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Abstract 
 
Clinical trials of new treatments in different progressive diseases use power analysis to 

determine the sample size needed for a trial to obtain a statistically significant estimate for an 
anticipated treatment effect. In trials with parallel designs, the standard power analysis approach 
is based on a two-sample t-test. For example, the standard t-test approach was used in determining 
the sample size for the Phase 3 trials of aducanumab, the first drug approved by the United States 
Food and Drug Administration (FDA) to potentially slow cognitive decline in early-stage 
Alzheimer’s disease. However, t-tests contain normality assumptions, and t-test-based power 
analyses do not implicitly factor in the uncertainty about anticipated treatment effects that arises 
due to inter-subject heterogeneity in disease progression. These limitations may lead to 
recommended sample sizes that are too small, potentially making a trial blind to a treatment effect 
that is truly present if the cohort’s endpoints are not normally distributed and/or the anticipated 
treatment effect is overestimated.  

To address these issues, we present a novel power analysis method that (1) simulates 
clinical trials in a progressive disease using real-world data, (2) accounts for inter-subject 
heterogeneity in disease progression, and (3) does not depend on normality assumptions. As a 
showcase example, we used our method to calculate power for a range of sample sizes and 
treatment effects in simulated trials similar to the Phase 3 aducanumab trials EMERGE and 
ENGAGE. As expected, our results show that power increases with number of subjects and 
treatment effect (here defined as the cohort-level percent reduction in the rate of cognitive decline 
in treated subjects vs. controls). However, inclusion of realistic inter-subject heterogeneity in 
cognitive decline trajectories leads to increased sample size recommendations compared to a 
standard t-test power analysis. These results suggest that the sample sizes recommended by the t-
test power analyses in the EMERGE and ENGAGE Statistical Analysis Plans were possibly too 
small to ensure a high probability of detecting the anticipated treatment effect. Insufficient sample 
sizes could partly explain the statistically significant effect of aducanumab being detected only in 
EMERGE. We also used our method to analyze power in simulated trials similar the Phase 3 
lecanemab trial Clarity AD. Our results suggest that Clarity AD was adequately powered, and that 
power may be influenced by a trial’s number of analysis visits and the characteristics of subgroups 
within a cohort. 

By using our simulation-based power analysis approach, clinical trials of treatments in 
Alzheimer’s disease and potentially in other progressive diseases could obtain sample size 
recommendations that account for heterogeneity in disease progression and uncertainty in 
anticipated treatment effects. Our approach avoids the limitations of t-tests and thus could help 
ensure that clinical trials are more adequately powered to detect the treatment effects they seek to 
measure.  
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1. Introduction 
 

1.1. Two-sample t-test power analysis in parallel-design clinical trials 
 
Power analysis helps trial designers determine the sample size needed to obtain a 

statistically significant estimate for an anticipated treatment effect size at a given power and 
significance level.1 Randomized controlled clinical trials with parallel designs often use a two-
sample t-test approach for power analysis. Such an approach was used in determining the sample 
size for the Phase 3 trials of aducanumab, the first drug approved by the United States Food and 
Drug Administration (FDA) to potentially slow cognitive decline in early-stage Alzheimer’s 
disease patients by attacking brain amyloid-beta plaques.2,3  

For two-sample t-test power analyses, Cohen’s d is used to define the treatment effect size 
as the final observation standardized mean difference between treatment and control groups for a 
trial’s clinical or biological endpoint.4 Concretely, the effect size is defined as the anticipated final 
observation difference in endpoint means between treatment groups, divided by the anticipated 
pooled standard deviation for that endpoint. For example, if the anticipated difference in means 
(i.e., the treatment effect) is 0.5 and the pooled standard deviation is 1.92, then the treatment effect 
size (i.e., Cohen’s d) is 0.5/1.92 ≈ 0.26.  The mean and standard deviation values are posited in 
reference to endpoint distributions measured in previous experiments or trial phases.  

The significance level, α, is the probability of a Type 1 (false positive) error.5 In null 
hypothesis statistical testing, a Type 1 error has occurred when the null hypothesis is rejected when 
it is, in fact, true.5 For clinical trials, α can be conceptualized as the probability a trial will commit 
a Type 1 error by obtaining a statistically significant estimate for a treatment effect when one truly 
is not present.  

Power is defined as 1 – β, where β is the probability of a Type 2 (false negative) error.5 In 
null hypothesis statistical testing, a Type 2 error has occurred when the null hypothesis is accepted 
but is actually false.5 For a clinical trial, power can be conceptualized as the probability the trial 
will obtain a statistically significant estimate for a treatment effect that truly is present. In clinical 
trial power analysis, power and significance levels are often quoted in units of percent. For an 
example trial with an anticipated treatment effect size of 0.26, a desired power of 0.9 (90%) at  
α = 0.05 (5%), and an overall 30% dropout anticipated, the sample size recommended by a two-
sample, two-sided t-test power analysis is approximately 450 subjects per treatment group. We 
implemented this example in the widely used R statistical computing framework.6,7 

 
1.2. The limitations of two-sample t-test power analysis for trial design in Alzheimer’s disease 

 
Two-sample t-test power analysis is limited by its strong assumptions. A first assumption 

is that a trial’s endpoint will be normally distributed with equal variance in each treatment group. 
Like many other diseases, Alzheimer’s disease (AD) is an extremely heterogeneous disorder. AD 
has multiple possible subtypes of cognitive decline and spatiotemporal neuropathology 
progression.8 Co-pathologies resulting from vascular disease are also common and contribute to 
cognitive decline in possibly the majority of AD-diagnosed patients.9 Cognitive decline rates, the 
sequence of biomarker abnormality events, and the pattern of brain neurodegeneration can all 
differ between AD patients.8,10,11 Recent studies have shown that even if AD patients have similar 
disease severity at baseline, over follow-up these patients may have different rates and trajectories 
of cognitive decline.12–15 AD staging and trajectory prediction models based on cognition and AD 
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biomarkers are currently being developed for enriching trial cohorts with subjects whose 
forecasted decline trajectories complement trial objectives.16–18 However, such tools are not yet 
widely used because of the extensive validation required and the need for standardized validation 
procedures.19  

For the foreseeable future, AD clinical trials cannot avoid treatment-independent 
heterogeneity in disease progression between subjects. This heterogeneity introduces aleatoric 
uncertainty into power analysis, as each treatment group will have an unpredictable endpoint 
variance. T-test power analyses also do not account for the epistemic uncertainty in sample size 
recommendations introduced by forcing equal variance and normality assumptions. These 
limitations prevent trial designers from using intrinsically non-normally distributed endpoints. 
Moreover, it is common practice to transform an outcome metric to make it more normally 
distributed, for example by taking the difference from baseline.20 This practice compresses trial 
data and discards information.20 

T-test power analysis also assumes that the measured effect size will be greater than or 
equal to that anticipated. However, inter-subject heterogeneity injects aleatoric uncertainty in the 
anticipated mean endpoint difference between treatment groups. This uncertainty could be 
partially factored in by repeating the t-test power analysis using a range of values for the 
anticipated endpoint mean difference and pooled variance. However, AD clinical trials do not 
typically report doing so.  

