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Abstract

Intensive care medicine is complex and resource-demanding. A critical and common
challenge lies in inferring the underlying physiological state of a patient from partially
observed data. Specifically for the cardiovascular system, clinicians use observables such
as heart rate, arterial and venous blood pressures, as well as findings from the physical
examination and ancillary tests to formulate a mental model and estimate hidden
variables such as cardiac output, vascular resistance, filling pressures and volumes, and
autonomic tone. Then, they use this mental model to derive the causes for instability
and choose appropriate interventions. Not only this is a very hard problem due to the
nature of the signals, but it also requires expertise and a clinician’s ongoing presence at
the bedside. Clinical decision support tools based on mechanistic dynamical models
offer an appealing solution due to their inherent explainability, corollaries to the clinical
mental process, and predictive power. With a translational motivation in mind, we
developed iCVS: a simple, with high explanatory power, dynamical mechanistic model
to infer hidden cardiovascular states. Full model estimation requires no prior
assumptions on physiological parameters except age and weight, and the only inputs are
arterial and venous pressure waveforms. iCVS also considers autonomic and
non-autonomic modulations. To gain more information without increasing model
complexity, both slow and fast timescales of the blood pressure traces are exploited,
while the main inference and dynamic evolution are at the longer, clinically relevant,
timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and
adult intensive care units and for retrospective investigation of cardiovascular
mechanisms underlying instability. In this paper, we describe iCVS and inference
system in detail, and using a dataset of critically-ill children, we demonstrate its use
and power to identify bleeding, distributive states, and cardiac dysfunction, in isolation
and in combination.

1The work in this paper was done prior to joining Amazon Web Services.
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Author summary

A common challenge clinicians face across different disciplines is estimating the hidden
physiological state of a patient based on partially observed data. Here we describe iCVS
(inferring Cardio-Vascular States): a dynamical mechanistic model of the cardiovascular
system. We developed iCVS with a translational goal in mind, showing high
explanatory power, its inference relies only on routinely available signals, and enables
the identification of various clinically important shock states. We demonstrate the use
of the model on a dataset that was collected in a pediatric intensive care unit.

Introduction 1

Clinical challenge 2

Intensive care medicine is complex, resource demanding and expensive. High-stakes 3

decisions need to be made rapidly based on the evolving clinical state of the patient and 4

the interpretation by clinicians of continuous physiological and ancillary data. The 5

patient’s cardiovascular state may fluctuate over minutes with rapid transitions due to 6

external perturbations, internal failures of the physiological sub-components, or their 7

control. Moreover, these patients are very diverse in their physiological and disease 8

processes. Inferring the underlying hidden physiological state of a patient from observed 9

data is a critical problem that is encountered by clinicians across different disciplines 10

daily. While the modality of the available data and the frequency of sampling may vary 11

between different clinical scenarios, in almost all cases clinicians must rely on partial 12

observations that are a peripheral reflection of the internal, hidden states that are of 13

importance. Specifically, clinicians use observable measurements of heart rate, arterial 14

and venous blood pressures as well as findings from the physical examination (capillary 15

refill, extremity temperature, etc..) to estimate internal variables that are not readily 16

observable at the bedside such as cardiac output, systemic vascular resistance, filling 17

pressures and volumes, autonomic tone, and more. As the physiological signals are often 18

noisy and ambiguous, creating these mental models is a notoriously hard task that 19

requires clinical expertise. Moreover, since the patient’s state fluctuates frequently, 20

repeat assessments by clinicians are required. The clinicians then use this mental model 21

of the patient’s cardiovascular internal state to derive the causes of instability such as 22

shock type (hypovoloemic, cardiac or distributive for example), and choose appropriate 23

treatments and interventions. 24

Modeling Background 25

The large amount of data available from ICUs motivated researchers from computational 26

disciplines to develop mathematical tools which aim to support decision-making in this 27

area. An appealing approach to the analysis of continuous physiological times series 28

relies on mechanistic modeling, grounded in a biophysical understanding of systems. 29

Mechanistic modeling of the cardiovascular system often requires an understanding of 30

the cardiac cycle as a pump coupled to the arterial and venous conductance systems 31

with associated autonomic nervous control. This understanding is derived from years of 32

experiments analyzing human and animal cardiovascular physiology. Such models are 33

usually based on sets of ordinary differential equations (ODEs). In a sense, they 34

simulate the thought process of the critical-care physician at the bedside trying to 35

estimate the underlying pathophysiology of the patient to tailor care. However, due to 36

the complexity of even the simplest models and the number of unobserved variables and 37

unknown parameters, such mechanistic models were mostly published in the context of 38
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well-curated “toy” datasets and in-silico simulations ( [1]; [2]; [3]; [4]; [5]; barring a few 39

exceptions. See also the thorough review by Chase et al [4]). 40

Although simplified mechanistic models of the cardiovascular system show promise, 41

so far, to the best of our knowledge, there are none that have been developed 42

specifically for, and tested on data collected from critically-ill patients at the bedside, 43

nor validated in real-life settings. There are several challenges standing in the way of 44

using mechanistic models at the ICU bedside based on real-time data; these have 45

prevented their deployment so far, and also stood in the way of using them to gain 46

insights into the physiology of critical illness. First, as noted above, mechanistic models 47

require estimating multiple hidden physiological parameters and variables: inverse 48

problems are notoriously difficult, and their solutions are often non-unique. To 49

overcome such difficulties, prior works reduced the number of free parameters by 50

assuming constant values for some of the parameters, often taken from the literature to 51

describe a “typical subject” [2], [5], [6], [7], [8]. However, physiological properties can 52

vary considerably between subjects, and attempting to use a “one size fits all” 53

parameter often fails to properly characterize most patients. An example where this 54

problem is particularly acute is in pediatric critical care units, where patient weight and 55

normative values can vary significantly [9], [10], [11]. Thus, for a model to be useful at 56

the bedside, minimal apriori assumptions regarding the values of hidden parameters 57

must be made. Even so, most published models are still quite complex and require 58

estimation of many hidden variables, and thus rely on sampling of multiple invasive 59

variables that are not readily available outside of a dedicated, specialized laboratory. 60

Many of these models are extremely complex, as they attempt to capture cardiovascular 61

dynamics at second or even sub-second resolution, containing multiple coupled 62

differential equations and hidden parameters rendering them nonidentifiable. On the 63

other hand, limiting model complexity to reduce the number of estimated parameters 64

and variables entails a reduction in the explanatory power of such models. Thus, there 65

is a delicate balance as a result of this trade-off between model complexity and 66

estimability using readily available observations. 67

Second, the measurement frequency of physiological variables in the clinical world 68

varies from continuous monitoring of vital signs to imaging techniques which are 69

conducted once a day or even less. For example, in the ICU, blood pressure and arterial 70

blood oxygen saturation are continuously monitored, while additional indirect 71

estimation of cardiac function or volumes using tools such as echocardiograms are 72

usually performed infrequently, every several hours to days. Models which rely on 73

low-frequency measurements can be good for chronic conditions such as heart failure [2]. 74

However, to estimate the state of unstable patients, mechanistic models should rely only 75

on measurements with high temporal resolution. Of note, up until recently, [12] even 76

these measurements that are commonly captured by the patient’s bedside monitor were 77

not available for offline analysis or real-time ingestion for model inference. 78

