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Abstract 
“What time should I take my medicine?” is an increasingly important question. Current 
knowledge of time-of-day effects for specific medications in hospitalized patients with 
cardiovascular disease is very limited. In such patients, increased medication efficiency 
could potentially reduce dose use and/or the length of time in the Intensive Care Unit 
(ICU) and/or hospital – potentially improving patient outcomes and patient and family 
quality of life, and reducing financial costs. We studied whether the time of day or night a 
patient is given a diuretic affects urine volume response. In this observational study, data 
were from 7,704 patients (63% male, 18 to 98 years old) admitted to one hospital’s acute 
care cardiac units, cardiac ICUs, cardiac surgery ICUs, and/or non-cardiac ICUs, who 
received intravenous furosemide (a diuretic), had measurements of urine volume, were 
hospitalized for ≥ 3 days between January 2016 to July 2021 and were older than 18 
years. We used machine learning (ML) techniques to analyze the data. The ML technique 
identified factors that were expected to predict urine volume response to the diuretic: sex, 
age, medication dose and time, creatinine concentration, diagnosis, and hospital unit. The 
ML technique also identified medication administration time 00:00–06:00 as a predictor 
of higher urine volume response. Randomized controlled trials should be conducted to 
quantify the relative effect of modifiable factors, such as time of medication administration. 
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Introduction 
Circadian rhythms are physical, mental, and behavioral changes that display a period of 
approximately 24 h. These rhythms influence almost all areas of physiology, including the 
sleep-wake cycle, body temperature, blood pressure, and heart rate1,2. Healthy 
individuals produce more urine during the day than at night, and there are circadian and 
time-of-day (“diurnal”) rhythms in urinary sodium, potassium, and chloride excretion 3–9. 
Disruption of these rhythms is associated with hypertension and cardiovascular disease 
10. 

Chronomedicine aims to incorporate knowledge of biological rhythms to increase 
treatment effectiveness and decrease side effects 1,11–13;. Chronomedicine has 
demonstrated clinical benefits in hypertension, hypercholesterolemia, cardiac 
arrhythmias, and ischemic heart disease, cancer, diabetes, and other areas 14–22. The 
knowledge of medication time-of-day effects in hospitalized patients with cardiovascular 
disease is very limited. For hospitalized populations, there is tremendous potential benefit 
from any increased efficiency of medications. Another advantage of studying hospitalized 
patients is that there is a great source of accurately recorded data (e.g., medication dose 
and time, diet, frequently measured patients’ health outcomes such as vital signs or urine 
volume) to use for quantifying the impact of the timing of medication administration on 
patients’ health outcomes and the interactions of these variables. Adding a recommended 
time of day is a low-cost change (i.e., not requiring the development of a new medication 
or other intervention) that can be implemented almost immediately. Time-of-day 
differences in the efficacy of these interventions could be important for both 
understanding basic science and for potentially reducing doses given while achieving 
similar results. 

In this study, we used machine learning (ML) methods to quantify the impact of the timing 
of diuretic medication administration and other covariates (e.g., sex, age, weight, 
medication dose, creatinine concentration, fluid intake, diagnosis, and hospital unit) on 
urine volume of hospitalized patients in Acute Cardiac Care and different Intensive Care 
Units (ICUs) The cause of the need to increase urine volume in patients in hospital 
ICUs)may be heart or renal failure (with fluid retention), fluids given during surgery, or 
other causes. Diuretics (e.g., furosemide) may be given to increase the urine flow rate; 
they have a rapid onset of response within the first few minutes after intravenous (IV) 
diuretic administration. ML is a powerful technique for diagnosis, detection, and prediction 
in medicine. Studies have used ML-based approaches to identify the most important 
clinical factors (e.g., sex, age, lab test results, temperature, and heart rate) in the 
prediction of volume responsiveness in patients with oliguric acute kidney injury in critical 
care23, identify the most critical factors in predicting the prevalence of stroke24, identify 
modifiable factors that influence COVID-19 vaccine side effects25 explain the contribution 
of different variables (e.g., age, tumor size, and the number of removed lymph nodes) in 
the prediction of 10-year overall survival of breast cancer26, and predict the risk of 
hypoxemia during general anesthesia and provide explanations of the risk factors (e.g., 
age, sex, BMI, blood pressure, temperature, and medication)27. 
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Materials and Methods 
Data 

The dataset was created from Mass General Brigham (MGB, Boston MA, USA) electronic 
health records (EHR). The inclusion criteria were everyone (i) admitted to Massachusetts 
General Hospital Acute Care Cardiac units, Cardiac ICUs, Cardiac Surgery ICUs, and 
Non-cardiac ICUs, (ii) who received IV furosemide, (iii) who had measurements of urine 
volume, (iv) who were hospitalized for ≥ 3 days between January 2016 and July 2021, 
and (v) were age ≥ 18 years. Patients differed in the reasons for furosemide administration 
(e.g., heart failure, post-surgery). 

