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Abstract7

The devastation caused by the coronavirus pandemic makes it imperative to design8

automated techniques for a fast and accurate detection. We propose a novel non-9

invasive tool, using deep learning and imaging, for delineating COVID-19 infection in10

lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC),11

employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and pre-12

cision in outlining infected regions along with assessment of severity. The Attention13

module combines contextual with local information, at multiple scales, for accurate14

segmentation. Ensemble learning integrates heterogeneity of decision through different15

base classifiers. The superiority of EAMC, even with severe class imbalance, is es-16

tablished through comparison with existing state-of-the-art learning models over four17

publicly-available COVID-19 datasets. The results are suggestive of the relevance of18

deep learning in providing assistive intelligence to medical practitioners, when they19

are overburdened with patients as in pandemics. Its clinical significance lies in its un-20

precedented scope in providing low-cost decision-making for patients lacking specialized21

healthcare at remote locations.22

Keywords— Ensembling, Deep learning, COVID-19 segmentation, Class imbal-23

ance, Multi-scaling24

1 Introduction25

The recent pandemic, called the novel coronavirus-disease-2019 (COVID-19), has been26

a major threat to world-health [29]; with medical systems collapsing around the globe.27

It resulted in an increasing demand for health services, encompassing finite components28

like beds, critical medical equipment, and healthcare workers (who also get regularly29

infected). Even the year 2022 has seen proliferation of newer strains of the virus30

affecting humankind. Some of the major COVID-19 complications, in case of serious31

level of infection, include acute respiratory distress syndrome (ARDS), pneumonia,32

multi-organ failure, septic-shock, and even death. Serious illness is more likely to33
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result in people with existing co-morbidities. Often there exist long term side-effects34

in post-COVID patients.35

An early detection, diagnosis, isolation and prognosis, play a major role in con-36

trolling the spread of the disease. Computed tomography (CT) and X-rays are the37

commonly used imaging techniques for the lung. The CT scan uses X-rays to produce38

a 3D view comprising cross-sectional slices, for detecting existing anomalies. Occur-39

rence of false negatives in the “gold standard” RT-PCR test results often lead to the40

chest CT scans being an useful supplement in projecting typical infection characteris-41

tics – like Ground-Glass Opacity (GGO) and/or mixed consolidations. It was reported42

[12] that Lung CT images are more sensitive (98%), as compared to RT-PCR (71%),43

in correctly predicting COVID-19.44

Doctors reported difference in CT abnormalities related to COVID-19 patients in45

multiple studies [10, 17]. It was observed, even at early stages, that viral infections were46

indicated by clear patterns [5, 10]. In Ref. [17] the researchers assessed the effectiveness47

of chest CT in the diagnosis and treatment of COVID-19. The CT characteristics of48

COVID-19 were presented and compared with the manifestations of other viruses.49

Abnormalities in CT may occur [10] before the appearance of clinical symptoms.50

Multifocal, unilateral, and peripherally based GGO are examples of classic patterns,51

which are also observed in symptomatic cases. Abnormalities like inter-lobular septal52

thickening, thickening of the surrounding pleura, round cystic alterations, nodules,53

pleural effusion, bronchiectasis, and lymphadenopathy were infrequently detected in54

the asymptomatic group.55

Manually detecting COVID-affected regions from lung CT scans is time consuming56

and prone to inherent human bias. Thus automated or semi-automated Computer-57

Aided-Diagnosis (CAD) becomes necessary [4, 24]. An accurate, automated detection58

and delineation of the COVID-19 infection is of great importance since this results in59

an effective monitoring of its spread within the lungs. This helps in predicting the60

severity of the infection, as well as its prognosis.61

Smart machines can imitate the human brain to some extent. Everything that62

makes a machine smarter falls under the umbrella called Artificial Intelligence (AI).63

Machine Learning (ML), which is a subset of AI, consists of a collection of algorithms64

and tools which enable a machine to understand patterns within the data without being65

explicitly programmed. ML uses this underlying structure to perform logical reasoning66

for a task. Deep Learning (DL), again, is a sub-domain of ML [14]. It aids a machine67

in learning hidden patterns within the data without any expert intervention, to make68

predictions – given high computational power and a massive volume of annotated data.69