An additional barrier to adapting cardiovascular mechanistic models to bedside use 79

lies in the need to account for various modes of autonomic nervous control: most 80

previously published work focused on a single, simple feedback loop, neglecting other 81

common autonomic modulations. 82

Our approach: iCVS 83

Our motivation is translational in nature - develop an inference model that can estimate 84

the hidden cardiovascular state, its control, and any causes for instability, in real-time 85

and using only measurements that are readily available at the bedside for critically-ill 86

patients. Such a model can be used both as a clinical support tool at the bedside, and 87

to foster an understanding of the (patho-)physiology of critical illness. We derive a 88

simple model (iCVS), which retains a high explanatory power of the cardio-vascular 89
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system including cardio-vascular control, which can capture different clinical scenarios 90

such as bleeding or evolving hypovolemia, cardiogenic shock and distributive shock, in 91

isolation or in combinations. iCVS takes into account the autonomic control of the 92

cardiovascular system, which couples the dynamics of its different components, 93

mathematically imposing coupling constraints on inferred parameters. This reduces the 94

effective dimensionality of the parameter space over which we look for a solution to an 95

inverse problem, allowing us to infer a larger set of unobserved parameters compared to 96

previous models. The estimated parameters enable us to capture individual patients’ 97

traits. 98

iCVS is designed to allow deployment at the bedside in the pediatric and adult 99

intensive care unit: no prior assumptions regarding the physiological parameters of the 100

patients are required except age and weight, and the only inputs which are required for 101

the estimation process are arterial and venous blood pressures waveforms, which are 102

commonly measured in the ICU. In order to gain more information about the 103

cardiovascular state, without increasing model complexity, we introduce a novel 104

approach that exploits both slow and fast timescales of the blood pressure trace. From 105

the pulse contour shape of the blood pressure waveform, we extract quantities related to 106

the peripheral resistance, stroke volume, and pulse pressure, while the main 107

mathematical model and its inference run using the mean, smoothed, arterial and 108

venous pressures at the longer, clinically-relevant, time scale of minutes. Thus, the main 109

model and its inference focus on processes that evolve over minutes, and are of interest 110

to clinicians, and further allow for a much simpler model than those that capture all the 111

intricacies of each cardiac cycle [2]. All this is done while still capitalizing on 112

information that can be extracted only from the arterial pressure waveform. 113

In what follows, we describe the iCVS model and inference system in detail and 114

demonstrate its use and power for real-time estimation using a dataset of 10 patients 115

admitted to a pediatric intensive care unit. While our estimation process entails 116

inferring the full iCVS model including 15 hidden parameters, we focus our 117

demonstration on the identification of three clinical shock states, representing a dire, 118

hard clinical challenge, and a testable task. Shock, due to any cause is a state in which 119

the cardiovascular system fails to deliver an adequate supply of oxygen to the tissues. 120

There are several prototypical physiological shock states, each requiring specific 121

interventions, without which there is a high risk for mortality or morbidity. Identifying 122

shock and its causes is a notoriously hard task due to the nature of the observed 123

physiological signals (demonstrated below), requiring continuous vigilance and clinical 124

expertise. Specifically, using iCVS, we map certain hidden parameter ranges to identify 125

(i) ongoing bleeding, (ii) distributive shock, and (iii) cardiogenic shock due to reduced 126

cardiac contractility. 127

Results 128

iCVS: Model overview 129

The goal of this work is to derive a new model of the cardiovascular system which can 130

be deployed at the patient’s bedside, requires only routinely acquired measurements as 131

input, and provides an inference of the hidden, internal physiological state of the patient 132

in real-time. The model should be flexible enough to capture the different types of 133

shock and account for the inter-subject variability which characterizes the patients in 134

the pediatric and adult critical care unit. The full details of the model and its 135

development are provided in the Materials and Methods section. 136

Mechanistic models of the cardiovascular system are developed from first principles, 137

tie together changes in blood pressures and volumes, and usually use the latter as the 138
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Fig 1. Overview of the estimation process. A. Arterial and venous pressure
waveforms are recorded via arterial and central venous catheters which connected to
pressure transducers. Specifically, in this paper waveforms are sampled from critically-ill
children hospitalized in an intensive care unit and recorded at 125Hz. B. The raw data
is analyzed and five measurements are extracted - the observables. C. The observables
are used as an input for the full model (iCVS) estimation and using constrained
nonlinear optimization we obtain the set of parameter values that best fit observables.
Created with BioRender.com

dependent dynamical variables in the set of ODEs [5]. We derive the model in terms of 139

intravascular pressures since arterial and venous blood pressures are directly measurable 140

(in contrast to blood volume). Briefly, our proposed model contains a one-chamber 141

heart that acts like a pump [5], an arterial component and a venous component, and 142

further assumes the peripheral organs can be lumped as a linear resistor (see Fig 2). In 143

addition and importantly, the model contains three regulatory units which are described 144

below. The two dynamical equations which describe the time-dependent evolution of 145

the intravascular pressures are written as follows (the full derivation can be found in 146

Materials and methods): 147

Ca · Ṗa(t) = Ca ·Hr(t) · Pp(t)−
Pa(t)− Pv(t)

R(t)
(1)

148

Ca · Ṗa(t) + Cv · Ṗv(t)−∆Vv0 · Ṡtot(t) = Iex. (2)

Here Pa and Pv are the mean arterial and venous pressures respectively, Hr is the heart 149

rate, R is the systemic vascular resistance and Pp is the pulse pressure. In addition, Ca 150

and Cv are the arterial and venous compliances respectively, ∆Vv0 is the difference 151

between minimal and maximal unstressed venous volume, Iex is the intravascular 152

volume change, and Stot serves as a general marker for the activation of the autonomic 153

nervous system (see below). 154

Our proposed model contains fifteen hidden parameters (see Table 3), and five 155

time-dependent observables: mean arterial pressure, mean venous pressure, heart rate, 156

peripheral resistance, and pulse pressure (Table 2). We later show how the mechanistic 157

model can be used to estimate the hidden parameters based on the observables, and 158

identify clinical states based on the observed data (Fig 1). 159

Autonomic regulation of the cardiovascular system in iCVS 160

In our model, the autonomic nervous system’s activation affects heart rate, cardiac 161

contractility, unstressed venous volume, and peripheral resistance. It consists of two 162
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components: (i) The baroreflex (Sb) – the internal feedback loop that modulates heart 163

rate, contractility, unstressed venous volume, and the systemic vascular resistance (R), 164

meant to keep the mean arterial blood pressure as close to a set-point (Pset) as possible. 165

The baroreflex represents the autonomic component that is dependent on the patient’s 166

current cardiovascular state. (ii) An independent component (S), representing the sum 167

of all autonomic modulation which is independent of the cardiovascular state. While the 168

baroreflex Sb describes the activation of different components in response to a reduction 169

in the arterial blood pressure, and thus manifests as negative correlations between the 170

arterial blood pressure and the heart rate (as well as other variables), the independent 171

autonomic component S does not depend on the arterial blood pressure and thus 172

enables the model to capture different interactions between the blood pressure and 173

heart rate, as well as other cardio-vascular components (Fig 2). For example, this 174

component is expected to rise when sympathetic agonists are given, or when a “central 175

arousal state” is present due to patient agitation or in response to a noxious stimulus (a 176

typical fight or flight response). 177

Fig 2. A schematic representation of the cardiovascular model. The model is
a serial circuit and contains one heart chamber which acts like a pump, organs, and
arterial and venous compartments. Heart rate, contractility, vascular resistance and
unstressed venous volume are affected by the baroreflex (Sb) which is determined by the
arterial pressure, and by S which is an independent component that does not depend on
the current physiological state. In addition, intra-vascular volume can change through
Iex and the vascular resistance is also modulated by MSVR. Created with BioRender.com
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Non-Autonomic regulation of the cardiovascular system in iCVS 178

In iCVS, in addition to the autonomic control, the systemic vascular resistance is 179

independently modulated by a component denoted by MSVR (Fig 2). This component 180

enables the model to describe fluctuations in the peripheral resistance which are 181

uncoupled from the autonomic activation. This can occur for example due to 182

maladaptive vasodilatation that occurs during septic, vasoplegic, or anaphylactic shock, 183

or as a response to intravenous infusion of specific drugs that affect SVR such as 184