Variables considered for analysis were selected based on expert knowledge and their 
availability in EHR. Variables used were age, sex (female and male), weight, medication 
dose and time, lab test results (e.g., creatinine), fluid intake, medical condition/diagnosis 
(i.e., heart failure, acute kidney disease, chronic kidney disease, and cardiomyopathy), 
hospital unit, and urine volume and time. 0.8% of the data samples were removed 
because of missing values of creatinine (0.6%) and weight (0.2%). Weights > 200 kg or 
< 40 kg were not used (0.8% of the data points). B-Type Natriuretic Peptide Test was 
initially considered for analysis but there was not enough recording in EHR data for this 
variable (95% missing values); therefore, it was not included in the final feature set. The 
outcome of interest was urine volume rates in the hour after the time of medication 
administration normalized by the most recent (not older than 24 hours before the 
medication administration) body mass index (BMI). 

The study was approved by The Mass General Brigham Institutional Review Boards 
(IRB). 

Pre‑processing 

The dataset was prepared by calculating the amount of administered medication rates by 
the time of day in hourly bins (sampling rate = one hour). The fluid intake rates and urine 
volume rates relative to medication administration in hourly bins were calculated. The 
calculations were performed using Resample function in Pandas package (version 1.3.4) 
in Python. Medication administrations were included in analyses when there were no 
other diuretic medications during two hours before through one hour after that dose, and 
no more than 4 hours gap between urine volume and fluid intake measurements. For 
each administered medication, urine volume rate normalized by BMI and fluid intake rate 
2 hours before medication, urine volume rate normalized by BMI and fluid intake rate 1 
hour before medication, and urine volume rates normalized by BMI in the hour after the 
time of medication administration were used for analysis. Time of day groupings were 
00:00-05:59, 06:00-11:59, 12:00-17:59 or 18:00-23:59. Categorical variables (i.e., sex, 
time of day, diagnosis, and hospital units) were converted into dummy variables using 
OneHotEncoder, a scikit-learn (version 1.0.1) preprocessing package in Python. To avoid 
collinearity effect between the input variables, a Variance Inflation Factor analysis was 
conducted (threshold = 5) 28. BMI was calculated using the standard definition. 

Machine Learning Model 

Machine Learning (ML) techniques use statistical methods to quantify relationships 
between input variables (e.g., patients age, sex, race, medical condition) and the target 
variables (e.g., health outcomes) in large datasets.  Extreme Gradient Boosting (XGB) a 
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tree-based machine learning model was selected because of its execution speed and 
performance 26, the advantage of high interpretability and the possibility of identifying the 
strongest predictors by applying a model explanation such as Tree Explainer 28. 
XGBRegressor from Xgboost package version 1.4.2 in Python (with max_depth = 4, 
number of estimators = 100, and learning rate = 0.1) was applied to the input variables to 
predict absolute the normalized urine volume rate in the hour after the time of medication 
administration. The model was parametrized using a randomized search of different 
parameter settings with a 5-fold cross validation. 

Evaluation 

A stratified k-fold (k=5) cross-validation was used to validate the performance of the ML 
model. This method uses a large part of the data (80% of the data) to train the model, 
and a small part of the data (20% of the data) to test the model. No data from the same 
subject was used in the training and testing sets. Since some individuals were 
represented by more samples than others, a weight (1/number of samples per individual 
per hospital admit) was assigned to each data point in the dataset. The stratified cross-
validation was repeated 10 times and the average and the standard deviation (SD) of 
mean absolute error (MAE) score (equation 1) was calculated. A baseline MAE was 
calculated by predicting the mean target value from the training dataset. A model with 
better MAE than the baseline MAE has prediction skill. 

