int J Biol Sci 17, 3837-3849, doi:10.7150/ijbs.64077 (2021).
- 532 9 Schmidt-Wolf, I. G., Negrin, R. S., Kiem, H. P., Blume, K. G. & Weissman, I. L. Use of a SCID
- 533mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent534antitumor cell activity. The Journal of experimental medicine 174, 139-149,535doi:10.1084/jem.174.1.139 (1991).

Use of cytokine-induced killer cell therapy in colorectal cancer patients: a systematic review and metaanalysis.

536	10	Gao, X. et al. Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer
530 537	10	Immunotherapy. <i>Front Immunol</i> 8 , 774, doi:10.3389/fimmu.2017.00774 (2017).
538	11	Pievani, A. <i>et al.</i> Dual-functional capability of CD3+CD56+ CIK cells, a T-cell subset that
539	ΤT	acquires NK function and retains TCR-mediated specific cytotoxicity. <i>Blood</i> 118 , 3301-3310,
539		doi:10.1182/blood-2011-02-336321 (2011).
	10	
541	12	Zhang, Q. <i>et al</i> . Phenotypic and functional characterization of cytokine-induced killer cells
542		derived from preterm and term infant cord blood. <i>Oncology reports</i> 32 , 2244-2252,
543	4.2	doi:10.3892/or.2014.3457 (2014).
544	13	Linn, Y. C., Lau, L. C. & Hui, K. M. Generation of cytokine-induced killer cells from leukaemic
545		samples with in vitro cytotoxicity against autologous and allogeneic leukaemic blasts. British
546		journal of haematology 116 , 78-86, doi:10.1046/j.1365-2141.2002.03247.x (2002).
547	14	Marten, A. et al. Interactions between dendritic cells and cytokine-induced killer cells lead to
548		an activation of both populations. <i>Journal of immunotherapy (Hagerstown, Md.</i> : 1997) 24 ,
549		502-510, doi:10.1097/00002371-200111000-00007 (2001).
550	15	Li, X. D. <i>et al.</i> Review of Chinese clinical trials on CIK cell treatment for malignancies. <i>Clinical</i>
551		& translational oncology : official publication of the Federation of Spanish Oncology Societies
552		and of the National Cancer Institute of Mexico 14 , 102-108, doi:10.1007/s12094-012-0768-4
553		(2012).
554	16	Zhang, L. et al. Cytokine-induced killer cells/dendritic cells-cytokine induced killer cells
555		immunotherapy combined with chemotherapy for treatment of colorectal cancer in China: a
556		meta-analysis of 29 trials involving 2,610 patients. <i>Oncotarget</i> 8 , 45164-45177,
557		doi:10.18632/oncotarget.16665 (2017).
558	17	Pan, Q. Z. <i>et al</i> . Efficacy of adjuvant cytokine-induced killer cell immunotherapy in patients
559		with colorectal cancer after radical resection. <i>Oncoimmunology</i> 9 , 1752563,
560		doi:10.1080/2162402X.2020.1752563 (2020).
561	18	Wang, C. <i>et al.</i> 101P - Combined cellular immunotherapy and chemotherapy improves
562		clinical outcome and displays safety in the treatment of patients with colorectal cancer.
563		Annals of Oncology 30 , ix36, doi: <u>https://doi.org/10.1093/annonc/mdz421.023</u> (2019).
564	19	Xie, Y. et al. Effect of dendritic cell-cytokine-induced killer cells in patients with advanced
565		colorectal cancer combined with first-line treatment. World J Surg Oncol 15, 209,
566		doi:10.1186/s12957-017-1278-1 (2017).
567	20	Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic
568		reviews. <i>BMJ</i> 372 , n71, doi:10.1136/bmj.n71 (2021).
569	21	Review Manager (RevMan) v. 5.4.1 (2020).
570	22	Tierney, J. F., Stewart, L. A., Ghersi, D., Burdett, S. & Sydes, M. R. Practical methods for
571		incorporating summary time-to-event data into meta-analysis. <i>Trials</i> 8 , 16,
572		doi:10.1186/1745-6215-8-16 (2007).
573	23	Altman. DG & JM, B. How to obtain the confidence interval from a P value. <i>BMJ</i> ,
574		doi:10.1136/bmj.d2090 (2011).
575	24	Zhang, L., Li, X., Huang, K., Hu, Z. & Tan, X. Long-term effect of DC-CIK cells immunology
576		therapy in patients with advanced colorectal cancer (Chinese Article). <i>Progress in Modern</i>
577		<i>Biomedicine</i> 16 , 4348-4351, doi:10.13241/j.cnki.pmb.2016.22.039 (2016).
578	25	Du, C. <i>et al.</i> Autologous cytokine-induced killer cells combined with chemotherapy in the
579	25	treatment of advanced colorectal cancer: a randomized control study. The Chinese-German
580		Journal of Clinical Oncology 12 , 487-491, doi:10.1007/s10330-013-1214-y (2013).
581	26	Gao, D. <i>et al.</i> Autologous tumor lysate-pulsed dendritic cell immunotherapy with cytokine-
582	20	induced killer cells improves survival in gastric and colorectal cancer patients. <i>PLoS One</i> 9 ,
583		e93886, doi:10.1371/journal.pone.0093886 (2014).
584	27	Li, X. <i>et al.</i> Phase II/III Study of Radiofrequency Ablation Combined with Cytokine-Induced
584 585	21	
		Killer Cells Treating Colorectal Liver Metastases. Cellular physiology and biochemistry :

586		international journal of experimental cellular physiology, biochemistry, and pharmacology 40 ,
587		137-145, doi:10.1159/000452531 (2016).
588	28	Li, X. <i>et al</i> . Retrospective analysis of the efficacy of adjuvant cytokine-induced killer cell
589		immunotherapy combined with chemotherapy in colorectal cancer patients after surgery.
590		Clinical & translational immunology 11 , e1368, doi:10.1002/cti2.1368 (2022).
591	29	Lin, T., Song, C., Chuo, D. Y., Zhang, H. & Zhao, J. Clinical effects of autologous dendritic cells
592		combined with cytokine-induced killer cells followed by chemotherapy in treating patients
593		with advanced colorectal cancer: a prospective study. <i>Tumour biology : the journal of the</i>
594		International Society for Oncodevelopmental Biology and Medicine 37 , 4367-4372,
595		doi:10.1007/s13277-015-3957-2 (2016).
596	30	Liu, B., Zhong, C. & Wu, B. THERAPEUTIC EFFECTS OF COMBINATION OF CHEMOTHERAPY
597		AND BIOTHERAPY ON COLORECTAL CANCER AND ITS EFFECTS ON IMMUNE CELLS, NK, IFN-Г
598		AND IL-2. <i>Acta Medica Mediterranea</i> 2 , 105, doi:10.19193/0393-6384_2019_2_158 (2019).
599	31	Pan, Q. Z. <i>et al.</i> Retrospective analysis of the efficacy of cytokine-induced killer cell
600		immunotherapy combined with first-line chemotherapy in patients with metastatic
601		colorectal cancer. <i>Clinical & translational immunology</i> 9 , e1113, doi:10.1002/cti2.1113
602		(2020a).
603	32	Peng, H. <i>et al.</i> Effects of Autologous Cytokine-Induced Killer Cells Infusion in Colorectal
604		Cancer Patients: A Prospective Study. <i>Cancer biotherapy & radiopharmaceuticals</i> 32 , 221-
605		226, doi:10.1089/cbr.2017.2246 (2017).
606	33	Wang, C. <i>et al.</i> 101P - Combined cellular immunotherapy and chemotherapy improves
607		clinical outcome and displays safety in the treatment of patients with colorectal cancer.
608		Annals of Oncology, 30 (2019).
609	34	Xu, H. <i>et al</i> . Analysis of the Clinical Efficacy of Dendritic Cell -cytokine Induced Killer Cell-
610	•	based Adoptive Immunotherapy for Colorectal Cancer. <i>Immunol Invest</i> 50 , 622-633,
611		doi:10.1080/08820139.2020.1781881 (2021).
612	35	Zhang, J. <i>et al.</i> Effects of cytokine-induced killer cell treatment in colorectal cancer patients:
613	00	a retrospective study. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
614		68 , 715-720, doi:10.1016/j.biopha.2014.07.010 (2014).
615	36	Zhao, H. <i>et al.</i> Autologous Cytokine-Induced Killer Cells Improves Overall Survival of
616	00	Metastatic Colorectal Cancer Patients: Results From a Phase II Clinical Trial. <i>Clinical</i>
617		<i>colorectal cancer</i> 15 , 228-235, doi:10.1016/j.clcc.2016.02.005 (2016).
618	37	Zhu, Y. <i>et al.</i> Efficacy of postoperative adjuvant transfusion of cytokine-induced killer cells
619	5,	combined with chemotherapy in patients with colorectal cancer. <i>Cancer Immunol</i>
620		<i>Immunother</i> 62 , 1629-1635, doi:10.1007/s00262-013-1465-z (2013).
621	38	Zhu, H. <i>et al.</i> Immune response, safety, and survival and quality of life outcomes for
622	50	advanced colorectal cancer patients treated with dendritic cell vaccine and cytokine-induced
623		killer cell therapy. <i>BioMed research international</i> 2014 , 603871, doi:10.1155/2014/603871
624		(2014).
625	39	Bian, J. Study on chemotherapy combined with DC-CIK on colorectal cancer (Chinese Article).
626	55	<i>Chin J Surg Onco</i> 5 , 306-309, doi:10.3969/j.issn.1674-4136.2013.05.011 (2013).
627	40	Cai, X., Xiong, W., Li, Y. & Shen, T. Clinical Research of the Treatment on patients of Mid-low
628	40	locally rectal cancer after operation with cytokine induced killer cells (Chinese Article). The
629		Practical Journal of Cancer 25 , 37-39, doi:10.3969/j.issn.1001-5930.2010.01.011 (2010).
	/11	Cai, W. & Li, W. Clinical study of autologous CIK cells combined with synchronous
630 631	41	
		radiotherapy and chemotherapy in the treatment of elderly rectal cancer patients (Chinese
632	40	Article). <i>Modern Preventive Medicine</i> 40 , 1564-1567 (2013).
633	42	Cai, P. Clinical observation of DC-CIK combined with chemotherapy on advanced colon
634 625		cancer (Chinese Article). World Latest Medicine Information 17, 155-156,
635		doi:10.19613/j.cnki.1671-3141.2017.71.132 (2017).