Norepinephrine or Vasopressin. Of note, a non-autonomic regulation on the systemic 185

vascular resistance appears also in [7], in the context of metabolic consumption during 186

physical activity. Total blood volume can be changed by an external current Iex which 187

can be either positive, as is the case when intravenous fluids are bolused, or negative, 188

such as during bleeding or loss of intravascular volume due to capillary leak or severe 189

dehydration. 190

iCVS can simulate different shock states 191

The interplay between the fifteen parameters of the model can generate different clinical 192

scenarios. In this work we focus on three different shock states which are described by 193

three hidden parameters. Briefly, shock is a failure of the cardiovascular system to 194

supply adequate blood and oxygen to the body tissues. In order to describe the 195

hypovolemic shock state, we use Iex (intra-vascular volume change), which is negative in 196

case of intravascular fluid or blood loss. A distributive shock state is equivalent to a 197

negative MSVR (non-autonomic vascular resistance modulation). In the next section, we 198

also discuss the cardiogenic shock state which is caused by a reduction in K (heart 199

contractility). 200

Fig 3 presents examples of different shock conditions of artificial neonate patients 201

which are generated by the mechanistic model. The internal parameters of the subjects 202

are set and two of them (Iex and MSVR) are presented (Fig 3A,B,I,J,Q,R). The 203

observable parameters (Fig 3C-G, K-O, S-W) are simulated according to the iCVS 204

model (see methods). The baroreflex, which depends on the current arterial pressure 205

and affects the observables is also presented (Fig 3H,P,X). 206

Panels A-H in Fig 3 present a simulation of a patient in a hypovolemic shock state, 207

as can happen with ongoing bleeding. The intravascular volume change (Iex) is negative 208

(Fig 3A), representing a reduction of intravascular volume over time, while the 209

non-autonomic SVR modulation (MSVR) remains constant (Fig 3B). As expected, we 210

see that the arterial and venous pressures decrease (Fig 3C,D). The heart rate and the 211

vascular resistance reflexively rise (Fig 3E,F) due to baroreflex activation which acts to 212

maintain blood pressure and compensates for the reduction in the intravascular volume 213

(Panel H). Note, that despite the baro-reflex activation that increases the contractility, 214

the pulse pressure (Fig 3)G) decreases due to the change in venous pressure and return 215

(see also Eq 22 in Material and methods. 216

Panels I-P in Fig 3 present a simulation of a patient with a distributive shock state. 217

The parameter Iex is zero (Fig 3I), reflecting constant intravascular volume, while 218

MSVR decreases (Fig 3J), reflecting a reduction in the peripheral resistance which is not 219

caused by the autonomic nervous system. It is possible to see in Fig 3N that the heart 220

rate increases (due to the baroreflex activation, see panel H), the pulse pressure 221

increases as well (due to the baroreflex and rise in venous pressure), and the peripheral 222

resistance decreases due to the reduction in MSVR (Fig 3M). 223

Panels Q-X in Fig 3 present a simulation of a patient with a combined hypovolemic 224

and distributive shock state. The reduction in the arterial blood pressure(Panel s in 225

Fig 3) is more pronounced than in either shock state separately. 226

Of note, in addition to simulating shock states, iCVS can emulate common clinical 227
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behaviors, such as a fight-or-flight response that is elicited by pain or a noxious 228

stimulus, mediated by autonomic tone modulation (see S1 Fig. ). 229

Estimation pipeline of the cardiovascular parameters from 230

bedside-acquired blood pressure waveforms 231

The estimation pipeline is schematically illustrated in Fig. 1 and is described below and 232

in Material and Methods. Briefly, the first step includes the initial processing of the raw 233

data and extraction of five observables. In the next step, the observables serve as an 234

input to an optimization function which is based on iCVS and we estimate the hidden 235

parameters and the full model. 236

Extracting the observables from the raw data 237

As a first step, we use waveforms of venous and arterial blood pressure tracings, 238

acquired at a high frequency that allow extraction of the following five observables: 239

mean arterial pressure, mean venous pressure, heart rate, peripheral resistance, and 240

pulse pressure (see Material and Methods). We then use both slow and high-frequency 241

features of the data (Fig 4). From the slow time scale we calculate the mean arterial and 242

venous pressures. From the fast timescale (the scale of a single heartbeat), we extract: 243

heart rate (timing of consecutive beats), peripheral vascular resistance (up to a constant, 244

as detailed in Material and methods), and pulse pressure. These quantities, which 245

cannot be derived without the waveforms recorded at high-frequency (a sampling rate 246

which is much higher than the heart rate and can capture the shape of a single beat), 247

are then smoothed and used for model inference at the slower timescale of minutes. The 248

peripheral resistance is extracted using a non-calibrated pulse contour analysis method 249

relying on assumptions of a simplified Windkessel model and rectangular ejection 250

pattern during systole that has been described in detail elsewhere [13,14]. 251

Estimating the hidden cardiovascular parameters 252

The next step in the estimation pipeline is to use the above five observables, as well as 253

information on a patient’s age and weight, to fully estimate the hidden parameters of 254

the iCVS model. Based on the iCVS model, we derive a system of equations that relates 255

the time-dependent measurements to the fifteen hidden physiological parameters (see 256

Material and methods). During the estimation procedure, a set of optimal parameter 257

values that yield the best solution for the time-dependent equations is chosen by 258

minimizing a constrained nonlinear multivariate cost function (see more details in 259

Material and Methods). For the illustrations shown below, the estimation procedure is 260

independently conducted on data segments of 300 seconds. We chose a segment size of 261

300 seconds after an empirical search for a window that averaged out noisy and 262

artifactual fast fluctuations, while still capturing changes over clinically-relevant 263

timescales of several minutes. 264

Demonstrating iCVS estimation of cardiovascular shock states 265

on real-world data from critically-ill patients 266

In this section, we illustrate the estimation process for a sample of 10 critically-ill 267

children, hospitalized in an intensive care unit (ICU) at a large, tertiary children’s 268

hospital. These children were admitted to the ICU either for routine observation 269

post-operatively (for the control samples) and were stable hemodynamically, or 270

presented with various shock states, for example, due to massive post-operative bleeding, 271

cardiac dysfunction, infections or other causes, see Table 1 for more information. The 272
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Fig 3. Simulations of the iCVS model for different shock conditions: Each
column presents a simulation of one artificial patient with a given shock state: A-H -
hypovolemic shock state, I-P - distributive shock state and Q-X - combined
hypovolemic and distributive shock state. The hidden parameters are fixed, and the
observables are simulated accordingly (see Methods). Two of the hidden parameters are
presented for each patient: A, I, Q Time dependent intra vascular volume change (Iex).
In A, Q liquid withdrawal occurs over a period of 15 minutes. B, J, R Time course of
MSVR. In J, R a reduction in MSVR occurs over a period of 15 minutes. C-H, K-P,
S-X - the resulting observables: C, K, S Arterial pressure (Pa), D, L, T Venous
pressure (Pv), E, M, U Peripheral resistance multiplied by arterial compliance (RC),
F, N, V Heart rate (Hr), G, O, W Pulse pressure (Pp). H, P, X The time dependent
magnitude of the baro-reflex (Sb).
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Fig 4. Extraction of slow and fast time scales features from venous and
arterial blood pressure recordings. A,B. An example of the raw data, sampled at
125 Hz frequency by the bedside patient monitor. A. Arterial blood pressure, B.
Venous blood pressure. Note how these real-life data are noisy, fluctuating, and riddled
with artifacts related to patient movement and care. C-G. Features that are extracted
from the raw data. C,D. Mean arterial and venous pressures (slow time scale features),
E-G. Heart rate, peripheral resistance and pulse pressure (fast time scale features).
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Patient
num-
ber

Age (years)
Weight
(Kg)