If the t-test assumptions do not hold in a trial’s data, and if the anticipated treatment effect 
is overestimated when planning the trial, the sample size recommended by a two-sample t-test 
power analysis could be too small to detect the effect at the desired significance level. A too-small 
sample size increases Type 2 error risk,21 potentially making a trial blind to a genuine treatment 
effect. 

New power analysis methods are urgently needed. These methods should account for inter-
subject variability in AD progression, should not rely on normality assumptions, and should factor 
in aleatoric and epistemic uncertainty. A promising candidate method is power analysis by 
simulation of clinical trials,20 using realistic subject-level AD progression trajectories. 

 
1.3. Power analysis by simulation of Alzheimer’s disease progression in clinical trials 

 
Large longitudinal datasets are becoming available on diverse AD cohorts containing 

participants at different stages of the disease.22 With these datasets, one can derive disease 
progression models that map the trajectories of clinical and biological indicators of AD at the 
cohort and subject levels.18 These AD trajectory maps can then be used to generate subject-level 
disease trajectories to simulate clinical trials. Power to detect injected treatment effects can then 
be analyzed across simulations.23 

AD progression models that capture the disease heterogeneity already exist. For example, 
recent work by Vogel et al. identified four spatiotemporal patterns of tau spreading in the AD 
brain, each with different demographic and longitudinal cognitive profiles.8 The data-driven 
SuStain machine learning technique identified three spatiotemporal progression patterns of 
neurodegeneration from brain magnetic resonance images (MRIs) of AD patients.24 A study 
modeling the clinical progression of AD for the goal of symptom prediction identified up to three 
trajectory classes (stable, slow decliner, or fast decliner) on different cognitive assessments in the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.25  
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While these and similar trajectory subtyping methods have deepened our understanding of 
AD, such methods group subjects into distinct trajectory classes only at the cohort-level. For 
clinical trial simulation, disease progression models that map and can generate both cohort- and 
subject-level trajectories are needed.  

Mixed effect models can solve this problem by regarding each subject as a series of 
observations following a trajectory that deviates slightly from that of the cohort.26 A 2019 study 
by Iddi et al. used a Bayesian mixed effect model to track cognitive decline at the cohort and 
subject level in ADNI and predict future decline in new subjects.27  

Recently, several simulation-based power analysis software and programming frameworks 
have been developed to evaluate studies where mixed effect models are used to analyze data.28–30 
However, applications of these tools are focused primarily on fields outside medicine. 
Furthermore, custom model specification is limited, and sampling parameters cannot easily be 
specified (e.g., number of observations per subject, observation spacing, dropout rate, etc.). These 
issues limit the generalizability of these tools, making them difficult to use in trial simulation and 
power analysis in AD and other progressive diseases. 

However, a 2012 study by Rogers et al. proposed a Bayesian mixed effect drug-disease-
trial model to track AD progression as well as treatment and placebo response in marketed 
therapeutics.23,31 Model parameters were estimated using literature metadata and data from the 
Critical Path for Alzheimer’s Disease Database (CPAD) on AD clinical trials.23,32,33 This model, 
called adsim, could be used to simulate Phase 2a and 3 trials in AD with realistic dropout, different 
designs, symptomatic and/or disease-modifying treatment effects, and sampling schemes. Trials 
are simulated by pooling synthetic subject-level trajectories of scores on a commonly used 
cognitive test called the Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-
Cog).31,34,35 Simulated scores are conditioned on treatment effects, subject-level genetic 
information, and cognition and age at baseline.31,35  

In 2013, this model was deemed Fit-for-Purpose under the FDA’s Drug Development Tool 
Qualification Process.36,37 To the best of our knowledge, adsim is currently the only simulation-
based power analysis Drug Development Tool with this qualification. However, the publicly 
available model is limited: only data from mild and moderate AD dementia patients were used.23 
Recent clinical trials of AD treatments include people at other stages of the disease. For example, 
the recent Phase 3 trials of aducanumab and lecanemab included people with AD-related mild 
cognitive impairment or mild AD dementia.38–40 Power analysis results from the public adsim do 
not generalize to these or other trials targeting earlier AD stages. The model uses only the ADAS-
cog score as an endpoint and contains strong statistical assumptions; the model’s posterior 
distribution is sampled directly to simulate subject-level trajectories.35 Although the modeling 
assumptions may be justifiable, they compress information and potentially ignore latent effects of 
unmeasured disease processes. By using the model to directly simulate data for new subjects, 
epistemic uncertainty is injected into the power analysis results. The potential impact of this 
uncertainty on sample size recommendations remains unaccounted for in adsim.  

An alternative approach is to simulate clinical trials using real subject data directly. A 2021 
study by Chen et al. used real AD patient data from the OneFlorida dataset to simulate different 
trial designs for the drug donepezil.41 The objective was to determine whether it was feasible to 
evaluate donepezil’s safety profile by simulating the drug’s clinical trial using real-world data on 
subjects who matched the original trial’s inclusion criteria. The study compared serious adverse 
event rates in the real trial with those in simulated trials comprised of data on real subjects who 
had been prescribed the same dosages as in the original trial. Simulations had realistic subject 
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randomization, dropout, and a proportional sampling approach to account for the original trial’s 
race distribution. Simulations had similar adverse event rates to the original trial, demonstrating 
the feasibility of using real-world data for simulation-based safety evaluation in clinical trials. 

However, this study did not test the simulation approach for evaluating the trial’s power to 
detect donepezil’s cohort-level symptomatic effect on cognition. The simulations are also 
retrospective and rely on treatment effects and adverse events already present in the data, thus 
preventing the prospective generalizability to new trials where effects can only be hypothesized. 
Also, only one sample of subjects from the OneFlorida dataset was used to simulate one trial. This 
sampling approach does not factor in the impact of variable cohort composition on trial results. 
Bootstrap resampling was only done to obtain 95% confidence intervals on the mean simulated 
adverse event rate. Moreover, the proportional sampling focused only on race and did not replicate 
other cohort features such as the distribution of AD stage at baseline, despite the inclusion criteria 
covering moderate to severe AD.42  

Other recent studies have begun using real-world data to simulate clinical trials 
longitudinally. A 2021 study by Jutten et al. used real-world data on subjects from ADNI who 
matched the Phase 3 aducanumab trials’ inclusion criteria to provide an exemplar Phase 3 trial in 
AD with cognitive test scores as outcome measures.43 Commonly used cognitive tests in AD 
clinical trials are: the Mini Mental State Examination (MMSE),44 different subscales within the 
Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog),34 and the Clinical 
Dementia Rating–Sum of Boxes (CDRSB).45 In the Jutten et al. study, the objective was to 
calculate the range of treatment effect sizes that could be measured when no effect is actually 
present. The authors first used a linear mixed effect model to track cohort- and subject-level 
MMSE, CDRSB, and ADAS-Cog-13 score trends in the selected cohort. For subjects without an 
18-month assessment (the Phase 3 aducanumab trials’ duration),38,39 those subjects’ own real-
world score trajectories were used to calculate test score values at 18 months. The difference from 
baseline values (e.g., change from baseline in CDRSB) were then computed and used as endpoint 
metrics in 10,000 simulated trials. To create each simulation, subjects’ scores at 18 months were 
resampled and randomized 1:1 to groups labelled “treated” and “placebo.” By computing the null 
treatment effect sizes in each simulation as the between-group difference in means for the change-
from-baseline scores, the study obtained the 95% range of observed null effect sizes for each 
endpoint. 