MAE =  
∑ |y − x |

n
 

(1) 

Explainability 

After the ML model is built and evaluated for its performance, model explanation 
techniques can be used to identify the most important predictors of urine volume rates 
and understand the contribution (magnitude and direction) of each of the input variables 
to the prediction of the urine volume rate values26. We chose SHapley Additive 
exPlanations (SHAP) values that are based on a game theory method for assigning an 
importance value to variables based on their contribution to a prediction 28. SHAP values 
were calculated using the trained ML model for each datapoint in the training dataset (i.e., 
the input values per medication administration). SHAP values were generated using the 
SHAP package (version 0.39.0 in Python). These values were used to obtain a 
visualization of the overall feature importance for the model. Then, SHAP boxplot (by 
applying a seaborn [version 0.11.2] boxplot package in Python) for categorical variables 
and SHAP scatter plot for continuous variables were generated to show how the features 
contributed to models’ output. All analyses were performed using open-source libraries in 
Python 3.7. 

Results 
The data include 38,338 medication administrations in 7,704 patients during 8,324 
hospital admissions (Table 1). Of these patients, 63% were male; ages ranged from 18 
to 98 years old; weight ranged from 40 to 200 kilograms; medication dose ranged from 1 
to 240 mg/hr; creatinine concentration ranged from 0.17 to 12 mg/dl. Of the hospital 
admits, 25% had admission diagnoses of heart failure, 6% acute kidney disease, 4% 
chronic kidney disease, 24% cardiomyopathy, and 41% had other reasons for hospital 
admit. 7% were admitted to Acute Care Cardiac Unitss, 15% to Cardiac ICUs, 37% to 
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Cardiac Surgery ICUs, and 41% to Non-cardiac ICUs. 16% of medication administrations 
were from 00:00 to 05:59, 33% from 06:00 to 11:59, 33% from 12:00 to 17:59, and 18% 
from 18:00 to 23:59. 

Table 1. Number of individuals and (%) percent of total patients; Number of medication administrations and (%) percent 
of total medication administrations. Note, due to rounding, not all all percentages sum to 100% 

 Variables 
Number of 
individuals 
N(%) 

Number of 
medication 
administration 
N(%) 

Sex   

Female 2,876 (37) 14,856 (39) 

Male 4,828 (63) 23,482 (61) 

Total  7,704 (100) 38,338 (100) 

Admit Diagnosis   

Heart Failure 1,855 (24) 8,696 (23) 

Acute Kidney Disease 481 (6) 2527 (7) 

Chronic Kidney Disease 340 (4) 1751 (5) 

Cardiomyopathy 1,789 (23) 8,520 (22) 

Other reasons for visit 3,239 (42) 16,844 (44) 

Total  7,704 (100) 38,338 (100) 

Hospital Unit   

Acute Care Cardiac Unit  2,767 (7) 

Cardiac ICU  5,649 (15) 

Cardiac Surgery ICU  14,300 (37) 

Non-cardiac ICU  15,622 (41) 

Total   38,338 (100) 

Medication Time   

00-06H  2,767 (16) 

06-12H  5,649 (33) 

12-18H  14,300 (33) 

18-00H  15,622 (18) 

Total  38,338 (100) 

 

Ten features (sex, age, weight, medication dose, creatinine, fluid intake, admit diagnosis, 
hospital unit, time of day of medication administration, urine volume and fluid intake 2 
hours before medication, and urine volume and fluid intake 1 hour before medication) 
were used to build a predictive ML model. The model showed predictive MAE score of 
4.1 (SD = ± 0.03) vs 5.4 baseline MAE for normalized urine volume rates. 
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A SHAP feature importance plot was created using mean absolute SHAP values of the 
ML model for predicting absolute urine volume rates normalized by BMI (Figure 1); this 
plot orders the input variables (top to bottom along the y-axis) according to their 
importance to the ML model. The five most important predictors to predict absolute urine 
volume rates were, in descending order: urine volume the hour before medication 
administration, creatinine, weight, sex, and age (Figure 1). 

 

Figure 1. Feature importance plot using the mean absolute SHAP values. 