Cause of hospitaliza-
tion

Cardio vascular
state

1 Neonate < 5 Post cardiac surgery Hypovolemic shock

2 Neonate < 5
post cardiac surgery
with combined shock

Hypovolemic and
Distributive shock

3 Neonate < 5 Vasodelitatory shock Distributive shock

4 Neonate < 5
Post cardiac surgery
with bleeding and mild
cardiac dysfunction

Hypovolemic, Dis-
tributive and Cardio-
genic shock

5 15-20 60
Post cardiac surgery
with vasoplegic shock

Distributive shock

6 10-15 40
Vasoplegic shock due to
inflammatory storm

Distributive shock

7 0-5 15 Post cardiac surgery Control
8 0-5 < 5 Post cardiac surgery Control
9 Neonate < 5 Post cardiac surgery Control
10 10-15 20 post orthopedic surgery Distributive shock

Table 1. Patients information. For each patient age, weight, cause of
hospitalization and cardio-vascular state are given.

dataset which we used to test the model’s performance is detailed in [12]. It contains 273

physiological waveforms recorded from critically-ill children at sampling rates of 125Hz 274

for all invasively-recorded pressures; however, any high-frequency recording that 275

contains the full arterial blood pressure waveform is adequate for the model’s purposes. 276

In addition, the times of all medical interventions, including drug consumption and fluid 277

administration are recorded. Note how these real-life data are noisy, fluctuating and 278

riddled with artifacts related to patient movement and care (see Fig 4A,B). 279

As noted above, iCVS is able to deal with patients of varying weights from neonates 280

(a couple of kilograms) to adult-sized patients, as we demonstrate below. The 281

hemodynamic data for all patients in this ICU are collected as routine practice [12], [14]. 282

The diagnostic labels for shock (either hypovolemic/ hemorrhagic, distributive, 283

cardiogenic, or a combination of the above) were derived from a prospective and 284

retrospective review of at least two expert clinicians. These labels were also 285

corroborated using objective measurements from the medical record, when available. 286

For example, from quantification of blood loss postoperatively, assessment of cardiac 287

function or systemic vascular resistance using clinical examination and ancillary 288

diagnostic tests. 289

The challenge of estimating the causes for cardiovascular instability and shock from 290

real-world data can be appreciated by examining Figs. 5-8. Examination of panels A-E 291

in each figure, which depict the five observables, shows that patients’ data are “messy” 292

with marked fluctuations and trends arising from multiple physiological sources (due to 293

the shock cause and others), unlike the clean simulated data shown before. Moreover, it 294

is evident that simple rules linking changes in these observables to the shock cause may 295

be misleading. 296

Panels F-H in Figs. 5-8 present the results of model estimation for three hidden 297

parameters that are crucial to elucidate the causes for cardiovascular shock. A 298

hypovolemic state is described by a negative Īex (the intra-vascular volume change 299

divided by the difference between the maximal and minimal unstressed venous volume 300

∆Vvo). This magnitude does not depend on the patient weight or blood volume, has 301

units of 1
Time , and thus allows comparison between patients with different sizes. The 302
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Fig 5. iCVS model inference results for a neonate patient ( body weight
< 5 Kg), in a hypovolemic shock state . iCVS results for patient number 1 (see
Table 1) are presented. A-E. - The observables: mean arterial pressure (A), mean
venous pressure (B), heart rate (C.), RC - the peripheral resistance multiplied by the
arterial compliance (D) and pulse pressure (E). F-H. Gray circles - optimal parameters
which are achieved in each segment of 300 sec. Black line - a smoothed version of the
estimated parameters (see Material and methods). F. Relative intra vascular volume
change (Īex). G. Non autonomic vascular resistance (MSVR). H. Maximal relative
contractility (K̃max). Note that in this patient which suffers from a hypovolemic shock
state is identified as having negative Īex by the model.

vasodilatatory state is represented by MSVR (non-autonomic vascular resistance) which 303

is expected to be negative in a distributive shock state. The cardiac function is 304

described by the Maximal relative contractility : K̃max = Cven

Ca
·Kmax , where Kmax is 305

the maximal contractility that the ventricle can generate (see Eq. 21), Cven is the 306

compliance of the ventricle, and Ca is the arterial compliance. For constant arterial and 307

ventricular compliances, K̃max is proportional to the maximal heart contractility. K̃max 308

is expected to decrease in case of cardiogenic shock or cardiac dysfunction. 309

Each gray circle in panels F-H in Figs. 5-8 corresponds to the optimal parameters 310

which are obtained in a given time segment. The black line in each panel is a moving 311

average of the results of different segments (see Material and methods). 312

Fig 5 illustrates model inference for a sample patient with post-operative bleeding. 313

This is a neonate that presented with significant intravascular volume loss after cardiac 314

surgery. Panels A-E show decrease in the arterial and venous blood pressures, while 315

SVR increases and pulse pressure decreases, as expected. Of note is that for an 316

unknown reason, the heart rate of this patient does not reflexively increase, as one 317

would expect for a bleeding patient. Panel F shows that even without the expected 318

heart rate increase, our model correctly identifies the negative intravascular volume 319

change (Fig 5F). In addition, the estimation process yields non-negative MSVR 320

(Fig 5G), meaning that the patient is not identified as having a maladaptive 321

vasodilatation. The maximal relative contractility seems stable (for comparison see the 322

changes in K̃max for a patient with cardiac dysfunction in Fig 7). 323

Fig 6 illustrates the model inference results for an adolescent patient which was 324

clinically identified as having distributive shock, specifically a vasoplegic state seen 325
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Fig 6. iCVS model inference results for an adolescent patient (body
weight 60 Kg), in a distributive shock state. iCVS results for patient number 5
(see Table 1) are presented. A-E. The observables: Mean arterial pressure (A), mean
venous pressure (B), heart rate (C), RC - the peripheral resistance multiplied by the
arterial compliance (D) and pulse pressure (E). F-H. Gray circles - optimal parameters
which are achieved in each segment of 300 sec. Black line - a smoothed version of the
estimated parameters (see Material and Methods). F. Relative intra vascular volume
change (Īex). G. Non autonomic vascular resistance (MSVR). H. Maximal relative
contractility (K̃max). Note that this patient, suffering from a distributive shock state, is
correctly identified as having negative MSVR by the model.

sometimes after solid organ transplantation. In the time window shown here, the mean 326

venous and arterial pressures increase, as also the heart rate and the pulse pressure. Yet, 327

the mean arterial pressure is low and the heart rate is high, supporting the clinical 328

observation of a shock condition. We can further see that the peripheral resistance 329

decreases over time. Our model indeed correctly identifies the cause for shock: MSVR 330

which reflects the non-autonomic component of the vascular resistance is negative, in 331

agreement with the clinically detected distributive shock. Moreover, the estimation 332

process yields roughly zero Īex, meaning that no intra-vascular volume change is 333

detected, as well as demonstrating stable maximal relative contractility. 334

Fig 7 presents the estimation process for an unstable patient with a combined 335

hemorrhagic, cardiogenic, and distributive shock. This was a neonate with massive 336

bleeding post cardiac surgery, combined with left ventricular dysfunction and 337

inadequate systemic vascular resistance. The patient was extremely unstable despite 338

multiple interventions and underwent a chest opening procedure in the ICU (grey 339

arrows in Fig 7) which resulted in marked improvement in cardiac function and bleeding 340

cessation. We see that arterial blood pressure increases after the chest opening. In 341

addition, the venous pressure decreases - compatible with an improvement in the heart 342

function (Fig 7A,B). Note how the model correctly identifies the marked improvement 343

in the maximal contractility and Īex immediately after the procedure. 344

Finally, a neonate control patient that was admitted after thoracic surgery and had 345

an uneventful post-operative course is presented in (Fig 8). As expected, the estimated 346

intravascular volume change (Īex) and the non-autonomic SVR modulation (MSVR) are 347