Results showed that group differences in almost all recent real-world anti-amyloid trials 
fall within the 95% range of null effect sizes in the simulations. This result suggests that Type 1 
errors may pose a significant risk for clinical trials in AD. Subgroup analyses with reduced sample 
sizes could lead to starker imbalances in cognitive decline trajectories between treatment groups, 
potentially exacerbating the Type 1 error risk.  

Developers of new treatments for AD and potentially other progressive diseases might seek 
to reduce Type 1 error risk by first identifying the range of treatment effect sizes that lie outside 
the 95% range of potential null effect sizes for the target population. Any effect size outside that 
range measured in a real-world clinical trial would thus have a low probability of having occurred 
due to chance imbalance in disease progression between treatment groups. Power analysis could 
be enhanced if it could also estimate the null treatment effect size range. Information about the 
null effect size distribution would also likely impact the drug development stages that occur before 
clinical trials. 

To address the limitations of conventional power analysis and those of newer approaches, 
we propose a novel framework that combines clinical trial simulation using real-world data with 
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disease progression modeling. Our framework can simulate trials of new, disease-modifying 
treatments of progressive diseases – we show an example from AD below. These simulated trials 
can then be used to analyze power in different trial designs while accounting for aleatoric and 
epistemic uncertainty. Our framework can also be used to estimate the null treatment effect size 
range and Type 1 error rate in a target population.  

 
2. Objectives 
 

We introduce our framework as a four-stage procedure. We then answer specific power 
analysis questions about two recent large-scale clinical trials in Alzheimer’s disease: first, the 
Phase 3 aducanumab trials EMERGE (NCT02484547) and ENGAGE (NCT02477800);38,39 
second, the Phase 3 lecanemab trial Clarity AD (NCT03887455).40 Our Primary Objectives are: 
(1) to describe the four stages of our power analysis procedure, focusing on EMERGE and 
ENGAGE in an example; (2) to analyze power in trials similar to EMERGE and ENGAGE; and 
(3) to compare our power results with those reported in the published EMERGE and ENGAGE 
Statistical Analysis Plans.38,39 Our Supplementary Objectives are: (1) to analyze power in 
simulated trials similar to Clarity AD, and (2) to compare our results to those reported in the 
published Clarity AD results paper.46 
 
3. Methods 

 
3.1. Summary of the power analysis procedure 
 

Our procedure simulates clinical trials by generating subject-level trajectories for a target 
trial’s endpoint using a mixed effect model of disease progression as well as longitudinal data from 
real patients who match the trial’s inclusion criteria. We inject a cohort-level treatment effect that 
alters the rate of disease progression in simulated subjects that are randomly assigned to a treatment 
group. We use proportional sampling of baseline data from real patients to replicate the baseline 
disease stage distribution observed in the real-world trial targeted by our power analysis. With this 
technique, we simulate thousands of trials, each containing a different set of disease progression 
trajectories but the same cohort-level treatment effect, observation scheme, and proportional 
sampling. “Power” is the proportion of simulations where a statistically significant treatment effect 
is detected using a linear mixed effects model. We use this approach to analyze power with 10,000 
simulated trials. A flowchart describing the sequence of stages is shown in Figure 1. Each stage is 
described in detail below. 

 

 
 
Figure 1. Flowchart describing the sequence of four stages in our power analysis procedure. 
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3.2. Stage 1: Identify the target trial’s endpoint metric and an existing trial-matched dataset  
 
First, we identify the target trial’s primary endpoint. In our Phase 3 aducanumab trial 

example, the endpoint is the change from baseline in the cognitive test score Clinical Dementia 
Rating–Sum of Boxes (CDRSBΔbl).38,39 We identified this endpoint in the identical analysis 
protocols outlined in the EMERGE and ENGAGE Statistical Analysis Plans (SAPs) that are 
publicly available on ClinicalTrials.gov.38,39  

Next, we identify a longitudinal dataset on real-world subjects who match the target trial’s 
inclusion criteria and where endpoint observations are available on each subject. Subject data used 
in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (https://adni.loni.usc.edu), specifically from cohorts ADNI1, 
ADNIGO, ADNI2, and ADNI3.47–50. The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has 
been to test whether serial magnetic resonance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 
(AD). For up-to-date information, see www.adni-info.org. The ADNI study received ethics 
approval from all participating institutions and informed consent from all participants before 
inclusion in the study.  

We selected subjects from ADNI who fit our target trials’ key inclusion criteria at baseline: 
i.e., subjects meet the clinical criteria for AD-related mild cognitive impairment (MCI) or mild 
AD dementia, are between 50 and 85 years old, have a CDR score of 0.5 and an MMSE score 
between 24 and 30, are APOE genotyped, and are positive for abnormal amyloid levels.38,39 We 
determined amyloid status by using ADNI-reported positron emission tomography tracer measures 
of brain amyloid levels at baseline (PiB SUVR > 1.2 or AV45 SUVR > 1.11),51,52 or cerebrospinal 
fluid measures of amyloid-beta 42 at baseline (Aβ42 ≤ 980 pg/ml).53  

Out of 2,420 available subjects in the described ADNI datasets at the time of download, 
1,040 subjects met our criteria for abnormal amyloid levels. Of these abnormal amyloid positive 
subjects, 563 (494 MCI, 69 mild AD dementia) met the EMERGE and ENGAGE inclusion criteria, 
with an average of approximately 5.4 observations per subject and an average follow-up time 
across subjects of approximately 4 years. 

 
3.3. Stage 2: Fit a disease progression model to the trial-matched data 

 
Here we fit a time series model to our trial-matched dataset to track the cohort- and subject-

level trajectories of the target trial’s primary endpoint. This model can be relatively simple. Our 
objective is to model the observed endpoint trajectories in a manner that lets us replicate or 
interpolate those trajectories across sets of observation times that were not present in the original 
data. This step is key for simulating clinical trials in Stage 3, where endpoint values are calculated 
at arbitrary observation times for simulated subjects (discussed in detail in Section 3.4 below). 