636	43	Chao, Y., Yang, X., Zhou, F., Zhang, Q. & Qian, Q. The relationship between DC-CIK and
637		colorectal cancer prognoses and its influencing factors (Chinese Article). <i>Journal of</i>
638		Pharmaceutical Practice 34 , 366-371, doi:10.3969/j.issn.1006-0111.2016.04.022 (2016).
639	44	Chen, F. et al. Dendritic cell - cytokine induced killer cells combined with chemotherapy and
640		targeted therapy in treatment of advanced colon cancer patients (Chinese Article). Modern
641		<i>Oncology</i> 23 , 1686-1690, doi:10.3969/j.issn.1672-4992.2015.12.17 (2014).
642	45	Chen, Y. Clinical study of DC-CIK combined with chemotherapy in the treatment of colon
643		cancer (Chinese Article). <i>Health For Everyone</i> 14 (2014).
644	46	Chu, F., Liang, Q., Wang, L., Du, X. & Jiang, Y. Effect of mFOLFOX6 chemotherapy combined
645		with autologous CIK cells on T lymphocyte subsets in patients with advanced colorectal
646		cancer (Chinese Article). World Chinese Digestive Journal 24 , 2279-2285,
647		doi:10.11569/wcjd.v24.i14.2279 (2016).
648	47	Deng, Z., Liao, Q. & Liu, J. Evaluation of the efficacy of CIK cell sequential systemic
649		chemotherapy in advanced colorectal cancer (Chinese Article). China Health Nutrition 28, 62,
650		doi:10.3969/j.issn.1004-7484.2018.03.074 (2018).
651	48	Dong, M. Efficacy of DC-CIK adoptive immunotherapy in combination with chemotherapy in
652		the treatment of metastatic colorectal cancer (Chinese Article). <i>Dietary Health Care</i> 5, 49,
653		doi:10.3969/j.issn.2095-8439.2018.50.062 (2018).
654	49	Fan, M., Ye, W., Yao, J. & Li, X. Clinical analysis of cytokine induced killer cells combined with
655		concurrent chemoradiotherapy in the treatment of local recurrance of rectal neoplasms
656		(Chinese Article). Chin J Postgrad Med 36 , 21-25, doi:10.3760/cma.j.issn.1673-
657		4904.2013.02.008 (2013).
658	50	Fang, L. Observation of the efficacy of CIK cell immunotherapy on postoperative rectal
659		cancer (Chinese Article). The World Clinical Medicine 10 , 41,44 (2016).
660	51	Feng, Y., Zhu, Z., Sun, B. & Wang, B. Efficacy evaluation of CIK cell immunotherapy for
661		postoperative rectal cancer (Chinese Article). <i>Clinical Research</i> , 366-367 (2014).
662	52	Feng, F. & Wang, W. Clinical observation of chemotherapy combined with DC-CIK cell
663		immunotherapy for stage III colorectal cancer (Chinese Article). <i>Modern diagnosis and</i>
664		<i>treatment</i> 28 , 3832-3833, doi:10.3969/j.issn.1001-8174.2017.20.065 (2017).
665	53	Guo, J. & Ma, L. Efficacy of dendritic cell-cytokine-induced killer cell biology combined with
666		portal vein embolization on liver metastasis of colorectal cancer (Chinese Article). <i>Sanxi Med</i>
667		J 48 , 936-938, doi:10.3969/j.issn.0253-9926.2019.08.022 (2019).
668	54	He, J. & Zhang, C. Analysis of the effect of postoperative chemotherapy combined with DC-
669		CIK cell therapy for colorectal cancer (Chinese Article). J Med Theor & Prac 31 , 2545-
670		2546,2552, doi:10.19381/j.issn.1001-7585.2018.17.004 (2018).
671	55	Jiang, Y. Efficacy of DC-CIK cells in the treatment of advanced colorectal cancer (Chinese
672	55	Article). Frontiers of medicine 6, 230-231 (2016).
673	56	Leng, N., Nie, W., Zhao, Y. & Hu, Z. The effect of mCIK combined with IMRT and microwave
674	50	hyperthemia in the treatment of locally advanced rectal cancer (Chinese Article). Oncology
675		<i>Progress</i> 14, 861-863,867, doi:10.11877/j.issn.1672-1535.2016.14.09.11 (2016).
676	57	Li, S., Li, Y., Liang, J. & Liu, X. The study of clinical application of DC-CIK combined with
677	5,	chemotherapy on colon cancer (Chinese Article). <i>Chinese Journal of Immunology</i> 28 , 835-839,
678		doi:10.3969/j.issn.1000-484X.2012.09.016 (2012).
679	58	Li, Y., Jin, A., Chen, S., Song, C. & Zhang, G. Efficacy of Adjuvant Chemotherapy Combined
680	50	with CIK Cell Immunotherapy in 130 Patients with Postoperative Colorectal Cancer (Chinese
681		Article). Journal of Chinese Oncology 21 , 843-847, doi:10.11735/j.issn.1671-
682		170X.2015.10.B013 (2015).
683	59	Liu, W. Clinical effect of the application of DC-CIK combined with chemotherapy in the
684	23	treatment of colon cancer (Chinese Article). <i>China Continuing Medical Education</i> 6 , 43-44,
685		doi:10.3969/J.ISSN.1674-9308.2014.08.024 (2014).

686	60	Liu, G., Li, Y., Chen, Z. & Chen, L. Clinical efficacy of DC-CIK cells combined with systemic
687 688		intravenous chemotherapy in the treatment of advanced colorectal cancer with diffuse liver metastasis (Chinese Article). <i>Journal of Chongging Medical University</i> 39 , 368-373,
689		doi:10.13406/j.cnki.cyxb.000060 (2014).
690	61	Liu, C. Effect of DC-CIK combined with FOLFOX6 chemotherapy regimen in the treatment of
691	01	elderly colorectal cancer patients (Chinese Article). <i>Medical Journal of Chinese People's</i>
692		Health 32 , 55-57, doi:10.3969/j.issn.1672-0369.2020.13.021 (2020).
693	62	Liu, Y., Ge, S. & Liu, Q. Efficacy of Transcatheter Arterial Chemoembolization combined with
694		DC-CIK for colorectal cancer patients with liver metastasis (Chinese Article). <i>The Practical</i>
695		Journal of Cancer 31 , 1277-1279, doi:10.3969/j.issn.1001-5930.2016.08.018 (2016).
696	63	Liu, R. & Shi, N. Efficacy of dendritic cells and cytokine induced killer cells combination
697		chemotherapy for colon cancer and influences on immune function changes (Chinese
698		Article). <i>Chin J Clin Oncol Rehali</i> 23 , 401-404, doi:10.13455/j.cnki.cjcor.2016.04.05 (2016).
699	64	Liu, D. et al. Clinical efficacy of postoperative chemotherapy in combination with CIK
700		immunotherapy in rectal cancer patients (Chinese Article). Chinese Journal of General
701		Surgery 25 , 1186-1192, doi:10.3978/j.issn.1005-6947.2016.08.017 (2016).
702	65	Lv, Y., Shi, Y., Wang, Z., Mao, H. & Dai, G. A randomised study of cytokine-induced killer cells
703		combined with chemotherapy for advanced colorectal cancer. <i>Oncology Progress</i> , 505-510,
704		doi:10.11877/j.issn.1672-1535.2014.12.05.20 (2014).
705	66	Ma, J. DC-CIK Combined with Chemotherapy for Colonic Cancer:An Analysis on the Efect of
706		25 Cases. <i>Clin J Coloproctol</i> 39 , 8-9 (2019).
707	67	Niu, S. DC-CIK combined with chemotherapy plus targeted therapy is used for advanced
708		colon cancer (Chinese Article). <i>Journal of Basic and Clinical Oncology</i> 29 , 355-356,357,
709		doi:10.3969/j.issn.1673-5412.2016.04.026 (2016).
710	68	Pu, L., Jin, L., Li, T., Hu, W. & Liang, X. The effect of DC-CIK combined with chemotherapy on
711		patients with liver metastases after radical resection of colorectal cancer and its influence on
712		the expression of TRF1 and TRF2 (Chinese Article). <i>Chin J Diffc and Compl Cas</i> 20 , 446-
713		449,455, doi:10.3969/j.issn.1671-6450.2021.05.003 (2021).
714	69	Rui, T. et al. Activated DC combined with CIK immunotherapy for patients with advanced
715		colorectal cancer (Chinese Article). <i>Zhejiang Medicine</i> 37 , 1505-1509 (2012).
716	70	Sun, J. The effect of DC-CIK combined with chemotherapy plus targeted therapy was
717		observed in patients with advanced colon cancer (Chinese Article). <i>Dietary Health Care</i> 46 ,
718	74	
719	71	Wang, R. <i>et al.</i> Effects of IL-2- and IL-15-induced CIK Cells Combined with Chemotherapy
720		Treatment for Colorectal Cancer (Chinese Article). <i>Journal of Junming Medical University</i> 35 ,
721	72	97-101, doi:10.3969/j.issn.1003-4706.2014.11.025 (2014).
722 723	72	Wang, L., Zhao, D., Cao, Y. & Li, R. The application of DC-CIK biological immunotherapy
725		combined with chemotherapy and targeted therapy in advanced colon cancer (Chinese Article). <i>International Herald of Medicine and Health (IMHGN)</i> 22 , 42-44,
724		doi:10.3760/cma.j.issn.1007-1245.2016.01.012 (2016).
726	73	Wang, X., Zhang, J., Hui, L. & Luo, Y. Effect of chemotherapy combined with DC-CIK cell
720	75	immunotherapy on advanced colorectal cancer and immune function (Chinese Article). <i>Med</i>
728		J NDFNC 38 , 351-356, doi:10.16021/j.cnki.1007-8622.2017.06.001 (2017).
729	74	Weng, H., Shen, D., Mao, W. & Han, L. Clinical efficacy of DC-CIK immunotherapy combined
730	/4	with chemotherapy in treatment of advanced colorectal cancer (Chinese Article). <i>Zhejiang</i>
731		Medicine 37 , 625-629 (2013).
732	75	Weaking J. et al. Clinical observation of co-treatment with CIK cells and dendritic cells for
733	, 3	advanced rectal cancer (Chinese Article). Chin J Clin Oncol Rehali 21 , 1040-1043,
734		doi:10.13455/j.cnki.cjcor.2014.09.06 (2014).
-		