not negative, and there aren’t marked fluctuations in the maximal relative contractility 348
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Fig 7. iCVS model inference results for a neonate patient (body weight
< 5 Kg ), in a combined hypovolemic, cardiogenic and distributive shock
state. iCVS results for patient number 4 (see Table 1) are presented. Dots mark chest
opening. A-E. - The observables: mean arterial pressure (A), mean venous pressure
(B), heart rate (C), RC - the peripheral resistance multiplied by the arterial compliance
(D) and pulse pressure (E). F-H. Gray circles - optimal parameters which are achieved
in each segment of 300 sec. Black line - a smoothed version of the estimated parameters
(see Material and methods). F. Relative intra vascular volume change (Īex). G. Non
autonomic vascular resistance (MSVR). H. Maximal relative contractility (K̃max). Note
that in this patient Īex becomes non-negative and the contractility increases after the
chest opening procedure, compatible with an improving in cardiac function and bleeding
cessation as a result of the chest opening procedure.
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Fig 8. Illustration of the estimation process for a neonate ( body weight
< 5 Kg) control patient, post cardiac surgery. iCVS results for patient number 9
(see Table 1) are presented. A-E. The observables: mean arterial pressure (A), mean
venous pressure (B), heart rate (C), RC - the peripheral resistance multiplied by the
arterial compliance (D) and pulse pressure (E). F-H. Gray circles - optimal parameters
which are achieved in each segment of 300 sec. Black line - a smoothed version of the
estimated parameters (see Material and methods). F. Relative intravascular volume
change (Īex). G. Non autonomic vascular resistance (MSVR). H. Maximal relative
contractility (K̃max). Note that in this control patient Īex and MSVR are not negative
and the contractility is stable.

(K̃max). 349

In Fig 9 we present results summarizing the model’s inference for the 10 patients. 350

Panel A depicts the ability of our model to correctly identify intravascular volume loss: 351

the patients marked in blue are those that had documented post-operative bleeding. 352

Note that for these patients mean change in blood volume is more negative than their 353

counterparts. Conversely, panel B depicts the mean non-autonomic component of 354

systemic vascular resistance modulation. As noted above, a negative value indicates a 355

maladaptive response with vasodilatation, as one can see in distributive shock states 356

(for example sepsis or vasoplegia). The patients marked in red were identified by expert 357

clinicians as having abnormally low SVR. Indeed, overall, these patients were identified 358

by our model as having lower values of MSVR. 359

As an additional verification of model estimation performance on real data, we also 360

compare between the measured observables: P̂p, R̂C and Ĥr and reconstructed values 361

for the observables which are obtained using model inference. The observables are 362

reconstructed well by the iCVS model, with a Pearson correlation of 0.71-0.94 (see 363

supplementary information). Furthermore, as is elaborated in the in supplementary to 364

this article, we demonstrate the robustness of our findings to the estimation algorithm. 365

Discussion 366

In this work we detail a novel mechanistic model of the cardiovascular system: iCVS. 367

We developed iCVS with a translational goal in mind - enabling estimation of the 368
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Fig 9. Estimated Īex and MSVR for ten subjects. For each subject, the model is
applied for a time window of 25 minutes (see Methods). The analysis is done over
segments of 300 seconds and the average values of Īex (panel A) and MSVR (panel B)
are presented. A. Average value of Īex is presented. Blue - patients which are
documented with post-operative bleeding, black - no post operative bleeding is
documented (average value of the hypovolemic group is −0.06 min−1, average value of
the non-hypovolemic group is 0.0001 min−1, Pvalue = 0.041). B. Average value of MSVR

is presented. Red - patients which were identified by an experts as having distributive
shock state, black - patients were not documented with distributive shock state (average
value of the distributive group is −0.44, average value of the non-distributive group is
−0.09, Pvalue = 0.077). Error bars in A and B represent standard error of the mean.

hidden cardiovascular state of critically-ill patients, in real-time, using only routinely 369

available physiological signals at the bedside. iCVS does not preemptively assume 370

knowledge of almost any parameter, except age and weight, maintaining flexibility for 371

deployment in a variety of clinical scenarios. Unlike many similar models, iCVS 372

considers the autonomic control and its specific components, imposing coupling 373

constraints on inferred parameters and capturing common clinical phenotypes. An 374

additional novel strength of this model is its ability to use slow and fast timescales of 375

the arterial blood pressure waveform to gather more information about the 376

cardiovascular state without increasing model complexity, by performing the main 377

inference on the clinically relevant scale of minutes. 378

We demonstrate the use of iCVS on a dataset of ten critically-ill children which was 379

collected in a pediatric intensive care unit, illustrating identification of bleeding, 380

distributive states, cardiac dysfunction, and their combination. A key challenge of 381

evaluating models such as iCVS on data acquired from real patients and not in a clean 382

laboratory setting, is the lack of experimentally-defined cardiovascular hidden states. 383

The ground-truth labels for the patients presented in this study were acquired either by 384

information that was available from the electronic health record but which the model 385

was not privy to (e.g. recorded blood loss), or by expert clinician assessment preformed 386

pro- and retrospectively. 387

While we illustrated the ability of iCVS to identify hidden cardiovascular states that 388

can not be easily identified by simple examination of the physiological recordings, it is 389

obvious that further assessment, ideally prospectively, on a much larger patient cohort 390

is warranted. Generation of a larger dataset, containing a diverse population of patients 391

with various cardiovascular states and their evolution will not only allow model 392

validation and refinement, but also to define cut-off values for shock-state identification. 393

For example, while iCVS can identify ongoing blood loss or maladaptive vasodilatation, 394

ideally we would wish to be able to add an additional layer for a decision support tool 395

that would alert clinicians to the presence of vasoplegic shock or hemorrhagic shock, 396

defined by certain thresholds relating blood pressure to MSVR or Īex, respectively. An 397

additional potential limitation of iCVS that can be properly quantified and addressed in 398

future studies is its ability to deal with noisy and artefact-ridden recordings. Moreover, 399

a prospectively collected dataset (that we are currently working towards acquiring) will 400

also allow for precise recording of the various bedside interventions and thus test their 401
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effects on the cardiovascular hidden state and model estimation. Finally, despite its 402

high-explanatory power, iCVS is still a relatively simple mechanistic model; it does not 403

take into account various physiological contexts, and therefore cannot address for 404

example the effects of positive pressure ventilation, pericardial effusion or even 405

interactions between the heart chambers and pulmonary and systemic circulations. An 406

additional limitation to be acknowledged is the need for several assumptions in order to 407

enable model simplification and estimation. We attempted to minimize their number 408

and use only ones that are widely accepted, we stated clearly in the methods where such 409

assumptions were made, and also cited their source, where relevant, the literature 410

supporting these assumptions. We also believe, that iCVS can be iteratively developed 411

to include modules that address these limitations, potentially with addition of 412

data-driven machine-learning modules as detailed below. 413

An exciting avenue for future exploration is to combine iCVS with machine learning 414

models to create robust hybrid clinical decision support systems that can exploit both 415

the power of data-driven analytics and mechanistic models [15,16]. In the future, we 416

envision such hybrid models deployed at the bedside, providing the clinician with 417

information regarding hidden cardiovascular states and optimal treatment strategies. 418

For example, estimating volume and contractility states, and helping in guiding choices 419

regarding intravenous fluid administration or inotropic support, a current unmet clinical 420

need [17]. The model presented here is the first step towards this ambitious goal. 421

Materials and methods 422

Mechanistic model 423

The goal of this section is to detail iCVS: a mechanistic model of the cardio-vascular 424

system that links measurable variables to clinically relevant physiological parameters 425

that can not be measured directly. We use a lumped parameter model with several 426

compartments: the circulatory system is represented as a closed loop with two 427

compliance vessels (the arterial and venous compartments) and one pure resistance 428

vessel (the organs) [5, 18]. The heart contains one chamber that acts as a pump. The 429

venous-arterial flow IH is generated by the heart and is given by the product of the 430

heart rate Hr and the stroke volume SV: 431

IH(t) = Hr(t) · SV(t). (3)

The arteriolar and capillary IC flows are modeled as a linear resistor: 432

IC(t) =
Pa(t)− Pv(t)