A convolution neural network (CNN), which is a DL model, has been shown to perform70

effectively in analyzing visual images. A CNN model, which was designed to recognize71

objects in natural-images from the ImageNet Large-Scale Visual Recognition Challenge72

(ILSVRC), was found to be comparable in efficiency to humans [16].73

The U -Net [27] is an encoder-decoder type of CNN architecture, designed for the74

segmentation of biomedical images in a fast and precise manner. The encoder arm75

causes the spatial dimension to be decreased, while increasing the number of channels.76

In contrast, the decoder arm decreases the channels while raising the spatial dimen-77

sions. Introduction of attention gates (AGs) [23] in the U -Net framework, help reduce78

the feature responses in irrelevant background regions, while providing more weight to79

region of interest (ROI). The network is guided towards learning only the relevant infor-80

mation in terms of the weighted local features. Incorporating dilated convolutions [13]81

allows feature extraction at multiple scales.82

Multi-scalar approaches, which observe and evaluate a dataset at several scales,83

are popular in the machine learning domain. They capture the local geometry of84

neighbourhoods, which are characterised by a collection of distances between points or85

groups of closest neighbours. This is analogous to looking at a portion of a slide at86
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various microscopic resolutions; whereby, very small features can be detected at high87

resolution from a restricted region of the sample. As the majority portion of the slide88

is examined at a lower resolution, it allows one to examine the larger (global) features89

as well. Multi-scalar methods have been found to perform better than state-of-the-art90

techniques, with reduced sample sizes, in the medical domain [32].91

An ensemble-based classifier system is designed by merging multiple diverse classi-92

fier models. Ensembling makes statistical sense in a number of situations. We regularly93

employ such an approach in our daily lives while seeking the advice of various experts94

prior to taking a major decision. For instance, we frequently seek the advice of numer-95

ous doctors before consenting to a medical procedure. The main objective is to reduce96

the regrettable choice of a needless medical procedure. The experts must differ from97

one another in some way for this mechanism to be successful. Individual classifiers, due98

to their inherent diversity, can produce various decision limits within the context of99

classification. This is commonly achieved by employing distinct training setup for each100

classifier. If adequate diversity is established, each classifier will commit a separate101

error, which may then be strategically combined to lower the overall error [25].102

Advantage of ensemble learning lies in its inherent diversity. This can be introduced103

by embedding different training datasets, or features, or classifiers; or even differing ini-104

tialization and/or parameters of the classifier(s) involved. According to Dietterich [9]105

there are three main justifications for employing an ensemble-based system, viz. sta-106

tistical, computational, and representational. The computational criterion refers to107

the model selection problem. The statistical cause is connected to the insufficiency108

of available data to accurately represent a distribution. The representational cause109

addresses situations where the selected model is unable to accurately represent the110

desired decision boundary.111

Numerous studies have been reported in recent times in the domain of COVID-19,112

using neural networks and data-driven algorithms. These include machine learning ap-113

proaches for diagnosis of COVID-19 from X-Ray/ CT images [22, 26, 35]. A pre-trained114

deep-learning model, called DenseNet, was developed [35] for classifying 121 CT-images115

into COVID-19 positive and negative categories. Application of the ResNet-18 was116

made [37] to segment and classify lung-lesions of COVID-19, pneumonia infection, and117

normal ones.118

A deep learning based AI system was designed [41] to detect and quantify lesions119

from chest CT. It can remove scan-level bias to extract precise radiomic features. The120

Unified CT-COVID AI Diagnostic Initiative (UCADI) [3] enables independent training121

at each host institution, under a combined learning framework, without data sharing.122

This was shown to outperform the local models, thereby advancing the prospects of123

utilizing combined learning for privacy-preserving AI in digital health.124

Deep learning has been employed for evaluating the severity of COVID-19 infec-125

tion [36]. Well-known deep models, like U -Net [27], Residual U -Net [39], Attention126