To map trajectories in our aducanumab example, we use a linear mixed effect model that 
nearly matches the slope analysis model in the EMERGE and ENGAGE SAPs.38,39 We use 
restricted maximum likelihood to fit the model to our Stage 1 trial-matched dataset using the lmer 
function in the lme4 package in R.54 The outcome metric is CDRSBΔbl. The fixed effects are 
median-centred baseline CDRSB and Mini Mental State Examination (MMSE)44 scores, years 
from baseline, APOE4 status (carrier or not),55 symptomatic AD medication use at baseline (yes 
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or no), and an interaction term for median-centred CDRSB with years from baseline. Increasing 
CDRSBΔbl scores indicate worsening cognitive impairment.56 Random effects by subject are 
defined for years from baseline in order to obtain subject-specific slope parameters. We use all 
available data on trial-matched subjects to fit the model (proportional sampling is only done in 
simulated trials in Stage 3). The lmer model syntax is thus:  
MCI_mild_AD_Mdl_diff_mc <- lmer(diff_bl_CDRSB ~ 0 +  
  CDRSB_bl_mc +  
  CDRSB_bl_mc:Years_bl +  
  Years_bl +  
  MMSE_bl_mc +  
  APOE4_status +  
  ADmeds_status +  
  (0 + Years_bl | RID),  
data = MCI_mild_AD_data_Abpos) 

 
Figure 2 shows CDRSBΔbl values over time in our trial-matched dataset, where the cohort 

trend is shown in red, and the observations of one exemplar subject are shown in green. 
 

 
Figure 2. CDRSBΔbl scores over time in our trial-matched dataset from ADNI1, ADNIGO, 
ADNI2, and ADNI3. 563 subjects fit the inclusion criteria for the Phase 3 aducanumab trials. 494 
subjects met clinical criteria for AD-related MCI and 69 met criteria for mild AD dementia. The 
red line shows a cohort-level CDRSBΔbl trend over years from baseline (generated using the 
cohort-level predictions of the Stage 2 model, holding other fixed effect variables constant).57 
Green diamonds show exemplar data for one subject. 
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After fitting this model, we referred to the Nakagawa R2 for mixed-models as an absolute 
value goodness-of-fit measure.58,59 With the above model we obtain a conditional R2 of 0.912, 
which can be conceptualized as the proportion of the variance in the data being explained by the 
fixed and random effects in the model.59  

Importantly, with this trajectory model example we are not advocating any particular 
procedure for variable or model selection. Our intent with referencing our model’s Nakagawa R2 
is to indicate that the model adequately maps the cohort- and subject-level trajectories. Any 
appropriate model selection procedure may be used. 

The next step is to save the trial-matched dataset along with the model parameters relevant 
to Stage 3. The saved parameters are: (1) the fixed effects coefficients and their standard errors; 
(2) the subject-specific random effect estimates that describe subject-specific differences from the 
cohort-level fixed effect slope coefficient, along with the subject-specific standard errors on those 
random effects; and (3) the standard deviation of the residuals. These parameters and the trial-
matched data will be used to simulate clinical trials in Stage 3 using a data-generating equation 
that matches the structure of the Stage 2 model. 
 
3.4. Stage 3: Simulate many identically designed clinical trials 
 
3.4.1. Define trial sampling parameters, treatment allocation, and significance level 
 

For the EMERGE and ENGAGE trials, the ratio of MCI to mild AD dementia was 
approximately 4:1.2 In our present example we set the number of subjects per treatment group at 
baseline to 535 subjects (combined total = 1,070), as recommended by the SAP power analysis. 
EMERGE and ENGAGE had 4 analysis visits spaced approximately 26 weeks apart, and subjects 
were randomized 1:1 to treated and placebo groups.2,38,39 Analysis visits are defined in the SAPs 
as the observation times in the trial that are to be used in the treatment efficacy analysis. We also 
encode dropout in our simulations. We define dropout as the percentage of subjects who begin the 
trial but are not observed at the final analysis visit. As in the EMERGE and ENGAGE power 
analysis, we define a dropout of 30%.38,39 We define a disease-modifying treatment effect as a 
25% percent reduction in the cohort-level rate of CDRSBΔbl increase. Our significance level in 
this example is set by a two-sided α = 0.05. In all examples  and experiments below, there is no 
dose stratification – we compare a single treatment group with a single control group. 
 
3.4.2. Define the data-generating equation 
 

Here we define the equation that will generate cohort- and subject-level cognitive decline 
trajectory data in our simulated clinical trial. The equation has the same structure as the Stage 2 
trajectory model: 
diff_bl_CDRSB_simu =  
  (beta_1 + beta_1_delta)*CDRSB_bl_mc_jit +  
  (beta_2 + beta_2_delta + gamma_1 + gamma_1_delta)*Year_jit +    
  (beta_3 + beta_3_delta)*MMSE_bl_mc_jit +  
  (beta_4 + beta_4_delta)*APOE4_status + 
  (beta_5 + beta_5_delta)*ADmeds_status +  
  (beta_6 + beta_6_delta)*CDRSB_bl_mc_jit*Year_jit + 
  (beta_7 + beta_7_delta)*treated_status*Year_jit +  
  error 
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Parameters and subject-specific baseline data from Stage 2 are input to this equation to 
simulate (i.e., calculate) endpoint values, diff_bl_CDRSB_simu, at arbitrary user-defined years 
from baseline observations times, Year_jit. We calculate values for Year_jit using the user-
defined number of analysis visits and the visit spacing. Our simulated visits correspond to the 
Baseline, Week 26, Week 50, and Week 78 analysis visits in EMERGE and ENGAGE.38,39   

We jitter each subject’s observation time values to simulate subjects being observed within 
an analysis visit window (hence the _jit on Year_jit). Jittering matches the window in the real 
trials of approximately ±13 weeks around each analysis visit.38,39 While we could simulate any 
distribution of observation time jitter (e.g., gaussian or other), in our present example we sample 
jitter values from a continuous uniform distribution with an interval of approximately ±13 weeks. 

The beta_i terms in the data-generating equation are the coefficients of the Stage 2 model 
fixed effect variables. The variables in the data-generating equation being multiplied by the 
beta_i represent the fixed effect variables in the Stage 2 model. The beta_i_delta terms 
correspond to error values for the corresponding beta_i. Those error values are sampled from a 
mean-zero normal distribution with standard deviation equal to the standard error of the 
corresponding beta_i.  

The gamma_1 term is the subject-specific difference value from the cohort-level slope, 
beta_2, which represents the cohort-level rate of cognitive decline in the model. The 
gamma_1_delta term corresponds to a subject-specific error value for a subject’s gamma_1, 
sampled from a mean-zero normal distribution with standard deviation equal to the standard error 
of the subject’s gamma_1.60 Together, beta_2 + beta_2_delta + gamma_1 + 
gamma_1_delta describe the treatment-independent subject-specific slope, i.e., the subject-
specific rate of cognitive decline. 

To inject a slope-altering (i.e., disease-modifying) effect for treated subjects, we add a 
treatment effect term, treated_status. This term indicates whether a given subject has been 
assigned to the treatment or control group. If the subject is treated, then treated_status is set 
to 1, and an amount beta_7 is added to the subject’s slope. The beta_7 term encodes a slope-
altering treatment effect as a user-defined percent reduction in the cohort-level rate of CDRSBΔbl 
increase, i.e., a percent reduction in beta_2. In our example, this user-defined percent reduction 
is set to 25%, as in the EMERGE and ENGAGE SAPs’ power analysis. 

The beta_7_delta term corresponds to a subject-specific shift in the cohort-level 
treatment effect term. Shift values are sampled from a mean-zero normal distribution with a user-
defined standard deviation (here we arbitrarily set the standard deviation to 0.05 units). To better 
model between-subject differences in treatment effect, other distributions could be used, including 
ones conditional on a subject’s clinical and/or biological characteristics at baseline and known 
decline trajectories. 