R(t)
, (4)

where Pa and Pv are the arterial and venous mean pressures, respectively, and R is the
peripheral resistance. The evolution of arterial and venous volumes (Va and Vv
respectively) is given by the following differential equations:

V̇a(t) = IH(t)− IC(t) (5)

V̇v(t) + V̇a(t) = Iex, (6)

where Iex is the intra-vascular volume change - either loss of volume due to bleeding or 433

extra-vascular capillary leak or conversely intravenous fluid administration. 434

Eqs. 5-6 relate between blood volumes dynamics and other hidden cardio-vascular 435

variables. The challenge however is that blood volumes cannot be directly measured in 436

patients. We therefore reformulate the mechanistic model in terms of blood pressures 437
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(which are measurable); this allows us to infer hidden cardio-vascular parameters based 438

on observable data. 439

The pressure in the venous and arterial compartments is derived from the vessel’s 440

volume and compliance as follows: 441

Pα(t) =
Vα(t)− Vα0(t)

Cα
(7)

Where α ∈ {a, v} represents either the venous or arterial components, respectively, 442

Cα the compliance, and Vα0
the unstressed volume. 443

For the arterial compartment, we assume constant unstressed volume [5]. The 444

venous unstressed volume is modulated by an autonomic activation Stot (see below): 445

Vunstressed(t) = Vv0,min + ∆Vv0 · (1− Stot(t)) . (8)

Assuming constant Ca [14], differentiating Eq. 7 and rearranging, we obtain: 446

V̇α(t) = Cα · Ṗα(t) + V̇α0
(t) (9)

Substitute Eqs. 3, 4 and 9 in Eqs. 5 and 6 we get:

Ca · Ṗa(t) = Ca ·Hr(t) · Pp(t)−
Pa(t)− Pv(t)

R(t)
, (10)

Ca · Ṗa(t) + Cv · Ṗv(t)−∆Vv0 · Ṡtot(t) = Iex, (11)

where we assume that the unstressed arterial volume is constant [5] and thus V̇a0 = 0, 447

and also use the approximation SV ∼= Ca · Pp [14]. 448

Autonomic Nervous System control: The model contains elements of autonomic 449

control which affect different physiological quantities: heart rate Hr, peripheral 450

resistance R, unstressed venous volume Vv0 and cardiac contractility K (see below). 451

The autonomic control contains two components: the baro-reflex and an external 452

control unit. The baro-reflex, marked by Sb, depends on the arterial blood pressure (see 453

also [5]): 454

Sb(t) = 1− 1

1 + exp (−kb (Pa(t)− Pset))
(12)

where kb describes the sensitivity of the baro-reflex and Pset is the set point of the 455

baro-reflex. In this work kb = 0.1838 mmHg−1 [5]. 456

The autonomic control also contains an additional component, marked by S which 457

does not depend on the current arterial pressure. This component is not included in the 458

work of [5]. The overall autonomic activation is a sigmoid function of the summation of 459

the two components: 460

Stot(t) =
1

1 + exp (−2 · (Sb(t) + S(t) + 1))
. (13)

Both Sb and S take values between 0 and 1. In addition, the shape of Stot is 461

designed such that the total autonomic activation Stot is also ranged between 0 and 1, 462

and the value of Stot is approximately the mean of Sb and S. The two different 463

components of the autonomic activation represent two complementary functions: one is 464

the baro-reflex which is part of a negative feedback loop aimed at maintaining blood 465

pressure and cardiac output homeostasis while the other (S) represents the combined 466

effect of sympathetic and parasympathetic activation on the cardiovascular system that 467

is independent of current blood pressure. This division allows us to capture two 468

different behaviours of the cardiovascular dynamics that are commonly observed in 469

critically-ill patients: fluctuations which are negatively correlated between the arterial 470

BP and heart rate, and synchronous fluctuations of the arterial pressure and other 471

components such as heart rate. 472
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Heart rate. The heart rate is determined by the autonomic activation, and can vary 473

between minimal and maximal values, Hrmin and Hrmax respectively: 474

Hr(t) = Hrmin + (Hrmax −Hrmin) · Stot(t). (14)

The minimal heart rate (Hrmin) and maximal heart rate (Hrmax) are parameters 475

which are approximated by the optimization algorithm with a certain range that 476

depends on the patient age (see Table 4). 477

Peripheral resistance: The peripheral resistance varies between two values, Rmin 478

and Rmax, and depends on the autonomic activation and on a local modulation, 479

denoted MSVR, which does not depend on the autonomic nervous system: 480

R = Rmin + (Rmax −Rmin) ·Rmodulation(t), (15)

where: 481

Rmodulation(t) ≡ 1

1 + exp (−2 · (Stot(t) +MSVR(t)))
(16)

The value of MSVR can vary between −1 to 1. 482

Cardiac contractility: The model contains one heart chamber. Of note, Zenker et 483

al. [5], modeled the end systolic volume as a function of the end diastolic volume as 484

follows: 485

Ves(t) = Ved(t)− K(t) (Ved(t)− Ved0)

Pa(t)− Ped(t)
, (17)

Where Ves and Ved are the end systolic and end diastolic chamber volumes 486

respectively, Ved0 is the unstressed volume of the chamber, Ped is the end diastolic 487

pressure of the chamber and K is the contractility. Eq. 17 contains information about 488

the heart volumes. Since heart volumes are not directly measurable, we modify the 489

approach adopted by Zenker et al. and derive below an expression that relates heart 490

contractility and blood pressures. We model the heart chamber as a compliance vessel, 491

and estimate the difference between the end diastolic volume (Ved) and the unstressed 492

ventricular volume as follows: 493

Ved(t)− Ved0 = Cven · Ped(t), (18)

where Cven is the compliance of the ventricle. The intra-ventricular pressure (Ped) 494

cannot be measured directly. Since the heart in the model contains only one chamber, 495

we approximate the end diastolic pressure as the venous pressure: 496

Ped(t) ∼= Pv(t). (19)

We acknowledge that this approximation is less accurate when the venous pressure is 497

much larger than the pressure during diastole. This can happen for example in case of 498

pulmonary hypertension, valve stenosis, or abnormal heart anatomy. In addition, the 499

stroke volume (SV = Ved − Ves), can be approximated using the pulse pressure and the 500

arterial compliance [14]: 501

Ved(t)− Ves(t) = SV(t) ∼= Ca · Pp(t). (20)

The contractility is modulated by the autonomic activation and is expressed as 502

follows: 503

K(t) = Kmin + [Kmax −Kmin] · Stot(t), (21)
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where Kmin and Kmax are the minimal and maximal contractility, respectively. 504

Combining Eq. 17 - 21 we obtain: 505

SV(t) ∼= Ca · Pp(t) =
(Kmin + [Kmax −Kmin] · Stot(t)) · Cven · Pv(t)

Pa(t)− Pv(t)
. (22)

The approximated expression for Ca · Pp(t) which is presented in Eq 22 can be 506

substituted in IH which appears in Eq 10 to obtain a system of differential equations for 507