735	76	Wu, Y. et al. Influence of DC-CIK on circulating tumour cells in patients with liver metastasis
736		after radical resection of colorectal cancer and its therapeutic efficacy (Chinese Article). Chin
737		J Cancer Biother 25 , 89-93, doi:10.3872/j.issn.1007-385x.2018.01.016 (2018).
738	77	Yan, H., Wu, J., Sun, W. & Wang, W. Clinical Observation of Elderly Patients with Advanced
739		Colorectal Cancer Treated with CIK Cells Combined with Chemotherapy (Chinese Article).
740		Journal of Basic and Clinical Oncology 27, 286-288, doi:10.3969/j.issn.1673-
741		5412.2014.04.005 (2014).
742	78	Yin, L. <i>et al.</i> Efficacy of dendritic cells/cytokine induced killer cells adoptive immunotherapy
743		combined with chemotherapy in treatment of metastatic colorectal cancer (Chinese Article).
744		Clin J Cancer Biother 20 , 217-224 (2013).
745	79	Ying, M., Wei, Z., Yang, J., Chen, L. & Zheng, Q. Retrospective analysis of Pos-operative
746		chemo-radiotherapy combined with DC-CIK in the treatment of patients with colorectal
747		cancer (Chinese Article). <i>The Practical Journal of Cancer</i> 25 , 274-276,282,
748		doi:10.3969/j.issn.1001-5930.2010.03.016 (2010).
749	80	Yuan, J., Peng, D., Li, J. & Wang, M. Clinical research of dendritic cells combined with
750		cytokine induced killer cells therapy for advanced colorectal cancer (Chinese Article). Chinese
751		<i>General Practice</i> 14 , 4139-4141, doi:10.3969/j.issn.1007-9572.2011.36.007 (2016).
752	81	Yue, L. <i>et al.</i> Clinical research of adoptive immunotherapy with killer cells induced by
753	01	autologous dendritic cells vaccine in palliative care of elder patients with colorectal
754		carcinoma (Chinese Article). Sichuan Medical Journal 37 , 1228-1232,
755		doi:10.16252/j.cnki.issn1004-0501-2016.11.010 (2016).
756	82	Zang, Y., Ding, L. & Jiang, Z. Clinical efficacy of DC - CIK combined with FOLFOX6
757	02	chemotherapy in treatment of elderly patients with colorectal cancer and its effect on serum
758		hCAP18 and APE1 autoantibodies (Chinese Article). Journal of Practical Oncology 34 , 449-
759		453 (2019).
760	83	
760	65	Zhang, J., Geng, J., Han, Z. & Gao, X. Observation of clinical efficacy of chemotherapy
		combined with CIK/DC cell therapy for advanced colon cancer (Chinese Article). ACTA
762	04	Academia Medicine XUZHOU 31 , 457-459, doi:10.3969/j.issn.1000-2065.2011.07.008 (2011).
763	84	Zhang, J., Ye, Z., Huang, L., Huang, T. & Zhang, Z. Clinical discussion of DC-CIK cell
764		combination chemotherapy in the treatment of advanced colorectal cancer (Chinese Article).
765	05	Zhejiang Clinical Medicine 17 , 2105-2106,2109 (2015).
766	85	Zhang, W. Clinical observation of DC-CIK adoptive immunotherapy combined with
767		chemotherapy in the treatment of advanced colorectal cancer (Chinese Article). <i>Practical</i>
768		integrative medicine clinical 17 , 47-48, doi:10.13638/j.issn.1671-4040.2017.04.027 (2017).
769	86	Zhang, Z. et al. Clinical efficacy of dendritic cells/cytokine induced killer cells immunotherapy
770		combined with chemotherapy for advanced colorectal cancer (Chinese Article). <i>Med J West</i>
771		<i>China</i> 34 , 415-419, doi:10.3969/j.issn.1672-3511.2022.03.019 (2022).
772	87	Zhao, B. et al. Clinical efficacy of DC-CIK combined with chemotherapy and targeted therapy
773		for advanced colon cancer (Chinese Article). <i>Heilongjiang Medicine and Pharmacy</i> 41 , 5-6,
774		doi:10.3969/j.issn.1008-0104.2018.05.003 (2018).
775	88	Zhao, H., Yun, S., Li , C., Su, W. & Zhang, X. Efficacy of DC-CIK combined with chemotherapy
776		and radiofrequency ablation in the treatment of postoperative liver metastasis of colorectal
777		cancer (Chinese Article). <i>Modern Instruments and Medical</i> 25 , 57-61,
778		doi:10.11876/mimt201902015 (2019).
779	89	Zhao, W. et al. To Explore the Effect of DC-CIK Combine with Chemotherapy plus Targeted
780		Therapy for Advanced Colorectal Cancer (Chinese Article). China Continuing Medical
781		<i>Education</i> 7 , 93-95, doi:10.3969/j.issn.1674-9308.2015.26.066 (2015).
782	90	Zhou, D., Cao, S., Li, Q., Long, W. & Li, Y. Clinical Study of TACE Combined with DC-CIK
783		Biotherapy on the Treatment of Patients with Clorectal Liver Metastases. Journal of Clinical
784		Radiology 35 , 771-774 (2016).

785	91	Zhou, Q. Observation effect of biological immune method in the treatment of patients with
786		advanced colorectal cancer (Chinese Article). Contemporary Chinese Medicine 22, 37-39
787		(2015).
788	92	Guo, R., Piao, H., Shi, G., Zhang, G. & Zhang, R. Analysis of the efficacy of CIK therapy in
789		adjuvant treatment of colorectal cancer. 38 , e15022-e15022,
790		doi:10.1200/JCO.2020.38.15 suppl.e15022 (2020).
791	93	Larkin, J. <i>et al.</i> Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced
792		Melanoma. N Engl J Med 381 , 1535-1546, doi:10.1056/NEJMoa1910836 (2019).
793	94	Reck, M. <i>et al.</i> Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for
794		Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score >/= 50. J Clin
795		<i>Oncol</i> 39 , 2339-2349, doi:10.1200/JCO.21.00174 (2021).
796	95	Xin Yu, J., Hubbard-Lucey, V. M. & Tang, J. The global pipeline of cell therapies for cancer.
797		Nat Rev Drug Discov 18 , 821-822, doi:10.1038/d41573-019-00090-z (2019).
798	96	Bakos, O., Lawson, C., Rouleau, S. & Tai, L. H. Combining surgery and immunotherapy:
799		turning an immunosuppressive effect into a therapeutic opportunity. J Immunother Cancer 6,
800		86, doi:10.1186/s40425-018-0398-7 (2018).
801	97	Patente, T. A. <i>et al</i> . Human Dendritic Cells: Their Heterogeneity and Clinical Application
802		Potential in Cancer Immunotherapy. <i>Frontiers in immunology</i> 9 , 3176,
803		doi:10.3389/fimmu.2018.03176 (2018).
804	98	Zhang, Y. & Schmidt-Wolf, I. G. H. Ten-year update of the international registry on cytokine-
805		induced killer cells in cancer immunotherapy. J Cell Physiol 235 , 9291-9303,
806		doi:10.1002/jcp.29827 (2020).
807	99	Wolf, B. et al. Safety and Tolerability of Adoptive Cell Therapy in Cancer. Drug Saf 42, 315-
808		334, doi:10.1007/s40264-018-0779-3 (2019).
809	100	Oncology, C. B. C. f. I. IRCC – International Registry on CIK cells, https://cik-info.org/en/ircc-
810		international-registry-on-cik-cells/> (2009).
811	101	Wei, J. <i>et al.</i> Clinical development of CAR T cell therapy in China: 2020 update. <i>Cell Mol</i>
812		Immunol 18 , 792-804, doi:10.1038/s41423-020-00555-x (2021).
813	102	Mareschi, K. et al. Cytokine-Induced Killer (CIK) Cells, In Vitro Expanded under Good
814		Manufacturing Process (GMP) Conditions, Remain Stable over Time after Cryopreservation.
815		Pharmaceuticals (Basel) 13 , doi:10.3390/ph13050093 (2020).
016		
816		
817		

Use of cytokine-induced killer cell therapy in colorectal cancer patients: a systematic review and meta-analysis.