U -Net [23], have been used for screening COVID-19. There exist ensemble methods127

for segmentation of CT images [7, 11]. The Inception-V3, Xception, InceptionResNet-128

V2 and DenseNet-121 were ensembled [11] for a multiclass segmentation of GGO and129

Consolidation in COVID-19 CT data over the data CT-Seg (Table 1). Each of these130

models used the CNN as backbone, with pre-trained weights from ImageNet being131

further trained over the CT-Seg data. The split into training, validation and testing132

sets were 40, 10, 50 images, respectively, with pixel-level soft majority voting being133

employed for their aggregation.134

A cascade of two U -Nets, with VGG backbone, was ensembled [7] to extract the lung135

region, followed by the delineation of the GGO and consolidation regions. Multiclass136

segmentation of GGO and Consolidation was performed over CT-Seg, Seg-nr.2 and137

Kaggle-COVID-19 datasets (Table 1) along with some private dataset; while the train-138

ing data contained parts of CT-Seg and Seg-nr.2, the remaining parts of the datasets139
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were used for testing the model. The training process of each network in the ensemble140

differed due to random weight initialization, and data augmentation with shuffling.141

Domain Extension Transfer Learning (DETL) was employed [6] for the screening of142

COVID-19, with characteristic features being determined from chest X-Ray images. In143

order to get an idea about the COVID-19 detection transparency, the authors employed144

the concept of Gradient Class Activation Map (Grad-CAM) for detecting the regions145

where the model paid more attention during the classification. The results are claimed146

to be strongly correlated with clinical findings.147

Figure 1: Schematic representation of Ensembling with LOPO the Attention-based Multi-
scaled CNNs. (a) Leave-One-Patient-Out scheme LOPO. (b) Attention-based Multiscaled
view in AMC. (c) Ensembling of the AMC Models

2 Results148

We propose a novel Ensembled Attention-based Multi-scaled Convolution networks149

(EAMC), using LOPO learning, based on CT images of TEN patients and trained150

using TEN base-classifiers. As each classifier takes only nine samples (patients) for151

training, and starts from scratch, it does result in a completely new classifier with152

different set of parameters. The remaining ONE sample is left for validation in each153

case (as elaborated in Section 2.2). These TEN trained classifiers are ensembled to154

segment the COVID-infection region (ROI) through majority voting, over four different155

test datasets collected from various publicly available sources (Table 1). The workflow156

of the EAMC is visualized in Fig. 1.157

The objective of the model is to segment a COVID-19 infected CT lung image into158

its Regions of Interest (ROI) [i.e., GGO and Consolidation], and background (contain-159

ing all other regions in the image). This is not an easy task for a vanilla U -Net. There-160

fore, an AG is carefully incorporated to focus on the ROI, whereas the multi-scalar161

dilation provides the necessary local and neighbourhood information representation for162
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Figure 2: (a) The AMC-Net framework, with detailed representation of (b) of MS-block,
and (c) Attention Gate (AG)

delineating the ROI. Focal Loss (FL) [eqn. (3)] is used as the loss function to compen-163

sate for class imbalance. Finally we implement ensembling by LOPO for training with164

limited annotated data. The details about the training dataset are provided in Section165

5. Validation is successfully performed on unseen, independently-compiled data from166

multiple publicly-available data sources. The proposed EAMC of Fig. 1, using LOPO167

ensemble learning on AMC-Net of Fig. 2, demonstrates good generalization capability.168

It is efficient, accurate, consistent and robust on the unseen data. The architecture of169

AMC-Net is summarized in Tables 7-9.170

2.1 Data used171

Four datasets, with details as provided in Table 1, were used in this study. The Kaggle-172

COVID-19 data comprises 20 patient samples, of which ten (having at least 200 but173

not more than 301 slices) were kept for training. This was named as Kaggle-COVID-174