Pa, Pv. 508

We have therefore introduced a model that relates between blood pressure dynamics 509

and other cardiovascular parameters. We show below how this mechanistic model can 510

be exploited in order to estimate hidden physiological parameters from routinely 511

bedside collected data. 512

Simulations of the model 513

In Fig 3 and Fig S1 simulations of the iCVS model are presented. The hidden 514

parameters are fixed and the observables are simulated according to Eqs. 10-16, 22. The 515

following values for the hidden parameters are used: Pset = 50 mmHg, 516

Kb = 0.1838mmHg−1, Hrmax = 180 Bpm, Hrmin = 100 Bpm, Kmin = 100 mmHg, 517

Kmax = 400 mmHg, Rmax = 1.1 sec·mmHg
ml , Rmin = 0.4 sec·mmHg

ml , Ca = 1 ml
mmHg , 518

Cv = 10 ml
mmHg , ∆Vv0 = 50 ml. In Fig 3 S = 0.2. The initial conditions of the mean 519

arterial and venous pressure are set to 48 mmHg and 4 mmHg respectively. 520

Extracting the observable variables from the raw data 521

The raw data which is used in this work is a continuous (sampled at 125 Hz) 522

measurement of the venous and arterial pressure waveforms. The data analysis is 523

performed as follows: 524

1. Using the algorithm developed by [13,14], we extract the following measurements 525

from the raw data, all in 10Hz frequency (see Table 2): P̂a(t) (mean arterial 526

pressure), P̂v(t) (mean venous pressure) Ĥr(t) (heart rate), P̂p(t) (pulse pressure) 527

and R̂C, which is an approximation for the peripheral resistance multiplied by the 528

arterial compliance and scaled by a constant (αRC): R̂C = αRC · Ca · R̂. 529

2. Outliers are found and replaced - Outliers are defined as points which are smaller 530

than the Lower threshold value - three local scaled median absolute deviation 531

below the the local median within a sliding window of 20 sec, or higher than the 532

Higher threshold value - three local scaled median absolute deviation above the 533

the local median within a sliding window of 20 sec. The outliers are replaced by 534

the following: Lower threshold value for elements smaller than the lower threshold 535

value, and upper threshold value for elements larger than the upper threshold 536

value. 537

3. A low pass filter is applied and the frequency components above 30 Hz are 538

removed. 539

4. The data of each subject is divided into segments of 300 sec. Only Valid segments 540

are used for further analysis. A valid segment should satisfy the following criteria: 541

20 mmHg < Pa < 250 mmHg, 0 < Pv < 25 mmHg, 0 < RC, 542

30 (1/min) < Hr < 250 (1/min), 10 mmHg < Pp. 543
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Observable Description

P̂a Mean arterial pressure

P̂v Mean venous pressure

P̂p Pulse pressure

Ĥr Heart rate

R̂C
peripheral resistance multiplied by the arterial
compliance and scaled by a constant

Table 2. List of measurements.

Study approval 544

The study was approved with waiver of informed consent by the Research Ethics Board 545

at The Hospital for Sick Children, approval number 1000048904. 546

Sample subjects analysis 547

For each subject in Fig 9, the estimated parameters of 12 segments of 5 minutes are 548

averaged. Each segment is 300 seconds long, and the segments are partly overlapped - 549

each segment starts 100 seconds after the previous one. Segments which are not valid 550

are not analyzed. 551

For the analysis in Fig. 9, for each subject the first recorded 25 minutes time window 552

that satisfies the follows is analyzed: the subject didn’t receive intra-venous fluids bolus 553

during the time window, 15 minuts before and 15 minutes after. 554

In Figs 5, 6, 7, 8, the above described 25 minutes time windows of patients 1,5,4,9 555

are presented, respectively. 556

The estimation procedure 557

Definition of the cost function. Based on the iCVS model, we define a cost 558

function which consists of a set of terms that link between the observables (Table 2) and 559

the hidden parameters (Table 3). We first define the following expressions: C̃v ≡ Cv

Ca
, 560

∆̃V v0 ≡
∆Vv0

Ca
, K̃ ≡ K·Cven

Ca
(relative contractility), K̃min ≡ Kmin·Cven

Ca
, 561

K̃max ≡ Kmax·Cven

Ca
, R̃min ≡ αRC · Ca ·Rmin, R̃max ≡ αRC · Ca ·Rmax and Ĩex ≡ Iex

Ca
. 562

The cost function is defined as follows: 563

f(t; θ̄) = wH ·
1

NH
·f2
H(t)+wR ·

1

NR
·f2
R(t)+wP ·

1

NP
·f2
p (t)+wI ·

1

NI
f2
I (t)+wa ·

1

Na
·f2
a (t)

(23)
where: 564

fH(t) = Hrmin + (Hrmax −Hrmin) · Stot(t)− Ĥr(t) (24)

(see Eq 14), 565

fR(t) = R̃min +
(
R̃max − R̃min

)
·Rmodulation(t)− R̂C(t) (25)

(see 15), 566

fp(t) =

(
K̃min +

[
K̃max − K̃min

]
· S(t)

)
· P̂v(t)

P̂a(t)− P̂v(t)
− P̂p(t) (26)

(see Eq 22), 567

December 31, 2022 21/29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2023. ; https://doi.org/10.1101/2022.12.31.22284089doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.31.22284089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parameter Description
Pset Set point of the baro reflex

C̃v Venous compliance over arterial compliance

∆̃V v0
Difference between maximal and minimal unstressed vol-
ume over arterial compliance

Ĩex Intra vascular volume change over arterial compliance

Hrmin Minimal heart rate
Hrmax Maximal heart rate

R̃min
Minimal peripheral resistance multiplied by arterial com-
pliance and by αRC

R̃max
Maximal peripheral resistance multiplied by arterial com-
pliance and by αRC

K̃min Minimal relative contractility

K̃max maximal relative contractility

Sconst
Constant component of the independent autonomic activa-
tion

Sslope Slope of the independent autonomic activation

Mconst
Constant component of the modulation over peripheral
resistance

Mslope Slope of the modulation over peripheral resistance
αRC A constant that scales the peripheral resistance

Table 3. List of estimated parameters.

fI(t) = ̂̇P a(t) + C̃v · ̂̇P v(t)− ∆̃V v0 · Ṡ(t)− Ĩex (27)

(see Eq 11), 568

fa(t) = Ĥ(t) · P̂p(t)−
P̂a(t)− P̂v(t)

R̃min +
(
R̃max − R̃min

)
·Rmodulation(t)

− ̂̇P a(t) (28)

(see Eqs. 10,15). 569

Rmodulation(t) is defined in Eq 16, and Sb(t), S(t), MSVR(t) are defined below: 570

Sb(t) ≡ 1− 1

1 + exp (−kb (Pa(t)− Pset))
, (29)

S(t) ≡ Sconst + Sslope · t, (30)

MSVR(t) ≡Mconst +Mslope · t. (31)

The parameters {NH , NR, NP , NI , Na} in Eq 23 normalize the different terms such 571

that they have no units, and are adjusted in each time interval of the analysis: 572

NH = mean
[
Ĥr(t)

]
, NR = mean

[
R̂C(t)

]
,NP = mean

[
P̂p(t)

]
, 573

NI = std

[
̂̇Pa(t)

]
,Na = std

[
Ĥr(t) · P̂p(t)

]
. The parameters {wH , wR, wP , wI , wa} 574

adjust the relative contribution of each term to the cost function. Throughout this work 575

we use the following values: wH = 1, wR = 0.2, wP = 0.2, wI = 0.2, wa = 10. The 576

values of {wH , wR, wP , wI , wa} are chosen such that the contributions of the terms 577

f2
H(t), f2

R(t) and f2
p (t) to the cost function have the same order of magnitude, and the 578

contributions of f2
I (t) and f2

a (t) (the terms that contain derivatives) are larger. The 579

optimal parameters are searched within a certain physiological range (see Table 4). 580
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Parameter Range

Pset
a

0-1 month [42, 73] mmHg
1-3 months [44, 76] mmHg
3-6 months [52, 80] mmHg
6-12 months [52, 86] mmHg