Study ID	Study type	RCT	Pt (n)	Age (range)	Male (%)	Colon primary (%)	Stage	Intervention arm/s (n)	Control arm (n)	Outcomes
Bian 2013 ³⁹	Р	Yes	84	39-78	54.8	73.8	1-3	DC-CIK + ChT (42)	ChT (42)	OS, PFS, ORR, SE
Cai 2010 ⁴⁰	Р	Yes	80	-	62.5	-	2-3	CIK + ChT (40)	ChT (40)	OS, PFS, SE
Cai 2013 ⁴¹	Р	No	72	-	69.4	0.0	1-3	CIK + ChT (40)	ChT (32)	OS, SE
Cai 2017 ⁴²	Р	No	90	30-70	70.0	-	4	DC-CIK + ChT (45)	ChT (45)	OS, PFS, SE
Chao 2016 ⁴³	R	No	66	-	68.2	-	3-4	DC-CIK +/- ChT (33)	No treatment or ChT (33)	OS, SE
Chen 2014a ⁴⁴	Р	Yes	60	30-65		100.0	3-4	DC-CIK + ChT (30)	ChT (30)	OS, PFS, SE
Chen 2014b ⁴⁵	Р	Yes	90	32-76	65.0	-	1-3	DC-CIK + ChT (45)	ChT (45)	OS, PFS
Chu 2016 ⁴⁶	Р	Yes	89	-	51.7	-	4	CIK (30) and CIK + ChT (29)	ChT (30)	OS, PFS, SE
Deng 201847	Р	Yes	60	-		-	3-4	CIK + ChT (30)	ChT (30)	OS, PFS, SE
Dong 2018 ⁴⁸	Р	No	40	18-75	52.5	37.5	4	DC-CIK + ChT (20)	ChT (20)	OS, PFS, SE
Du 2013 ²⁵	Р	Yes	60	-	53.3	68.3	4	CIK + ChT (30)	ChT (30)	OS, PFS, SE
Fan 2013 ⁴⁹	Р	Yes	81	32-83		0.0	1-3	CIK + ChT + RT (41)	ChT + RT (40)	OS, PFS, ORR SE
Fang 2016 ⁵⁰	Р	Yes	52		59.6	-	4	CIK + ChT (26)	ChT (26)	ORR, SE
Feng 2014 ⁵¹	Р	No	40	51-55	70.0	-	1-3	CIK + ChT (20)	ChT (20)	OS, PFS
Feng 2017 ⁵²	Р	Yes	50	41-79	66.0	-	3	DC-CIK + ChRT (25)	ChRT (25)	PFS, ORR, SE
Gao 2014 ²⁶	Р	No	26	-		-	<4	DC-CIK + ChT (13)	No treatment (13)	OS, PFS, SE
Guo 2019 ⁵³	Р	Yes	68	41-83	57.4	27.9	4	DC-CIK + ChT (34)	ChT (34)	ORR
He 2018 ⁵⁴	R	-	100	40-80	60.0	-	3	DC-CIK + ChT (50)	ChT (50)	OS, ORR
Jiang 2016 ⁵⁵	Р	No	98	22-78	64.3	-	3-4	DC-CIK + ChT (50)	ChT (48)	ORR
Leng 2016 ⁵⁶	R	-	90	29-66	57.8	0.0	3-4	CIK + IMRT + microwave hyperthermia (45)	IMRT + microwave hyperthermia (45)	ORR, SE
Li 2012 ⁵⁷	Р	Yes	40	-	70.0	-	2-3	DC-CIK + ChT (20)	ChT (20)	OS, ORR
Li 2015 ⁵⁸	Р	No	130	-	56.2	43.0	2-3	CIK + ChT + RT (65)	ChT + RT (65)	ORR, SE
Li 2016 ²⁷	U	-	60	-	63.3	63.3	4	CIK + RFA (30)	RFA (30)	ORR, SE
Li 2022 ²⁸	R	-	137	-	60.6	-	2-4	CIK + ChT (66)	ChT (71)	ORR, SE
Lin 2016 ²⁷	Р	Yes	255	-	54.9	56.1	4	DC-CIK + ChT (134)	ChT (121)	OS
Liu 2014a ⁵⁹	Р	Yes	56	32-72	55.4	-	4	DC-CIK + ChT (28)	ChT (28)	ORR, SE
Liu 2014b ⁶⁰	Р	No	18	28-73	55.6	-	4	DC-CIK + ChT (9)	ChT (9)	ORR, SE
Liu 2016a ⁶²	Р	Yes	58	35-80	63.8	-	4	DC-CIK + ChT (29)	ChT (29)	ORR
Liu 2016b ⁶³	Р	Yes	80	22-82	61.3	-	1-4	DC-CIK + ChT (40)	ChT (40)	ORR
Liu 2016c ⁶⁴	R	-	90	-	64.4	0.0	1-4	DC-CIK + ChT (45)	ChT (45)	ORR

Table 1. Summary of included studies

Liu 2019 ³⁰	Р	Yes	70	-	68.6	40.0	2-4	DC-CIK + ChT (35)	ChT (35)	OS, ORR, SE
Liu 2020 ⁶¹	Р	Yes	68	30-79	59.7	69.1	3-4	DC-CIK + ChT (34)	ChT (34)	OS
Lv 2014 ⁶⁵	Р	Yes	85	-	51.8	-	3	CIK + ChT (43)	ChT (42)	ORR, SE
Ma 2019 ⁶⁶	Р	Yes	50	49-77	60.0	-	2-3	DC-CIK + ChT (25)	ChT (25)	ORR, SE
Niu 2016 ⁶⁷	Р	Yes	50	34-62	64.0	-	3-4	DC-CIK + ChT (25)	ChT (25)	ORR
Pan 2020a ³¹	R	-	252	-	61.5	63.5	4	CIK + ChT (126)	ChT (126)	OS, PFS
Pan 2020b ¹⁷	R	-	122	-	63.9	64.8	2-4	CIK + ChT (60)	ChT (62)	ORR
Peng 2017 ³²	Р	Yes	46	-	63.0	-	2-3	CIK + ChT (23)	ChT (23)	ORR
Pu 2021 ⁶⁸	Р	Yes	98	-	38.8	-	4	DC-CIK + ChT (49)	ChT (49)	SE
Rui 2012 ⁶⁹	Р	Yes	90	18-60	57.8	53.3	4	DC-CIK + ChT (45)	ChT (45)	OS, ORR
Sun 2020 ⁷⁰	Р	No	60	41-68	51.7	-	4	DC-CIK + ChT (30)	ChT (30)	OS, ORR, SE
Wang 2014 ⁷¹	Р	No	110	-	60.0	63.6	1-3	CIK + ChT (55)	ChT (55)	OS, ORR
Wang 2016 ⁷²	Р	Yes	104	32-69	58.7	-	3-4	DC-CIK + ChT (52)	ChT (52)	ORR
Wang 2017 ⁷³	Р	Yes	68	-	64.1	-	3-4	DC-CIK + ChT (34)	ChT (34)	OS, ORR, SE
Wang 2019 ³³	R	-	377	-		-	-	CIK + ChT (97)	ChT (280)	ORR
Weng 2013 ⁷⁴	Р	Yes	235	-	55.3	56.6	3-4	DC-CIK + ChT (124)	ChT (111)	ORR
Weng 2014 ⁷⁵	Р	Yes	96	25-76	59.6	-	4	CIK + ChT (48)	ChT (48)	ORR
Wu 2018 ⁷⁶	R	-	132	-	66.7	51.5	4	DC-CIK + ChT + RFA (62)	ChT + RFA (70)	OS
Xie 2017 ¹⁹	R	-	142	-	55.6	-	3-4	DC-CIK + ChT +/- RT (71)	ChT +/-RT (71)	OS, ORR
Xu 2021 ³⁴	R	-	116	-	46.6	54.3	2-4	CIK + ChT (32)*	ChT (82)*	OS, ORR
Yan 201477	Р	No	114	-	56.1	-	4	CIK + ChT (72)	ChT (42)	OS, PFS, ORR
Yin 2013 ⁷⁸	Р	No	80	-	61.3	60.0	4	DC-CIK + ChT (40)	ChT (40)	OS, PFS, ORR
Ying 2010 ⁷⁹	R	-	102	20-86	54.9	-	1-3	DC-CIK + ChT + RT (51)	ChT + RT (51)	PFS, ORR
Yuan 2016 ⁸⁰	Р	Yes	42	45-78	73.8	-	4	DC-CIK + ChT (21)	ChT (21)	OS
Yue 2016 ⁸¹	Р	Yes	110	-	47.3	53.6	3-4	DC-CIK (55)	BSC (55)	OS, PFS, ORR
Zang 2019 ⁸²	Р	Yes	90	-	66.7	-	3-4	DC-CIK + ChT (45)	ChT (45)	OS
Zhang 2011 ⁸³	Р	Yes	63	24-82	61.9	-	3-4	DC-CIK + ChT (32)	ChT (31)	OS
Zhang 2014 ³⁵	Р	Yes	60	-	63.3	56.7	1-4	CIK + ChT (30)	ChT (30)	OS, SE
Zhang 2015 ⁸⁴	R	-	84	-	54.8	-	4	DC-CIK + ChT (42)	ChT (42)	OS, PFS, ORR, SE
Zhang 2016 ²⁴	Р	No	112	-	52.2	52.0	3-4	DC-CIK + ChT (65)	ChT (47)	ORR
Zhang 2017 ⁸⁵	Р	Yes	118	46-78	49.2	-	4	DC-CIK + ChT (59)	ChT (59)	OS, PFS
Zhang 2022 ⁸⁶	Р	No	90	43-73	67.8	51.1	3-4	DC-CIK + ChT (45)	ChT (45)	SE
Zhao 2015 ⁸⁹	Р	Yes	30	32-67	70.0	-	4	DC-CIK + ChT (15)	ChT (15)	ORR
Zhao 2016 ³⁶	Р	Yes	122	-	67.2	58.7	4	CIK + ChT (61)	ChT (61)	ORR, SE
Zhao 2018 ⁸⁷	Р	Yes	90	40-59	63.3	-	4	CIK + ChT (45)	ChT (45)	ORR, SE