19:Part-1 dataset. The remaining ten samples, each containing < 200 or > 301 slices,175

were retained for testing. This was termed the Kaggle-COVID-19:Part-2 dataset. The176

data is available on the Kaggle platform1 in annotated form [19]. The other three177

datasets, of Table 1, were also clubbed together for testing. The unseen test datasets178

were thus used only for evaluating the generalization performance of EAMC.179
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Table 1: Breakup of Infected & Non-Infected samples and slices, in the training and test
datasets

Sr. Dataset Total patients
Infected
slices

Non-Infected
slices

Comment

1

Kaggle-COVID-19a:
Part-1

10 1351 1230 Training

Kaggle-COVID-19a:
Part-2

10 493 446 Testing

2 CT-Segb >40 100 0 Testing

3 Seg-nr.2b 9 372 457 Testing

4 MosMedd 47§ 761 1166 Testing

aKaggle-COVID-19:
https://www.kaggle.com/datasets/andrewmvd/covid19-ct-scans [19]
bCT-Seg & Seg-nr.2 (Two Datasets): http://medicalsegmentation.com/covid19/
cMosMed: https://mosmed.ai/en/ [21]
§Relevant 47 samples are used (actual available samples being 50).

Table 2: Description of Ensemble models, with DSC on corresponding validation sets

Model No. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Training P/{P10} P/{P9} P/{P8} P/{P7} P/{P6} P/{P5} P/{P4} P/{P3} P/{P2} P/{P1}

Validation P10 P9 P8 P7 P6 P5 P4 P3 P2 P1

DSC 0.8882 0.8952 0.8617 0.8814 0.8432 0.8867 0.8944 0.8821 0.8787 0.8615

where P = { Pi: i ∈ N ∧ i ∈ [1, 10] }

Mean validation DSC = 0.8773, with Standard deviation = 0.0158

2.2 Implementational details180

The ten classifier models considered areM1, M2, . . ., M10; with the validation datasets181

defined as P10, P9, . . ., P1, and described in Table 2. In each case, the rest of the182

corresponding patient’s dataset is used for training by the AMC-Net model of Fig. 2.183

For example, in case-1, M1 is trained with P1 to P9 patient datasets and validated184

on P10 patient dataset. Similarly in case-2, M2 is trained with P1 to P8 and P10185

patient datasets and validated on P9 patient dataset, and so on for all the models M3186

to M10. Each model, M1 to M10, is trained with different parameters, pertaining to187

initialization, learning rate, dropout probability, etc. The batch size was kept uniform188

at 16, using the Adam optimizer [15] over 70 epochs. Values of learning rate and189

dropout probability were set at 0.001 and 0.2, respectively, after several experiments.190

Run time augmentation (rotaion ± 10°; horizontal shift Range ± 0.2; vertical shift191

Range ± 0.2; zoom range ± 0.2) was employed during training.192

The implementation was made in the Tensorflow framework, running behind wrap-193

per library Keras using python version 3.6, Keras version 2.2.4, and Tensorflow-GPU194

version 1.13.1, with dedicated GPU (NVIDIA TESLA P6 having capacity of 16GB).195

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.22283793doi: medRxiv preprint 

https://www.kaggle.com/datasets/andrewmvd/covid19-ct-scans
http://medicalsegmentation.com/covid19/
https://mosmed.ai/en/
https://doi.org/10.1101/2022.12.21.22283793
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3: Sample learning curves, for Model M3, over training and validation sets; (a) loss:
FL, and (b) accuracy: DSC

2.3 Experimental outputs196

Sample learning curves, depicting loss [Focal Loss (FL) of eqn. (3)] and accuracy [Dice197

Score Coefficient (DSC) of eqn. (9)], are illustrated in Fig. 3. The validation set198

corresponding to each model, with the resultant (DSC), are presented in Table 2. The199

accuracy and robustness of output in each case is evident, showing an average DSC of200

0.8773 with a standard deviation (SD) of 0.0158 on the validation datasets.201

Next the explainability of the AMC-Net architecture was analysed. As evident202

from Fig. 4, each level of the encoder and decoder arms of the network architecture203

demonstrate extraction of meaningful features at different levels of abstraction. The204

abstraction level of the extracted features are dependent on the level of the Block.205