1-3 years [56, 88] mmHg
3-6 years [55, 83] mmHg
6-9 years [58, 87] mmHg
9-11 years [59, 87] mmHg
11-15 years [59, 89] mmHg

older than 15 years [60, 91] mmHg

Hrmin
b

0-6 months [110, 130] Bpm
6-12 months [90, 130] Bpm

1-3 years [80, 110] Bpm
3-6 years [75, 110] Bpm
6-11 years [65, 110] Bpm

older than 11 years [60, 90] Bpm

Hrmax
c

0-6 months [140, 180] Bpm
6-12 months [130, 180] Bpm

1-3 years [125, 180] Bpm
3-6 years [125, 160] Bpm
6-9 years [115, 160] Bpm
9-15 years [110, 160] Bpm

older than 15 years [110, 150] Bpm

∆̃V v0

0-3 months weight(kg)·[1.667, 1200] mmHg
kg

older than 3 month weight(kg)·[1.25, 900] mmHg
kg

Ĩex

0-3 months weight(kg)·[-0.14, 0.14] ml
kg ·

1
sec

older than 3 months weight(kg)·[-0.1, 0.1] ml
kg ·

1
sec

C̃v [1, 60]

R̃min [0.1, 1] sec

R̃max [0, 2] sec

K̃min [50, 350] mmHg

K̃max [75, 1400] mmHg
Sconst [0, 1]
Sslope [− 1

300 , 1
300 sec−1]

Mconst [−1, 1]
Mslope [− 1

150 , 1
150 sec−1]

Table 4. Range of hidden parameters.

aMinimal and maximal values are the 10th and 90th percentile of the mean arterial pressure
respectively, adapted from [11].

bBounds of minimal heart rate are the 5th percentile and 25th percentile (adapted from [10])
cBounds of maximal heart rate are the 50th percentile and 95th percentile (adapted from [10])
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Estimation process. Table 3 contains a list of the estimated parameters, where each 581

parameter is bounded within a certain range (see Table 4). The estimation process is 582

done separately in segments which are defined between two time points: [t, t+ T ], where 583

T = 300 sec. During the estimation procedure, the hidden parameters are estimated by 584

minimizing the time integral over the cost function f(t) within a given interval. For 585

some of the parameters (see θ∗ below) we assume that the time dependent change is 586

smooth, and consider also the previous estimated value of the parameters. 587

The optimization problem can be stated as: 588

θ̂(t) = argminθ̄

∫ t+T

t

dt′fθ̄(t
′) + β

∑
θi∈{θ∗}

1

B2
i

t∑
t̄=t0

exp

(
t− t̄
τ

)(
θ̂i(t̄)− θi

)2

 , (32)

where θ∗ = {C̃v, ∆̃V 0, Pset, Hmax, Hmin, R̃max, R̃min} are the parameters for which 589

previous estimator are considered, and Bi is the upper bound of the parameter θi (see 590

Table 4). Throughout this work β = 0.1. 591

The optimal solution (the set of optimal parameters θ̂) in each segment is chosen 592

using the function fmincon.m of Matlab with the option globalsearch, which searches a 593

global solution for a constrained nonlinear optimization problem across different initial 594

conditions [19]. We supply a random start point to the optimization function. 595
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Supporting information 660

S1 Fig. Demonstration of the model for time-varying autonomic control 661

Fig S1 demonstrates the effect of S (independent autonomic control) on the 662

cardio-vascular dynamics in a simulation of the iCVS model. In response to an increase 663

in S, arterial pressure, venous pressure, vascular resistance, and pulse pressure increase 664

as well. 665

Fig S1. Simulation of the cardio-vascular model - time varying autonomic
control. The hidden parameters are fixed and the observables are simulated
accordingly (see Methods). A. Time dependent intra vascular volume change - zero in
this simulation. B. Time course of MSVR - constant in this simulation. C. Time
dependent magnitude of the independent autonomic control (S) which does not depend
on the cardio-vascular state. D-H The resulting observables: D. Arterial pressure (Pa),
E. Venous pressure (Pv), F. Peripheral resistance multiplied by arterial compliance
(RC). G. Heart rate (Hr), H. Pulse pressure (Pp). I. Time dependent magnitude of the
baro-reflex (Sb) which depends on the arterial blood pressure.

December 31, 2022 26/29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2023. ; https://doi.org/10.1101/2022.12.31.22284089doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.31.22284089
http://creativecommons.org/licenses/by-nc-nd/4.0/


S2 Fig. Reconstruction of the observables Using the estimated parameters 666

which are found by the optimization process, we reconstruct the heart rate, peripheral 667

resistance and pulse pressure, and compare the reconstructed values to the observed 668

values. The reconstruction is based on Eqs. 24-26, where we define: 669

H̄r(t) = Hrmin + (Hrmax −Hrmin) · Stot(t), (33)
670

R̄C(t) = R̃min +
(
R̃max − R̃min

)
·Rmodulation(t), (34)

671

P̄p(t) =

[
K̃min + ∆K̃ · S(t)

]
· P̂v(t)

P̂a(t)− P̂v(t)
, (35)

where H̄r(t), R̄C(t) and P̄p(t) are the reconstructed values of the heart rate, vascular 672

resistance and pulse pressure respectively. Fig. S2 A-C shows examples of reconstructed 673

values vs. observed values. Panels A-C present the reconstruction of the observables for 674

three patients, in a single interval of estimation. Each panel represents a given 675

observable, and each patient is represented by a specific color across panels A-C. 676

Continues line denotes for extracted observables, and dashed line for the reconstructed 677

values. One can see that the iCVS model can reproduce the observables in different 678

scales. The fast fluctuations are not reproduced, becacuse MSVR and S are modeled as 679

linear in each interval. Fig S2 D-F show the reconstruction for a randomly chosen 1% of 680

the whole data-set which is used in Fig 9. Each dot is a single time point of one patient 681

(all time points of a given patient are represented by the same color). Horizontal axis 682

represents the observed value (Ĥr, R̂C, P̂p in panels D, E, F respectively), and vertical 683

axis represents the reconstructed value (H̄r, R̄C, P̄p in panels D, E, F respectively). 684

The Pearson correlation coefficient is: 0.917 for Heart rate reconstruction, 0.721 for RC 685

reconstruction, and 0.978 for Pulse pressure reconstruction. 686
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Fig S2. Reconstruction of the observables based on the optimal
parameters which are found by the model. A - C. Comparison between
observed data and reconstructed values during a segment of 500 seconds. Green -
patient number 2, blue - patient number 3 and red - patient number 6 (see Table 1).

Continuous line - observed data: Ĥr (A), R̂C (B) and P̂p (C). Dashed line -
reconstructed value: H̄r (A), R̄C (B) and P̄p (C). D-F. Comparison between the
measured value (horizontal axis) and estimated value (vertical axis). Each point
represents the value of a given measurement (D - heart rate, E - peripheral resistance,
F - pulse pressure) in a specific time point. The time points which are presented are a
randomly chosen subset that constitute 1 % of the whole data-set which is used in Fig 9.
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S3 Fig. Robustness of the optimization process. Fig S3 shows the results of 687

the optimization process for different start points supplied to the optimization function. 688

The illustration is done for patient number 1 which is identified in a hypovolemic shock 689

state and is presented in Fig 5. Panels A-E present the extracted observables. 690

Panels F-H present the optimal parameters obtained for realizations of the optimization 691

process with different start points which are supplied to the optimizaion function. Grey 692

lines denote for different start points, black lines are the results that appear in Fig 5. 693

Purple lines are the average of all the realizations with different start points. It can be 694

seen that the optimization algorithm which is used in this work to fit the iCVS model is 695

affected by the supplied start points. However, when averaging across different initial 696

conditions the results are concordant with the labeled shock state (hypovolemic in this 697

case). In addition, in each single realization the average Iex is negative (data is not 698

shown).

Fig S3. Robustness of the optimization function to different start points
Results for patient number 1 (see Table 1) are presented. A-E. - The observables: Mean
arterial pressure (A), mean venous pressure (B), heart rate (C.), RC - the peripheral
resistance multiplied by the arterial compliance (D) and pulse pressure (E). F-H. Lines
represent a smoothed version of the estimated parameters which are obtained in each
interval (see Methods). Black line - the results which are presented in Fig 5. Purple line
- average over all realizations. F. Relative intra vascular volume change (Īex). G. Non
autonomic vascular resistance (MSVR). H. Maximal relative contractility (K̃max).

699
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