Use of cytokine-induced killer cell therapy in colorectal cancer patients: a systematic review and meta-analysis.

Zhao 2019 ⁸⁸	Р	No	148	-	62.8	-	1-3	DC-CIK + ChT + RFA (73)	ChT + RFA (75)	OS
Zhou 2015 ⁹¹	Р	Yes	60	45-80	68.3	78.3	4	DC-CIK + ChT (30)	ChT (30)	OS, ORR
Zhou 2016 ⁹⁰	Р	No	90	-		-	4	DC-CIK + TACE (45)	TACE (45)	ORR, SE
Zhu 2013 ³⁷	R	-	96	-	57.3	62.1	1-4	CIK + ChT (21)	ChT (75)	OS, PFS, ORR, SE
Zhu 2014 ³⁸	R	-	351	19-92	65.2	30.8	4	DC-CIK + Standard care (100)	Standard care (251)	ORR, SE

820

n=number; P=prospective; R=retrospective; U=unknown; RCT= randomised controlled trial; ChT=chemotherapy; RT=radiotherapy;
 ChRT=concurrent chemoradiotherapy; BSC=best supportive care; IMRT=intensity modified radiotherapy; TACE=trans-arterial
 chemoembolization; RFA=radiofrequency ablation;*16 and 18 patients in intervention arm and 47 and 35 patients in control arm were treated in
 adjuvant and palliative setting, respectively.

825

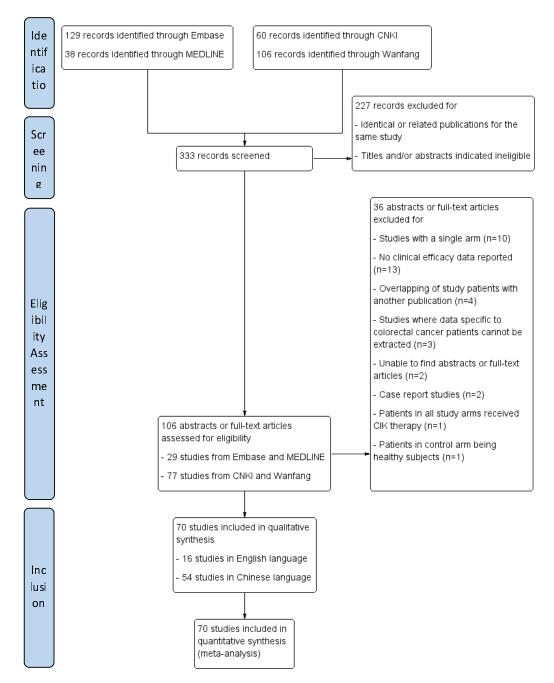


Figure 1. Flow chart of study selection.

		CIK	+/- DC	Control		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Chao 2016	-0.8675	0.3072	33	33	2.4%	0.42 [0.23, 0.77]	
Gao 2014	-1.6607	0.5423	13	13	0.8%	0.19 [0.07, 0.55]	
Li 2015	-0.3857	0.1994	65	65	5.3%	0.68 [0.46, 1.01]	
Li 2016	0.5068	0.6892	30	30	0.5%	1.66 [0.43, 6.41]	
Li 2022	-0.5621	0.2345	66	71	4.0%	0.57 [0.36, 0.90]	
Lin 2016	-0.6162	0.1101	134	121	13.0%	0.54 [0.44, 0.67]	+
Liu 2014b	-1.7148	0.6535	9	9	0.6%	0.18 [0.05, 0.65]	
Liu 2016c	-0.1165	0.2364	45	45	3.9%	0.89 [0.56, 1.41]	_
Lv 2014	-0.2107	0.4281	43	42	1.3%	0.81 [0.35, 1.87]	
Pan 2020a	-0.7765	0.1685	126	126	7.0%	0.46 [0.33, 0.64]	
Pan 2020b	-0.9943	0.3739	60	62	1.7%	0.37 [0.18, 0.77]	
Peng 2017	-1.1087	0.5231	23	23	0.9%	0.33 [0.12, 0.92]	
Pu 2021	-0.7765	0.3319	49	49	2.1%	0.46 [0.24, 0.88]	
Rui 2012	-0.5798	0.2398	45	45	3.9%	0.56 [0.35, 0.90]	_ _
Wang 2019	-0.6675	0.2164	97	280	4.6%	0.51 [0.34, 0.78]	
Weng 2013	-0.3711	0.1542	124	111	8.1%	0.69 [0.51, 0.93]	
Wu 2018	-0.462	0.1949	62	70	5.5%	0.63 [0.43, 0.92]	_
Xie 2017	-0.478	0.1669	71	71	7.1%	0.62 [0.45, 0.86]	- - -
Xu 2021	-0.0202	0.3186	18	35	2.3%	0.98 [0.52, 1.83]	
Yin 2013	-0.4005	0.2263	40	40	4.3%	0.67 [0.43, 1.04]	
Ying 2010	-0.478	0.2919	51	51	2.7%	0.62 [0.35, 1.10]	
Zhang 2014	-0.9163	0.4074	30	30	1.4%	0.40 [0.18, 0.89]	
Zhang 2015	-0.4943	0.2282	42	42	4.2%	0.61 [0.39, 0.95]	_
Zhang 2022	-0.3011	0.2209	45	45	4.5%	0.74 [0.48, 1.14]	
Zhao 2016	-0.478	0.1987	61	61	5.3%	0.62 [0.42, 0.92]	_
Zhu 2014	-0.6349	0.3077	100	251	2.4%	0.53 [0.29, 0.97]	
Total (95% CI)			1482	1821	100.0%	0.59 [0.53, 0.65]	•
Heterogeneity: Tau ²	= 0.01; Chi ² = 28.16, (df = 25 (P = 0).30): I ^z =	= 11%			0.01 0.1 1 10 1

В

		(CIK +/- DC	Control		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Du 2013	-0.4308	0.199	30	30	5.8%	0.65 [0.44, 0.96]	
Gao 2014	-1.6094	0.5161	13	13	1.7%	0.20 [0.07, 0.55]	
Li 2015	-0.2485	0.1512	65	65	7.1%	0.78 [0.58, 1.05]	
Li 2016	-0.5447	0.2577	30	30	4.5%	0.58 [0.35, 0.96]	
Li 2022	-0.5108	0.233	66	71	5.0%	0.60 [0.38, 0.95]	
Lin 2016	-0.6931	0.1268	134	121	7.7%	0.50 [0.39, 0.64]	
Liu 2016c	-1.1087	0.3093	45	45	3.6%	0.33 [0.18, 0.61]	_
Pan 2020a	-0.5798	0.1468	126	126	7.2%	0.56 [0.42, 0.75]	
Wang 2019	-0.4813	0.1874	97	280	6.1%	0.62 [0.43, 0.89]	
Weng 2013	-1.3093	0.1793	124	111	6.3%	0.27 [0.19, 0.38]	
Wu 2018	-0.5621	0.1936	62	70	5.9%	0.57 [0.39, 0.83]	
Xie 2017	-0.4943	0.1984	71	71	5.8%	0.61 [0.41, 0.90]	
Xu 2021	-0.5798	0.2855	16	47	4.0%	0.56 [0.32, 0.98]	
Yin 2013	-0.3857	0.2338	40	40	5.0%	0.68 [0.43, 1.08]	
Ying 2010	-0.3711	0.2413	51	51	4.8%	0.69 [0.43, 1.11]	
Zhang 2014	-1.5606	0.4924	30	30	1.8%	0.21 [0.08, 0.55]	
Zhang 2015	-0.6539	0.2477	42	42	4.7%	0.52 [0.32, 0.85]	_
Zhang 2022	-0.5276	0.1983	45	45	5.8%	0.59 [0.40, 0.87]	_
Zhao 2016	-0.1863	0.1829	61	61	6.2%	0.83 [0.58, 1.19]	
Zhu 2013	-1.273	0.6014	21	75	1.3%	0.28 [0.09, 0.91]	
Total (95% CI)			1169	1424	100.0%	0.55 [0.47, 0.63]	•
Heterogeneity: Tau ² :	= 0.05; Chi ² = 41.71, i	df = 19 (P	= 0.002); I ²	= 54%			
	: Z = 8.28 (P < 0.000		/1 -				
		,					Favours CIK/DC-CIK Favours non-CIK/DC-CIK

Figure 2. Comparison of CIK/DC-CIK therapy versus non-CIK/DC-CIK therapy for (A) overall survival (OS) and (B) progression-free survival (PFS). Twenty-six studies involving 3,303 patients and twenty studies involving 2,593 patients contributed data to OS and PFS analysis respectively. CIK, cytokine-induced killer cell; DC, dendritic cell.