The SHAP boxplot for binary variables (Figure 2) shows the direction of impact of the 
categorical variables on the model output in predicting absolute urine volume rates. 
Positive SHAP values are associated with higher urine volume rate value predictions and 
negative SHAP values are associated with lower urine volume rate value predictions. 
Male, being admitted to Non-cardiac ICU and medication administration between 00:00 
to 05:59 were associated with more urine volume output in response to a diuretic (Figure 
2). Female, diagnosis of heart failure, acute kidney disease, and chronic kidney disease, 
and being admitted to the Acute Care Cardiac Unit and Cardiac Surgery ICU were 
associated with less urine volume in response to a diuretic (Figure 2). 
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Figure 2. SHAP value boxplot that shows the direction of impact of each binary variable on model’s output. Positive 
SHAP values are indicative of a higher urine volume value prediction, while negative SHAP values are indicative of a 
lower urine volume value prediction; vertical lines indicate 5th and 95th percentiles. Box limits indicate 25th and 75th 
percentile and vertical line within the box indicates 50th percentile. 

 

Figure 3. SHAP scatter plot for continuous variables A: age, B: medication dose and C: creatinine concentration 
showing the impact of these variables on model’s output. 

For the continuous variables, younger adults, a medication dose between 25 to 75 mg/hr, 
and lower creatinine concentrations were associated with more urine volume in response 
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to a diuretic (Figure 3 and 4). There was a high association between higher creatinine 
concentration and higher dose of medication (Figure 4). 

 

 

Figure 4. SHAP scatter plot for creatinine concentration showing the impact of this variable on model’s output (red: 
higher dose of medication and blue: lower dose of medication). 

Discussion 
We used an explainable ML method to quantify the effect of time of day of a diuretic 
administration and other covariates on urine volume in hospitalized patients. Our results 
are consistent with several other publications that documented relationships between 
urine volume in response to a diuretic and sex, age, diagnosis of heart or kidney disease, 
and creatinine levels. Our novel findings are of time-of-day effects of IV furosemide on 
urine volume, with a significantly larger effect of medication administration for doses 
between midnight and 6am in a ML model that included fluid intake as a variable. Future 
work will include time-of-day variation in urine volume rates when no diuretic has been 
given. 

Chronomedicine aims to incorporate knowledge of biological rhythms in clinical, including 
preventive, care 29. Health care professionals are beginning to consider time-of-day in 
their diagnosis and treatment administration. The information about time-of-day may be 
used to better define relevant physiology and improve clinical care in outpatient and 
inpatient populations. The availability of data from EHR including telemetry will be 
important30–32. For example, altering the time of an intervention to increase efficacy would 
be a relatively low-cost and scalable change in practice. 

EHR provide the opportunity to improve healthcare. Handling these large and complex 
datasets requires special computational techniques that can deal with these datasets. ML 
techniques have broad applications in healthcare and are helpful in identifying patterns in 
large datasets33. Developments in the area of ML and model explanation, and strong 
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methods to compute and visualize the magnitude and direction of impact of input 
variables on model’s outputs, can help translate knowledge from science to practice 28,34. 
Given our multidimensional datasets, the application of ML can be useful since its 
strength includes dealing with many input variables. 

Limitations of this work are that the data are from an observational study. Randomized 
clinical trials should be performed to further test our hypotheses of time-of-day influences 
on immediate drug effects, longer-term effects on multiple metrics of patient health and 
quality of life, length of stay in ICUs and in-hospital total, and financial costs. Basic science 
studies should also be done to better define physiology and develop new treatments. 
Education for health care providers (e.g., physicians, nurses, and pharmacists) about 
time-of-day effects and variation in clinical metrics can also be implemented. 

Conclusion 
In this study, we used XGB, a ML model to predict the urine volume rates in the hour after 
the time of medication administration using multiple potentially relevant variables (e.g., 
sex, age, medication dose and time, creatinine, fluid intake, admit diagnosis, and hospital 
units). We then used a model explanation technique (SHAP) to identify the important 
predictors of urine volume rates and explain the effect of the input variables on model’s 
output. Our results demonstrate that age, sex, medication dose, creatinine concentration, 
admit diagnosis, hospital units, and time of day of medication administration (00:00– 
06:00) are associated with a significantly higher predicted urine volume response to a 
diuretic. Time-of-day differences in the efficacy of interventions could be important for 
both understanding basic science and for potentially reducing doses given while 
achieving similar results. Adding a recommended time of day is a low-cost change (i.e., 
not requiring the development of a new medication or other intervention) that can be 
implemented almost immediately. 
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