Finally, the error term corresponds to an observation-specific error value for the 
calculated endpoint. Values for this term are sampled from a mean-zero normal distribution with 
standard deviation equal to that of the residuals in the Stage 2 model.  
 
3.4.3. Synthesize new subjects and randomize them to treated and control groups 
 

With the above parameters defined, we sample with replacement the trial-matched 
subjects’ baseline data, where each sample is paired with its corresponding subject-specific 
trajectory parameters, i.e., the gamma_1 values with their standard errors. This resampling process 
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is constrained to preserve the distribution of AD stage at baseline in EMERGE and ENGAGE, i.e., 
4:1 MCI to mild AD dementia.  

For each resampled subject, we jitter the baseline median-centred CDRSB and MMSE 
scores by adding to each score a randomly sampled value corresponding to measurement error 
defined as a single step under a clinically significant score change (hence the _jit label on 
CDRSB_bl_mc_jit and MMSE_bl_mc_jit). For both CDRSB and MMSE, subclinical error in 
this context has a magnitude of at most 0.5.61 We sample a jitter value from a vector containing 
values –0.5, 0, and 0.5, then add the sampled value to the corresponding CDRSB_bl_mc or 
MMSE_bl_mc score. Each value has equal probability of being sampled, and values are sampled 
separately for CDRSB and MMSE. As a result, approximately 33% of subjects will not have 
CDRSB or MMSE jittered, and approximately 11% of subjects will have neither score jittered. 
Each subject will nonetheless have a unique cognitive decline trajectory because of subject-
specific gamma_1_delta term and, in treated subjects, the beta_7_delta term.  

Resampling and jittering each real subject’s baseline data in this way allows us to increase 
the sample size of our simulated trial beyond that available in the trial-matched dataset. This 
approach preserves the cohort-level trajectory statistics while providing synthetic subjects.  

Next, we randomize our subjects 1:1 to treated and control groups by randomly setting the 
value of each subject’s treated_status variable to 0 or 1.  

 
3.4.4. Calculate endpoint values at each observation time using the data-generating equation 

 
Finally, we input each synthetic subject’s baseline data, Year_jit vector, and other 

cohort- and subject-level parameters into the data-generating equation. We then calculate a 
diff_bl_CDRSB_simu score at each observation time for each synthetic subject. We restrict 
these scores to the range –18 to +18 (the range of real-world CDRSBΔbl scores).62 We also round 
simulated scores to the nearest 0.5 decimal value (e.g., simulated scores 2.3 and 2.7 are rounded 
to 2.0 and 3.0, respectively).62 To encode dropout over time, at each analysis visit all subsequent 
observations are deleted for approximately 11.2% of subjects. By deleting these future 
observations, only 70% of subjects complete the trial, signifying 30% dropout by the final analysis 
visit. The process described here and above simulates a single clinical trial and is illustrated in 
Figure 3. 
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Figure 3. An illustration of how a single clinical trial is simulated. A) Each panel shows a real-
world CDRSBΔbl trajectory for a real ADNI subject together with the trajectories of synthetic 
subjects that are derived from the panel’s corresponding real trajectory. Panel titles indicate the 
real-world subjects’ anonymized ADNI identification numbers. To generate the synthetic 
trajectories, baseline data from the corresponding real subject are sampled with replacement then 
jittered before being input to the data-generating equation. Synthetic CDRSBΔbl scores are 
generated at each jittered observation time and are rounded to the nearest 0.5 decimal value. Black 
lines and triangles indicate trajectories of real subjects selected from ADNI. Coloured lines and 
dots indicate trajectories of simulated subjects. Purple indicates a treated subject and green a 
control. B) Trajectories of simulated treated and control subjects (here, 535 per group) are pooled 
into one dataset as a simulated clinical trial. Analysis visits occur at baseline, Week 26, Week 50, 
and Week 78. Each analysis visit after baseline occurs within a visit window, illustrated in B as 
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approximately ±10 weeks to highlight observation clustering around each analysis visit. Note that 
visit windows are ±13 weeks in the Section 3.6 EMERGE and ENGAGE simulation Experiments, 
as in the real-world trials. Respectively, the purple line and the green line represent the group-level 
trajectories of treated and control groups. These group-level trajectories diverge over the duration 
of the trial because of the injected disease-modifying treatment effect: a 25% reduction in the rate 
of CDRSBΔbl increase for treated subjects vs. controls. By the end of the trial, the treated group 
has a lower average CDRSBΔbl compared to controls, indicating less cognitive impairment. Note 
that synthetic CDRSBΔbl scores at baseline are distributed around zero because of the observation-
level error term, the fixed effect coefficient error terms, and baseline data jittering in the data-
generating equation.  

 
3.4.5. Simulate 10,000 clinical trials 
 
 We now simulate 10,000 trials by repeating the procedures in Sections 3.4.3 and 3.4.4 
10,000 times. Each simulation will contain a different set of cognitive decline trajectories because 
of the unique sampling of subjects, and the jitter, _delta and error term values input to the data-
generating equation. However, the total number of subjects at baseline and the distribution of 
subjects’ AD stage at baseline (4:1 MCI to mild AD dementia) remains the same between 
simulations, as do all beta_i.  The trial’s number of analysis visits, the visit spacing and window, 
and the dropout rate also remain the same. Our set of 10,000 simulated trials here is analogous to 
running 10,000 real-world clinical trials with the same design, where each trial has a different 
sampling of subject-level decline trajectories drawn from the trial’s target population. We can then 
calculate statistics across these simulated trials, including power.43,63 
 
3.5. Stage 4: Calculate power 

 
In each of the 10,000 simulated trials, we fit a linear mixed effect model across the 

simulated observations to estimate the cohort-level treatment effect size. In this model, the 
simulation-specific treatment effect size is the coefficient of the model’s 
treated_status:Year term, which signifies the group difference in slope for treated subjects 
vs. controls. This linear model has the same structure as the data-generating equation and is fit to 
the simulated trial data using restricted maximum likelihood using lmer in package lme4 in R: 
simModel <- lmer(diff_bl_CDRSB_simu ~ 0 +  
  CDRSB_bl_mc +  
  Year +  
  MMSE_bl_mc +  
  APOE4_status +  
  Admeds_status +  
  CDRSB_bl_mc:Year +  
  treated_status:Year +  
  (0 + Year | subj_id),  
data = simData) 

 
We define “power” as the proportion of the 10,000 simulations where a statistically 

significant treatment effect size was detected with a two-sided α under 0.05 using the above model. 
Statistical significance is indicated if the 95% confidence interval on the treated_status:Year 
coefficient excludes zero. The interval was defined as ±2 standard errors on the coefficient, 
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following recommendations in Gelman and Hill.64 In our example trial with the parameters 
specified in Section 3.4.1, we obtain a statistically significant estimate for our treatment effect in 
7,185 out of 10,000 simulations, signifying 71.85% power.  