	CIK +/-	DC	Contr	ol		Risk Ratio (Non-event)	Risk Ratio (Non-event)
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Bian 2013	29	42	21	42	2.2%	0.62 [0.36, 1.07]	
Cai 2017	28	45	15	45	2.6%	0.57 [0.37, 0.87]	
Chen 2014a	16	30	13	30	2.4%	0.82 [0.50, 1.35]	
Chen 2014b	35	50	21	50	2.4%	0.52 [0.32, 0.84]	
Chu 2016 (1)	25	29	8	15	1.1%	0.30 [0.10, 0.85]	
Chu 2016 (2)	16	30	7	15	2.0%	0.88 [0.48, 1.61]	
Deng 2018 •	27	30	18	30	1.0%	0.25 [0.08, 0.80]	
Dong 2018	6	20	5	20	2.7%	0.93 [0.64, 1.37]	
Du 2013	12	30	11	30	2.7%	0.95 [0.64, 1.41]	
Fan 2013	38	41	30	40	0.9%	0.29 [0.09, 0.99]	
Feng 2017	22	25	16	25	0.9%	0.33 [0.10, 1.09]	
Guo 2019	27	34	20	34	1.6%	0.50 [0.23, 1.08]	
He 2018	43	50	31	50	1.6%	0.37 [0.17, 0.80]	
Jiang 2016	34	50	19	48	2.5%	0.53 [0.33, 0.84]	
Leng 2016	43	45	37	45	0.7%	0.25 [0.06, 1.11]	
Liu 2016a	43 24	29	15	29	1.4%		
Liu 2016b	24 24	29 40	23	29 40	2.3%	0.36 [0.15, 0.86] 0.94 [0.56, 1.59]	
Liu 2016c	14	45	10	45	3.1%	0.89 [0.69, 1.14]	
Liu 2019	21	35	11	35	2.5%	0.58 [0.37, 0.93]	
Liu 2020	29	34	20	34	1.4%	0.36 [0.14, 0.88]	
Lv 2014	29	43	26	42	2.1%	0.85 [0.48, 1.52]	
Ma 2019	21	25	12	25	1.2%	0.31 [0.12, 0.81]	
Niu 2016	17	25	9	25	1.9%	0.50 [0.26, 0.95]	
Pu 2021	33	49	18	49	2.5%	0.52 [0.33, 0.81]	
Sun 2020	26	30	20	30	1.1%	0.40 [0.14, 1.14]	
Wang 2014	36	55	28	55	2.5%	0.70 [0.45, 1.11]	
Wang 2016	28	52	22	52	2.7%	0.80 [0.55, 1.16]	
Wang 2017	20	34	10	34	2.5%	0.58 [0.37, 0.92]	
Weng 2013	40	124	25	111	3.3%	0.87 [0.75, 1.02]	
Weng 2014	9	48	5	48	3.3%	0.91 [0.77, 1.07]	-
Wu 2018	38	62	19	70	2.8%	0.53 [0.38, 0.75]	
Yan 2014	32	74	10	42	3.1%	0.74 [0.57, 0.97]	
Yin 2013	15	40	9	40	3.0%	0.81 [0.60, 1.08]	
Yuan 2016	9	20	7	20	2.3%	0.85 [0.51, 1.41]	
Yue 2016	1	55	0	55	3.4%	0.98 [0.93, 1.03]	•
Zang 2019	40	45	31	45	1.3%	0.36 [0.14, 0.91]	
Zhang 2011	21	32	13	31	2.2%	0.59 [0.34, 1.04]	
Zhang 2015	19	42	12	42	2.8%	0.77 [0.55, 1.07]	
Zhang 2016	30	65	21	47	2.8%	0.97 [0.69, 1.37]	<u> </u>
Zhang 2017	32	59	20	59	2.9%	0.69 [0.50, 0.97]	
Zhao 2015	15	15	15	15	2.070	Not estimable	
Zhao 2016	10	54	4	51	3.3%	0.88 [0.76, 1.03]	+
Zhao 2018	43	45	35	45	0.7%	0.20 [0.05, 0.86]	
Zhao 2019 Zhao 2019	47	73	10	75	2.9%	0.41 [0.30, 0.57]	
Zhao 2019 Zhou 2015	47	30	9	30	2.9%	0.76 [0.51, 1.15]	
Zhou 2015 Zhou 2016	21	30 45	9 10	30 45	2.0%	0.69 [0.50, 0.94]	
	21		10				
Total (95% CI)		1975		1885	100.0%	0.65 [0.57, 0.74]	•
Total events	1159		751				
Heterogeneity: Tau ² =	= 0.14: Chi	ř= 299	1.79, df =	44 (P =	0.00001)	; I* = 85%	0.01 0.1 1 10 100

Figure 3. CIK/DC-CIK therapy versus non-CIK/DC-CIK therapy for overall response rate (ORR). Forty-five studies involving 3,860 patients contributed data to ORR analysis. *Study Chu 2016 appears twice in the figure as it contained 3 treatment arms and data were entered separately for CIK + chemotherapy versus chemotherapy (Chu 2016 (1)) and CIK versus chemotherapy (Chu 2016 (2)) by splitting the chemotherapy group into 2 subgroups, one for each CIK + chemotherapy and CIK treatment. CIK, cytokine-induced killer cell; DC, dendritic cell.

Α

		(CIK +/- DC	Control		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
2.2.1 Randomised							
Lin 2016	-0.6162	0.1101	134	121	14.3%	0.54 [0.44, 0.67]	-
Lv 2014	-0.2107	0.4281	43	42	1.2%	0.81 [0.35, 1.87]	
Peng 2017	-1.1087	0.5231	23	23	0.8%	0.33 [0.12, 0.92]	
Pu 2021		0.3319	49	49	2.0%	0.46 [0.24, 0.88]	
Rui 2012	-0.5798	0.2398	45	45	3.8%	0.56 [0.35, 0.90]	_
Weng 2013		0.1542	124	111	8.3%	0.69 [0.51, 0.93]	
Zhang 2014	-0.9163	0.4074	30	30	1.4%	0.40 [0.18, 0.89]	
Zhao 2016 Subtotal (95% CI)	-0.478	0.1987	61 509	61 482	5.3% 37.2 %	0.62 [0.42, 0.92] 0.57 [0.50, 0.66]	
Heterogeneity: Tau ² = Test for overall effect			1.67); I² = 0°	%			
2.2.2 Non-randomise	ed						
Chao 2016	-0.8675	0.3072	33	33	2.4%	0.42 [0.23, 0.77]	— <u> </u>
Gao 2014	-1.6607	0.5423	13	13	0.8%	0.19 [0.07, 0.55]	
Li 2015	-0.3857	0.1994	65	65	5.3%	0.68 [0.46, 1.01]	
Li 2022	-0.5621	0.2345	66	71	3.9%	0.57 [0.36, 0.90]	_
_iu 2014b	-1.7148	0.6535	9	9	0.5%	0.18 [0.05, 0.65]	
_iu 2016c	-0.1165	0.2364	45	45	3.9%	0.89 [0.56, 1.41]	
Pan 2020a	-0.7765	0.1685	126	126	7.1%	0.46 [0.33, 0.64]	
Pan 2020b	-0.9943	0.3739	60	62	1.6%	0.37 [0.18, 0.77]	
Wang 2019	-0.6675	0.2164	97	280	4.6%	0.51 [0.34, 0.78]	
Wu 2018	-0.462	0.1949	62	70	5.5%	0.63 [0.43, 0.92]	
Xie 2017	-0.478	0.1669	71	71	7.3%	0.62 [0.45, 0.86]	_
Xu 2021	-0.0202		18	35	2.2%	0.98 [0.52, 1.83]	
Yin 2013		0.2263	40	40	4.2%	0.67 [0.43, 1.04]	
Ying 2010	-0.478	0.2919	51	51	2.6%	0.62 [0.35, 1.10]	
Zhang 2015	-0.4943	0.2282	42	42	4.1%	0.61 [0.39, 0.95]	_
Zhang 2022	-0.3011	0.2209	45	45	4.4%	0.74 [0.48, 1.14]	
Zhu 2014	-0.6349	0.3077	100	251	2.4%	0.53 [0.29, 0.97]	
Subtotal (95% CI)			943	1309	62.8%	0.59 [0.51, 0.67]	◆
Heterogeneity: Tau² = Test for overall effect			= 0.18); l² =	23%			
Total (95% CI)			1452	1791	100.0%	0.58 [0.53, 0.64]	•
Heterogeneity: Tau² = Test for overall effect Test for subgroup dif	: Z = 11.13 (P < 0.000)01)					0.01 0.1 1 10 100 Favours CIK/DC-CIK Favours non-CIK/DC-CIK
3		, i (i	5.557,1 -	0.00			
		(:IK +/- DC	Control		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total		Weight	IV. Random, 95% Cl	
2.4.1 Randomised	atriara radioj	02	rotui	- otu	- roight		14,14,14,14,00,1,00,10

Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
2.4.1 Randomised							
Du 2013	-0.4308	0.199	30	30	6.0%	0.65 [0.44, 0.96]	
Lin 2016	-0.6931	0.1268	134	121	8.0%	0.50 [0.39, 0.64]	-
Weng 2013	-1.3093	0.1793	124	111	6.5%	0.27 [0.19, 0.38]	
Zhang 2014	-1.5606	0.4924	30	30	1.9%	0.21 [0.08, 0.55]	
Zhao 2016	-0.1863	0.1829	61	61	6.4%	0.83 [0.58, 1.19]	
Subtotal (95% CI)			379	353	29.0%	0.47 [0.31, 0.72]	◆
Heterogeneity: Tau ² =	= 0.18; Chi ² = 24.32, (df = 4 (P <	0.0001); I ² =	84%			
Test for overall effect	Z = 3.48 (P = 0.0005	j)					
2.4.2 Non-randomise	ed						
Gao 2014	-1.6094	0.5161	13	13	1.8%	0.20 [0.07, 0.55]	
Li 2015	-0.2485	0.1512	65	65	7.3%	0.78 [0.58, 1.05]	
Li 2022	-0.5108	0.233	66	71	5.2%	0.60 [0.38, 0.95]	
Liu 2016c	-1.1087	0.3093	45	45	3.8%	0.33 [0.18, 0.61]	
Pan 2020a	-0.5798	0.1468	126	126	7.4%	0.56 [0.42, 0.75]	
Wang 2019	-0.4813	0.1874	97	280	6.3%	0.62 [0.43, 0.89]	- -
Wu 2018	-0.5621	0.1936	62	70	6.2%	0.57 [0.39, 0.83]	
Xie 2017	-0.4943	0.1984	71	71	6.1%	0.61 [0.41, 0.90]	
Xu 2021	-0.5798	0.2855	16	47	4.2%	0.56 [0.32, 0.98]	
Yin 2013	-0.3857	0.2338	40	40	5.2%	0.68 [0.43, 1.08]	
Ying 2010	-0.3711	0.2413	51	51	5.1%	0.69 [0.43, 1.11]	
Zhang 2015	-0.6539	0.2477	42	42	4.9%	0.52 [0.32, 0.85]	_
Zhang 2022	-0.5276	0.1983	45	45	6.1%	0.59 [0.40, 0.87]	
Zhu 2013	-1.273	0.6014	21	75	1.4%	0.28 [0.09, 0.91]	
Subtotal (95% CI)			760	1041	71.0%	0.59 [0.52, 0.67]	•
Heterogeneity: Tau² = Test for overall effect:			= 0.36); I ² = 8	3%			
Total (95% CI)			1139	1394	100.0%	0.54 [0.47, 0.63]	•
Heterogeneity: Tau ² =	= 0.06: Chi ² = 41 69 i	df = 18 (P	= 0.001); I ^z =	57%			
Test for overall effect				20		0.0	
Test for subaroup dif			= 0.31) P=	4.5%			Favours CIK/DC-CIK Favours non-CIK/DC-CIK
. control conservation and		a = a = b = b	0.017.1 -				

Figure 4. Subgroup analysis by study design for (A) overall survival (OS) and (B) progression-free survival (PFS). Twenty-five studies involving 3,243 patients and nineteen studies involving 2,533 patients contributed data to OS and PFS analysis respectively.

Α

			CIK +/- DC	Control		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
4.1.1 CIK							
Li 2015	-0.2485	0.1512	65	65	7.7%	0.78 [0.58, 1.05]	-
Li 2016		0.6892	30	30	0.6%	1.66 [0.43, 6.41]	
Li 2022	-0.5621	0.2345	66	71	4.0%	0.57 [0.36, 0.90]	
Lv 2014	-0.2107	0.4281	43	42	1.4%	0.81 [0.35, 1.87]	
Pan 2020a	-0.7765	0.1685	126	126	6.7%	0.46 [0.33, 0.64]	-
Pan 2020b	-0.9943	0.3739	60	62	1.8%	0.37 [0.18, 0.77]	
Peng 2017	-1.1087	0.523	23	23	1.0%	0.33 [0.12, 0.92]	
Wang 2019	-0.6675	0.2174	97	280	4.6%	0.51 [0.34, 0.79]	
Zhang 2014	-0.9163	0.4074	30	30	1.5%	0.40 [0.18, 0.89]	
Zhao 2016	-0.478	0.1987	61	61	5.2%	0.62 [0.42, 0.92]	
Subtotal (95% CI)			601	790	34.4%	0.57 [0.47, 0.69]	◆
Heterogeneity: Tau ² = Test for overall effect			= 0.18); I² = 2	8%			
4.1.2 DC+CIK							
Chao 2016	-0.8675	0.3072	33	33	2.6%	0.42 [0.23, 0.77]	
Gao 2014	-1.6607	0.5426	13	13	0.9%	0.19 [0.07, 0.55]	
Lin 2016	-0.6162	0.1101	134	121	11.0%	0.54 [0.44, 0.67]	+
Liu 2014b	-1.7148	0.6535	9	9	0.6%	0.18 [0.05, 0.65]	
Liu 2016c	-0.1165	0.2364	45	45	4.0%	0.89 [0.56, 1.41]	
Pu 2021	-0.7765	0.3319	49	49	2.2%	0.46 [0.24, 0.88]	
Rui 2012	-0.5798	0.2398	45	45	3.9%	0.56 [0.35, 0.90]	
Weng 2013	-0.3711		124	111	7.5%	0.69 [0.51, 0.93]	
Wu 2018	-0.462	0.1949	62	70	5.4%	0.63 [0.43, 0.92]	
Xie 2017	-0.478	0.1669	71	71	6.7%	0.62 [0.45, 0.86]	
Xu 2021	-0.0202	0.3186	18	35	2.4%	0.98 [0.52, 1.83]	
Yin 2013	-0.4005	0.2263	40	40	4.3%	0.67 [0.43, 1.04]	
Ying 2010	-0.478	0.2917	51	51	2.8%	0.62 [0.35, 1.10]	
Zhang 2015	-0.4943	0.2282	42	42	4.2%	0.61 [0.39, 0.95]	
Zhang 2022	-0.3011		45	45	4.4%	0.74 [0.48, 1.14]	-++
Zhu 2014 Subtotal (95% CI)	-0.6349	0.3077	100 881	251 1031	2.5% 65.6%	0.53 [0.29, 0.97] 0.61 [0.54, 0.69]	•
Heterogeneity: Tau ² = Test for overall effect			= 0.25); I ^z =	18%			
Total (95% CI)			1482	1821	100.0%	0.60 [0.54, 0.66]	•
Heterogeneity: Tau ² =	= 0.01; Chi ² = 30.99 (df = 25 (P					<u>t</u>
Test for overall effect			2.19/11 -				0.001 0.1 1 10 1000
Test for subaroup dif			P = 0.58) P =	:0%			Favours CIK/DC-CIK Favours non-CIK/DC-CIK
reactor adoutoup un	ierences. Off = 0.51	, ai = 1 (i	- 0.50), 1 -	. 0 .0			

В

			CIK +/- DC	Control		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
4.2.1 CIK							
Du 2013	-0.4308	0.199	30	30	5.8%	0.65 [0.44, 0.96]	
Li 2015	-0.2485	0.1512	65	65	7.1%	0.78 [0.58, 1.05]	
Li 2016	-0.5447	0.2577	30	30	4.5%	0.58 [0.35, 0.96]	
Li 2022	-0.5108	0.233	66	71	5.0%	0.60 [0.38, 0.95]	
Pan 2020a	-0.587	0.148	126	126	7.1%	0.56 [0.42, 0.74]	
Wang 2019	-0.4813	0.1874	97	280	6.1%	0.62 [0.43, 0.89]	
Zhang 2014	-1.5606	0.4924	30	30	1.8%	0.21 [0.08, 0.55]	
Zhao 2016	-0.1863	0.1829	61	61	6.2%	0.83 [0.58, 1.19]	+
Zhu 2013	-1.273	0.6017	21	75	1.3%		
Subtotal (95% CI)			526	768	44.8%	0.63 [0.53, 0.74]	◆
Heterogeneity: Tau ² =	= 0.02; Chi ² = 11.91, (df = 8 (P =	= 0.16); I ^z =	33%			
Test for overall effect	Z = 5.30 (P < 0.0000)1)					
12200 011							
4.2.2 DC-CIK							
Gao 2014	-1.6094		13		1.7%		
Lin 2016	-0.6931		134		7.7%	• • •	
Liu 2016c	-1.1087		45		3.6%		
Weng 2013	-1.3093		124		6.3%		
Wu 2018	-0.5621		62		5.9%	• • •	
Xie 2017	-0.4943		71	71	5.8%		
Xu 2021	-0.5798		16		4.0%		
Yin 2013	-0.3857		40		5.0%		
Ying 2010	-0.3711		51	51	4.8%		
Zhang 2015	-0.6539		42		4.7%		
Zhang 2022	-0.5276	0.1983	45		5.8%		
Subtotal (95% CI)			643		55.2%	0.50 [0.41, 0.61]	•
Heterogeneity: Tau ² =			= 0.01); l ² =	: 56%			
Test for overall effect	: Z = 6.93 (P < 0.0000)1)					
Total (95% CI)			1169	1424	100.0%	0.55 [0.47, 0.63]	•
Heterogeneity: Tau ² =	= 0.05: Chi ² = 41.71	df = 19 /P					
Test for overall effect			- 0.002), 1	- 3470			0.01 0.1 i 10 100
Test for subgroup dif			2 – 0 08) IP	- 66 5%			Favours CIK/DC-CIK Favours non-CIK/DC-CIK
reation subgroup un	ierenices. Oni - 2.80	, ar – i tr	- 0.007,1 -	- 00.070			

Figure 5. Subgroup analysis by CIK therapy type (with or without DC therapy) for (A) overall survival (OS) and (B) progression-free survival (PFS). Twenty-six studies

involving 3,303 patients and twenty studies involving 2,593 patients contributed data to OS and PFS analysis respectively. CIK, cytokine-induced killer cell; DC, dendritic cell.

Α						
			CIK +/- DC	Control		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl
5.2.1 Concurrent						
Chao 2016	-0.8675	0.3072	33	33	2.8%	0.42 [0.23, 0.77]
Li 2015	-0.3857	0.1994	65	65	5.9%	0.68 [0.46, 1.01]
Li 2016	0.5068	0.6892	30	30	0.6%	1.66 [0.43, 6.41]
Liu 2014b	1 71 40	0.6626	0	0	0.7%	0.10.00.000.0000

J.Z. I CONCUTENC							
Chao 2016	-0.8675	0.3072	33	33	2.8%	0.42 [0.23, 0.77]	
Li 2015	-0.3857	0.1994	65	65	5.9%	0.68 [0.46, 1.01]	
Li 2016	0.5068	0.6892	30	30	0.6%	1.66 [0.43, 6.41]	
Liu 2014b	-1.7148	0.6535	9	9	0.7%	0.18 [0.05, 0.65]	
Liu 2016c	-0.1165	0.2364	45	45	4.5%	0.89 [0.56, 1.41]	- _
Lv 2014	-0.2107	0.4281	43	42	1.5%	0.81 [0.35, 1.87]	
Pan 2020a	-0.7765	0.1685	126	126	7.6%	0.46 [0.33, 0.64]	
Rui 2012	-0.5798	0.2398	45	45	4.3%	0.56 [0.35, 0.90]	
Weng 2013	-0.3711	0.1542	124	111	8.6%	0.69 [0.51, 0.93]	
Wu 2018	-0.462	0.1949	62	70	6.1%	0.63 [0.43, 0.92]	
Xie 2017	-0.478	0.1669	71	71	7.7%	0.62 [0.45, 0.86]	
Xu 2021	-0.0202	0.3186	18	35	2.6%	0.98 [0.52, 1.83]	
Zhang 2015	-0.4943	0.2282	42	42	4.7%	0.61 [0.39, 0.95]	_
Zhang 2022	-0.3011	0.2209	45	45	5.0%	0.74 [0.48, 1.14]	
Zhao 2016	-0.478	0.1987	61	61	5.9%	0.62 [0.42, 0.92]	
Zhu 2014	-0.6349	0.3077	100	251	2.8%	0.53 [0.29, 0.97]	
Subtotal (95% CI)			919	1081	71.3%	0.63 [0.56, 0.71]	•
Heterogeneity: Tau ² = 0.01	; Chi ^z = 16.90, (df = 15 (P =	= 0.33); I = = 1	1%			
Test for overall effect: Z = 7	.48 (P < 0.0000	11)					
5.2.2 Sequential							
Gao 2014	-1.6607	0.5423	13	13	1.0%	0.19 [0.07, 0.55]	
Li 2022	-0.5621		66	71	4.5%	0.57 [0.36, 0.90]	_ _
Lin 2016	-0.6162		134	121	13.0%	0.54 [0.44, 0.67]	-
Pan 2020b	-0.9943		60	62	2.0%	0.37 [0.18, 0.77]	<u> </u>
Peng 2017	-1.1087		23	23	1.0%	0.33 [0.12, 0.92]	
Pu 2021	-0.7765	0.3319	49	49	2.5%	0.46 [0.24, 0.88]	
Ying 2010	-0.478	0.2919	51	51	3.1%	0.62 [0.35, 1.10]	
Zhang 2014	-0.9163	0.4074	30	30	1.7%	0.40 [0.18, 0.89]	
Subtotal (95% CI)			426	420	28.7%	0.51 [0.43, 0.60]	•
Heterogeneity: Tau ² = 0.00	; Chi ² = 6.14, df	= 7 (P = 0	.52); I ² = 0%				
Test for overall effect: Z = 8	.07 (P < 0.0000	1)					
Total (95% CI)			1345	1501	100.0%	0.59 [0.53, 0.65]	•
Heterogeneity: Tau ² = 0.01	: Chi = 27.43. (df = 23 (P =	= 0.24): I ² = 1	6%			
Test for overall effect: Z = 9						0.0	
Test for subaroup differen			= 0.04), ² = 1	76.3%			Favours CIK/DC-CIK Favours non-CIK/DC-CIK

Hazard Ratio

IV, Random, 95% CI

В

		(CIK +/- DC	Control		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
5.4.1 Concurrent							
Du 2013	-0.4308	0.199	30	30	6.6%	0.65 [0.44, 0.96]	
Li 2015	-0.2485	0.1512	65	65	7.9%	0.78 [0.58, 1.05]	-+-
Li 2016	-0.5447	0.2577	30	30	5.2%	0.58 [0.35, 0.96]	
Liu 2016c	-1.1087	0.3093	45	45	4.2%	0.33 [0.18, 0.61]	
Pan 2020a	-0.5798	0.1468	126	126	8.0%	0.56 [0.42, 0.75]	
Weng 2013	-1.3093	0.1793	124	111	7.1%	0.27 [0.19, 0.38]	- -
Wu 2018	-0.5621	0.1936	62	70	6.7%	0.57 [0.39, 0.83]	
Xie 2017	-0.4943	0.1984	71	71	6.6%	0.61 [0.41, 0.90]	
Xu 2021	-0.5798	0.2855	16	47	4.6%	0.56 [0.32, 0.98]	
Zhang 2015	-0.6539	0.2477	42	42	5.4%	0.52 [0.32, 0.85]	
Zhang 2022	-0.5276	0.1983	45	45	6.6%	0.59 [0.40, 0.87]	
Zhao 2016	-0.1863	0.1829	61	61	7.0%	0.83 [0.58, 1.19]	
Subtotal (95% CI)			717	743	75.9%	0.56 [0.46, 0.67]	◆
	= 0.07; Chi² = 29.76, (t: Z = 6.07 (P < 0.0000		= 0.002); I*:	= 63%			
5.4.2 Sequential							
Gao 2014	-1.6094	0.5161	13	13	2.0%	0.20 [0.07, 0.55]	
Li 2022	-0.5108	0.233	66	71	5.7%	0.60 [0.38, 0.95]	_
Lin 2016	-0.6931	0.1268	134	121	8.6%	0.50 [0.39, 0.64]	
		0.2413	51	51	5.6%	0.69 [0.43, 1.11]	
Ying 2010	-0.3711						
Ying 2010 Zhang 2014	-0.3711 -1.5606		30	30	2.2%	0.21 (0.08, 0.55)	
Zhang 2014				30 286	2.2% 24.1 %	0.21 [0.08, 0.55] 0.48 [0.34, 0.67]	
Zhang 2014 Subtotal (95% CI)		0.4924	30 294	286			•
Zhang 2014 Subtotal (95% CI) Heterogeneity: Tau ² :	-1.5606	0.4924 f= 4 (P = 0	30 294	286			•
Zhang 2014 Subtotal (95% CI) Heterogeneity: Tau ² :	-1.5606 = 0.07; Chi² = 8.62, df	0.4924 f= 4 (P = 0	30 294	286 %			•
Zhang 2014 Subtotal (95% CI) Heterogeneity: Tau ² Test for overall effect Total (95% CI)	-1.5606 = 0.07; Chi² = 8.62, df	0.4924 f = 4 (P = 0 l)	30 294 1.07); I² = 54 1011	286 % 1029	24.1%	0.48 [0.34, 0.67] 0.54 [0.46, 0.63] ⊢	• •
Zhang 2014 Subtotal (95% CI) Heterogeneity: Tau ² Test for overall effect Total (95% CI) Heterogeneity: Tau ²	-1.5606 = 0.07; Chi² = 8.62, df t: Z = 4.24 (P < 0.0001	0.4924 (= 4 (P = 0)) df= 16 (P =	30 294 1.07); I² = 54 1011	286 % 1029	24.1%	0.48 [0.34, 0.67]	11 0.1 1 10 11 Favours CIK/DC-CIK Favours non-CIK/DC-CIK

Figure 6. Subgroup analysis by CIK/DC-CIK therapy administration timing for (A) overall survival (OS) and (B) progression-free survival (PFS). Twenty-four studies involving 2,846 patients and seventeen studies involving 2,040 patients contributed data to OS and PFS analysis respectively. CIK, cytokine-induced killer cell; DC, dendritic cell.