By calculating power for a range of sample sizes (i.e., by repeating Stages 3 and 4 using a 
range of values for the total number of subjects), we can generate a power curve that lets us 
determine the number of subjects needed to detect our 25% treatment effect at a given power and 
significance level. Note that uncertainty intervals can be calculated around the estimated required 
sample size by obtaining additional samplings, for example by repeating Stage 3 multiple times 
with the same trial sampling parameters and significance level. 

Our output number of subjects recommendation is analogous to the t-test power analysis 
sample size recommendation. However, our approach is more versatile because we can evaluate 
power for parameters other than number of subjects, such as number of analysis visits, visit spacing 
and windowing, dropout rate, and others. 

Figure 4A shows power curves for a range of sample sizes and treatment effects in 
simulated trials similar to EMERGE and ENGAGE. Experiment results are also labelled in Figure 
4A and are discussed in Results (Section 4). 

Figure 4B shows a visualization of a 3D “power surface,” which in this case displays power 
results for different combinations of sample sizes and number of analysis visits. This power surface 
suggests that 90% power may be achievable in a trial design with 3 visits and approximately 2,300 
subjects, or in a trial with 4 visits with approximately 1,800 subjects. Ignoring subject dropout, the 
first design requires 300 fewer subject-level observations total compared to the second design. 
Reducing the number of observations could reduce logistical and data processing burdens and 
could shorten a trial’s duration, thus reducing costs and accelerating treatment development.  

The power surface in Figure 4B is essentially the same as the “iso-power contour” proposed 
by Baker et al.65 To introduce the iso-power contour, Baker et al. calculated power in several 
experimental paradigms and data acquisition modalities (e.g., reaction times, functional MRI, 
electroencephalography) in psychology and human neuroscience. In each experiment, the authors 
used different combinations of numbers of subjects and observations per subject. Their study 
concluded that the number of observations had a significant effect on power in all the studied 
experimental paradigms.  

Expanding on the concept of iso-power contours, we propose the n-dimensional power 
surface, which could indicate power for different combinations of any n – 1 trial parameters, for 
example: different sample sizes, numbers of analysis visits, visit spacings, anticipated dropout 
rates, cohort- and subject-level treatment effects, analysis visit windows, measurement error, 
analysis model specifications, and more. Trial designers could then use numerical optimization to 
identify combinations of trial parameters that complement a trial’s objectives, power targets, and 
time/economic constraints. We now outline the experiments that target our present study’s Primary 
Objectives 2 and 3.  
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Figure 4. A) Power for simulated trials with the EMERGE and ENGAGE SAP analysis visit 
scheme but estimated for different treatment effects and numbers of subjects at baseline (combined 
total for treatment and control groups). Number of subjects ranges from 900 to 2,400 in 100 subject 
increments. Colours indicate treatment effect, from 20% to 30% in 1% increments, as the cohort-
level percent reduction in the rate of CDRSBΔbl increase for treated subjects vs. controls. Power 
increases with sample size and treatment effect. Labels indicate results for the Experiments 
(described in Section 4.1). Note that the curves are not perfectly smooth because each point 
indicates power calculated within a finite set of 1,500 simulations. B) A 3D visualization of a 
power surface for simulated trials with the same 25% treatment effect, but different combinations 
of numbers of subjects and numbers of equally spaced analysis visits. The surface is not perfectly 
smooth because each point indicates power calculated within a set of 150 simulations. Power tends 
to increase with sample size and number of visits. Number of subjects ranges from 900 to 2,400 in 
100 subject increments. Number of analysis visits ranges from 2 to 11 in 1 visit increments. 
Different combinations of sample size and number of visits may yield similar power. Higher 
dimensional power surfaces are possible with combinations of more than two trial parameters.  

 
3.6. Experiments 

 
Each Experiment is presented as a power analysis question. To complete Primary 

Objectives 2 and 3, we analyze power in 10,000 simulated trials per Experiment using the Phase 
3 aducanumab trial-matched dataset, trajectory model, trial simulation, and power analysis 
procedure described above. The Experiment questions and the simulated results are presented in 
Section 4.1 below.  

To complete our Supplementary Objectives, we used our four-stage procedure to answer a 
power analysis question about the Phase 3 lecanemab trial Clarity AD in one Experiment with 
10,000 simulations of the trial. Lecanemab is a human monoclonal antibody designed to attack 
soluble amyloid-beta protofibrils in the early-stage AD brain, potentially slowing future cognitive 
decline.46 Clarity AD detected a statistically significant 27% slowing of cognitive decline in 
subjects treated with lecanemab compared to placebo.46 See Supplementary analyses (Section 7) 
for a detailed description of our power analysis procedure applied here. The Experiment question 
and results are presented in Section 4.2 below. 
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4. Results 
 
4.1. Power analysis results for the Phase 3 aducanumab trials EMERGE and ENGAGE 
 

In Experiment 1 we ask: How many subjects per group are required to have 90% power at 
a two-sided α = 0.05 to detect a 25% reduction in the rate of CDRSBΔbl increase? Here our 10,000 
simulations indicate that approximately 875 subjects per treatment group are needed (combined 
total = 1,750 subjects). This number is 340 subjects per group more than the 535 subjects per group 
recommended by the t-test power analysis at this power and two-sided α level in the EMERGE 
and ENGAGE SAPs. This result is labelled in Figure 4A as “Experiment 1.” 

In Experiment 2 we ask: What is the power at a two-sided α = 0.05 to detect a 25% 
treatment effect if the trial has 535 subjects per group (combined total = 1,070 subjects), as 
recommended by the EMERGE and ENGAGE SAPs’ power analysis? We obtained a statistically 
significant estimate for this treatment effect in 7,185 out of 10,000 simulations, signifying 71.85% 
power. This power value is 18.15% lower than the 90% power at a two-sided α = 0.05 implied in 
the SAPs. This result is labelled in Figure 4A as “Experiment 2.” 

In Experiment 3 we ask: How many subjects per group are required to have 90% power at 
a two-sided α = 0.05 to detect a 22% treatment effect, the same effect that was measured as the 
statistically significant treatment effect in the EMERGE high dose group?2 Our 10,000 simulations 
show that approximately 1,165 subjects per group are required (combined total = 2,330 subjects). 
This number is 630 more subjects per group than the 535 that were recommended by the SAP 
power analysis. Also, our simulation-recommended number of subjects per group here is at least 
617 more than were included in the real-world EMERGE high dose and placebo groups at baseline 
(547 and 548 subjects, respectively).2 This result is labelled in Figure 4A as “Experiment 3.” 
 
4.2. Power analysis results for the Phase 3 lecanemab trial Clarity AD 

 
In Experiment S1 we ask: How many subjects per group are required to have 90% power 

at a two-sided α = 0.05 to detect a 25% reduction in the rate of CDRSBΔbl increase? This 25% 
reduction is the anticipated treatment effect used in the real Clarity AD sample size calculation.46 
Our 10,000 simulations show that approximately 890 subjects per treatment group are required 
(combined total = 1,780 subjects). 890 subjects is 107 more than the 783 subjects per group 
(combined total = 1,566 subjects) recommended by the trial’s original t-test power analysis at this 
power and two-sided significance level.46 This result is labelled in Figure S1 (see Section 7 for 
Supplementary analyses) as “Experiment S1” on a 25% treatment effect power curve. However, 
in the real-world trial the target sample size was increased by 200 subjects to account for subjects 
missing doses due to the Covid-19 pandemic.46 This increase brought the new total sample size 
target to 1,766 subjects. The final total number of subjects who underwent randomization in the 
trial was 1,795 (898 and 897 subjects to the lecanemab and placebo groups, respectively), which 
is 15 subjects more than our estimated total number of subjects required to reach 90% power.  
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5. Discussion 
 
5.1.  Discussion of power results for EMERGE and ENGAGE 
 

In our power analysis of trials similar to EMERGE and ENGAGE, results show that power 
increases with number of subjects and treatment effect. Our inclusion of realistic inter-subject 
variability in AD-related progression trajectories of cognitive decline attempts to account for 
aleatoric uncertainty. This variability increases sample size recommendations beyond those in the 
published SAPs. 

The SAPs’ power analysis may also have used an overestimated anticipated endpoint mean 
difference value without adequately considering uncertainty. The statistically significant 
difference in mean CDRSBΔbl between treatment groups measured in EMERGE was 0.39.2 This 
value is 0.11 units less than the SAPs’ anticipated difference in means value of 0.5 CDRSBΔbl 
points, which we also used in our Section 1.1 t-test power analysis example. The real-world trials 
also increased their target sample size from 450 to 535 subjects per group based on an interim 
analysis of available trial data. However, our Experiments’ 1 and 2 results suggests that 535 
subjects per group was still insufficient to reach 90% power. The t-test power analysis assumption 
that the measured effect size will be greater than or equal to that anticipated did not hold in the 
Phase 3 aducanumab trial data. The SAPs’ power analysis did not account for endpoint mean 
difference uncertainty and could not consider the impact of inter-subject variability on sample size 
recommendations. It is therefore possible that the SAP power analyses recommended sample sizes 
that were too small to detect both the anticipated and measured treatment effect sizes at 90% power 
at a two-sided α = 0.05. Insufficient sampling during the trial recruitment stage could partly explain 
the detection of a statistically significant effect for aducanumab being detected only in EMERGE.  
 
5.2. Discussion of power results for Clarity AD in the context of EMERGE and ENGAGE 
 

Our Experiment S1 result suggests that the Phase 3 lecanemab trial Clarity AD was 
adequately powered. Furthermore, our result suggests that this trial required a total number of 
subjects that was approximately 30 subjects more than our estimated number for the Phase 3 
aducanumab trials to detect the same cohort-level 25% treatment effect at 90% power. This 
relatively small difference in our estimated required sample sizes for these trials could partly be 
explained by differences between the design of Clarity AD and the identically designed EMERGE 
and ENGAGE. For example, the Clarity AD inclusion criteria identified subjects with memory 
impairment specifically in addition to global cognitive impairment,40 while EMERGE and 
ENGAGE focused on global cognitive impairment.38,39 The proportions of AD-related MCI and 
mild AD dementia subjects and the age range of subjects also differed between the described 
lecanemab and aducanumab trials. Also, EMERGE and ENGAGE had 4 analysis visits and 
anticipated an overall 30% dropout. Clarity AD had 7 visits and anticipated a dropout of 20%. 
These cohort and design differences are factored into our simulated trials and our power analysis 
results. The combined effect on power of different trial design and cohort characteristics for Clarity 
AD compared to EMERGE and ENGAGE could partly explain our larger estimated number of 
subjects required for Clarity AD to detect our simulated 25% treatment effect.  
 
 
 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 27, 2022. ; https://doi.org/10.1101/2022.12.24.22283807doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.24.22283807


 18 

5.3. Contributions, limitations, and future work 
 
We have proposed a novel power analysis framework that uses disease progression 

modeling and data from real-world subjects to simulate clinical trials in AD using a cognitive test 
score as an endpoint. We showcased the procedure by analyzing power in two recent large-scale 
clinical trials in AD. By using efficient coding practices and parallel computing, each set of 10,000 
simulations finished in under 18 minutes on a 2020 quad-core Intel i7 13” MacBook Pro.  

We describe our method as a four-stage procedure to facilitate the generalizability to 
different trajectory modeling approaches, different clinical or biological endpoints in different 
trials or trial phases, or potentially to datasets on other progressive diseases such as amyotrophic 
lateral sclerosis, multiple sclerosis, cancers, and more. We use an easily implementable data 
augmentation technique to synthesize data and increase the number of subjects available for 
simulation. By allowing different model specifications and assumptions in principle, our 
framework has the potential to account for epistemic uncertainty. For example, in trials like Clarity 
AD we can analyze power to detect the time to clinically significant cognitive decline on the global 
Clinical Dementia Rating scale.46 Future implementations can use a joint modeling approach, for 
example to analyze power for endpoints on the progression of tau PET ligand uptake and cognitive 
decline simultaneously in future trials of potentially tau tangle-clearing treatments.  

Our framework can also evaluate a trial’s potential Type 1 error rate by setting the 
treatment effect to zero, similar to the method proposed by Jutten et al.43 To the best of our 
knowledge, no power analysis approach is adapted to generate Type 1 and Type 2 error estimates 
while also factoring in aleatoric and epistemic uncertainty, and the impact of different 
combinations of tunable trial parameters. Our power surface and supplementary analysis results 
suggests that the number of analysis visits may affect trial power. Future work should also evaluate 
the sensitivity of power to different trial inclusion criteria and the use of different trial-matched 
datasets within the same disease (e.g., from the CPAD clinical trials in AD database).33 Compared 
to t-tests power analysis methods currently in use, our procedure could help to more accurately 
evaluate the impact on power of clinical trial enrichment tools such as those predicting disease 
progression.17 Results of our analyses suggest that trials may need to increase sample sizes to be 
adequately powered, which would increase trial costs. In response, the demand for trial enrichment 
tools might increase because these tools could help reduce sample sizes while preserving or 
enhancing trial power.17 

We generalize the proportional sampling approach proposed by Chen et al.41 to AD staging, 
preserving proportions at the level of individual simulated trials. Given enough real-world data, 
proportional sampling could feasibly be extended to biometrics and finer demographic categories 
such as sex and race. The time is right for our technique, given the wealth of data currently 
available from diverse, large-scale population neuroscience and aging studies such as the UK 
Biobank66 and many others. 

However, the current implementation of our framework is not without limitations. First, by 
not considering a placebo effect, our examples essentially compare the effects of aducanumab and 
lecanemab against the effect of the different types of care received by individuals in ADNI. Also, 
the demographic profile in ADNI is not as heterogeneous as that in the Phase 3 aducanumab or 
lecanemab trials. ADNI contains data on mostly white, well-educated men, and data collection 
took place only in the United States and Canada. Data for Clarity AD, EMERGE, and ENGAGE 
were collected at many different sites with diverse subject pools across North America, Europe, 
and Asia. Our simulations did not factor in regional differences between subjects and thus may 
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have underestimated true variability. Future implementations in AD should use datasets such as 
CPAD, where data on placebo-controlled trials in diverse cohorts can be used to factor in the 
impact of placebo and possibly geographical region on subject-level trajectories.32,33  

Another key limitation is that a trial’s endpoint and inclusion criteria metrics may not be 
available in existing longitudinal datasets. While future data collection efforts may consider the 
role datasets could play in clinical trial design, existing data harmonization-imputation methods 
could be used to impute absent metrics.67 

Our linear modeling approach may not fully capture the shape of cohort- and subject-level 
AD progression, which likely impacts power results. However, our approach is describing a best-
case scenario for a trial: the model equation that contains the treatment effect matches the equation 
used to generate the data. Low power in this scenario likely warrants increased sample sizes. Future 
work will use non-linear modeling approaches and compare the impact on power estimates 
between model specifications.  

Other modeling frameworks such as group-based trajectory modeling may be suitable for 
capturing distinct trajectory subgroups around a cohort average trend while simultaneously 
enabling estimation of subject-level trajectories around the subgroup averages.68 Future work 
should incorporate categorical time mixed models of repeated measures (MMRMs) in the power 
analysis step to better match the types of analyses done in real-world clinical trials.69 MMRMs 
make no assumptions about the endpoint trajectory shape and were used to analyze data in the 
Phase 3 aducanumab and lecanemab trials. However, by using a continuous time model to estimate 
the impact of aducanumab on rate of decline in treated subjects, we more closely replicate the 
aducanumab slope analysis model. To the best of our knowledge, the Phase 3 trials of aducanumab 
and lecanemab did not report results from any slope analyses. Moreover, in studying disease-
modifying treatments for AD or other progressive diseases, we are arguably most interested in a 
treatment’s impact on the rate of disease progression (measured by a slope model), not a binary 
effect separating treatments groups at a trial’s final observation. 

 
6. Conclusion 
 

We have described the four stages of our power analysis procedure, presented example 
applications in trials like the recent Phase 3 aducanumab and lecanemab trials, and compared the 
results of our analyses to the analysis plans and results of these trials. As our approach explicitly 
accounts for the cognitive decline variability that implicitly affects treatment effect size and trial 
power, our simulations show that the number of subjects in the Phase 3 aducanumab trials’ SAPs 
and the number included in the real trials may have been insufficient to give 90% power to detect 
both the anticipated and measured treatment effect sizes. The sample size referenced here is the 
one recommended by the EMERGE and ENGAGE power analysis, not the sample size that 
remained after the EMERGE and ENGAGE futility declaration.3 The futility declaration may have 
further reduced a sample size that was already too small when the trials began.  

In the Phase 3 lecanemab trial Clarity AD, the original sample size recommended by the t-
test power analysis may have been insufficient to ensure 90% power. However, the increased 
sample size used in the real-world trial may have been sufficient. Our analysis of Clarity AD also 
suggests that trial power may be affected by the number of analysis visits and the characteristics 
of subgroups within a cohort. 

Our procedure addresses the limitations of commonly used t-test power analysis 
techniques. This contribution has implications for improving sample size calculations in clinical 
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trials in AD and potentially in other progressive diseases. By presenting our approach as a four-
stage procedure, we hope to facilitate the generalizability to future clinical trials in AD and other 
disorders.  
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7. Supplementary analyses 
 
7.1. Our four-stage power analysis procedure applied to the Phase 3 lecanemab trial Clarity AD 
 

Here we used our four-stage procedure to simulate the Phase 3 lecanemab trial Clarity AD 
(NCT03887455)40 in an Experiment that answers one power analysis question (defined in Section 
4.2). The steps we took within each stage are described below. 

Stage 1: First we identified the relevant design and power analysis parameters specified in 
the published Clarity AD results paper.46 CDRSBΔbl was the trial’s endpoint, the anticipated 
treatment effect was a 25% slowing of CDRSBΔbl increase for treated subjects vs. placebo, and 
the desired power was 90% at a two-sided α = 0.05. The trial had a ratio of approximately 3:2 for 
MCI to mild AD dementia subjects randomized 1:1 to lecanemab and placebo groups. There were 
7 analysis visits spaced approximately 13 weeks apart, and 20% overall dropout anticipated.  

Stage 2: Here we obtained a continuous-time linear mixed effect model tracking 
CDRSBΔbl trajectories in real-world data from ADNI subjects who fit Clarity AD inclusion 
criteria at baseline. Inclusion criteria are listed on ClinicalTrials.gov.40 The model here is a 
continuous-time analogue of the mixed model for repeated measures with categorical-time used in 
the real trial.46 The outcome variable is CDRSBΔbl. The fixed effects are median-centred baseline 
CDRSB scores, years from baseline, a clinical subgroup indicator (= 0 for MCI or = 1 for mild AD 
dementia), APOE4 status (carrier or not), symptomatic AD medication use at baseline (yes or no), 
and an interaction term for median-centred baseline CDRSB with years from baseline. Random 
effects by subject are defined for years from baseline.  

Stage 3: In this stage we generated a set of 1,500 simulated trials having the Clarity AD 
analysis visit scheme. Each simulation had the same 25% treatment effect and the same sample 
size at baseline = 900 subjects total (treated and control groups combined). 

Stage 4: Within this set of simulations, we calculated the power to detect the 25% treatment 
effect. 

Repeat Stages 3 and 4 to generate Figure S1: We repeated Stages 3 and 4 for 13 more sets 
of 1,500 simulated trials, but with the baseline sample size changing between sets of simulations. 
Sample sizes went from 1,050 to 2,850 subjects in increments of 150 subjects. From the resulting 
curve plotted in Figure S1, we determined that 90% power would be reached with approximately 
1,780 subjects (result labelled “Experiment S1” in Figure S1). 

Repeat Stages 3 and 4 to verify the sample size result: To evaluate and verify the estimated 
sample size value from Figure S1, we repeated Stages 3 and 4 using 10,000 simulations per set but 
across a narrower range of baseline sample sizes (e.g., changing from 1,760 to 1,800 subjects total 
in increments of 10 subjects). This process saved computation time and confirmed that 
approximately 1,780 subjects total are needed for the trial to reach 90% power. With 1,780 subjects 
total, we obtained a statistically significant estimate for our 25% treatment effect in 9,048 out of 
10,000 simulations, indicating 90.48% power. Future implementations will use more powerful 
computer hardware to quickly generate power curves like that in Figure S1 but using 10,000 
simulations per simulation set with finer increments of number of subjects between simulation 
sets. 
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Figure S1.  Power for simulated trials with the Clarity AD analysis visit scheme, estimated across 
a range of baseline sample sizes (total number of subjects for treated and control groups combined). 
Number of subjects goes from 900 to 2,850 in 150 subject increments. Each simulated trial had 
the same 25% treatment effect, defined as the cohort-level percent reduction in the rate of 
CDRSBΔbl increase for treated subjects vs. controls. Note that the curve is not perfectly smooth 
because each point indicates power calculated within a finite set of 1,500 simulations. Power 
increases with sample size. The “Experiment S1” label indicates the result for that experiment 
(described in Section 4.2), where approximately 1,780 subjects total (890 per treatment group) are 
required for the trial to reach 90% power with a two-sided α = 0.05. 
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