While some bright objects do get highlighted at the initial stages, as the Block depth206

increases the Attention and Multi-Scalar mechanisms of the AMC − Net assist in207

highlighting the ROIs (like, GGO and Consolidation) present in the CT patches and208

suppress the background.209

For example, after Block 1 there are some features highlighting healthy lung tis-210

sue (yellow box) in the figure. There are also relevant edges corresponding to lung211

parenchyma (orange box). As the Block level increases, the attention over the le-212

sion boundary (blue box) and lesion (green box) in Fig. 4 become more prominent.213

Eventually the final feature which prominently emerges is the lesion.214

2.4 Comparative study215

Using the AMC-Net as the base classifier, with ten classifiers M1 to M10 ensembled216

by LOPO, results were generated on the four test datasets, viz. Kaggle-COVID-19:217

Part2, CT-seg., Seg-nr.2, and MosMed (as described in Table 1 and Section 5) in terms218

of the performance metrics defined in eqns. (9)-(11).219

The comparative analysis of output generated by the EAMC, on different test sets,220

is presented in Fig. 5. In all cases the test slices were divided into non-overlapping221

patches (as elaborated in Section 5.1). The segmentation output is aggregated using222

majority voting.223

It is observed that all the metrics provided a consistently better performance over224

the MosMed data. This is perhaps because the average intensity of the CT scans in225

MosMed data is higher than that of the rest of the CT datasets used; thereby, providing226

1https://www.kaggle.com/datasets/andrewmvd/covid19-ct-scans
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Figure 4: Visualization of features extracted after each Block of the AMC-Net from Fig 2

a better contrast between the ROI and background. Moreover the Hounsfield range is227

not distorted here, such that there is less noise present.228

In order to explore the effectiveness of AMC-Net as the base classifier in EAMC, we229

also compared four state-of-the-art models like R2UNet [2], Inception Net [11], Xcep-230

tion Net [11], and DenseNet [11] (which have been extensively employed in COVID-19231

segmentation literature). Ensembling of classifiers, in each case, was by LOPO dur-232

ing training (involving same hyper-parameters). Testing was performed on the four233

datasets, as elaborated earlier. A comparative study of the evaluation metrics [eqns.234

(9)-(11)] is provided in Fig. 5. It is found that all the metrics resulted in higher values235
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for the ensembled AMC-Net, indicating a better generalization in segmentation over236

each test dataset.237

(a) Comparison over Kaggle Data

(b) Comparison over CT-Seg Data

Figure 5: Comparative performance evaluation of base classifiers, in the uniform framework
of ensembling with LOPO, over the test datasets (continued)
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(c) Comparison over Seg-nr.2 Data

(d) Comparison over MosMed Data

Figure 5: Comparative performance evaluation of base classifiers, in the uniform framework
of ensembling with LOPO, over the test datasets

Summarized below is the performance of our EAMC over the four test datasets238

under consideration.239

10
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• Kaggle-COVID-19: DSC 0.8840 ± 0.103, Precision 0.8072 ± 0.148, AUC 0.8562240

± 0.126, Sensitivity 0.8082 ± 0.145;241

• CT-Seg: DSC 0.7955 ± 0.107, Precision 0.7500 ± 0.121, AUC 0.8123 ± 0.099,242

Sensitivity 0.7431 ± 0.114;243

• Seg-nr.2: DSC 0.8431 ± 0.101, Precision 0.8089 ± 0.096, AUC 0.8613 ± 0.091,244

Sensitivity 0.7905 ± 0.125;245

• MosMed: DSC 0.9584 ± 0.014, Precision 0.8733 ± 0.112, AUC 0.9417 ± 0.056,246

Sensitivity 0.8514 ± 0.107.247

An investigation into related results on COVID-19 segmentation with deep net-248

works, as reported in literature [7, 8, 19, 28, 31, 34] using some of the same test249

datasets, led to interesting conclusions with respect to our EAMC. The Seg-nr.2 test250

set yielded DSC of 0.673 [19], 0.620 [28]. The model [28] employed generative adver-251

sarial network (GAN) with U -Net as backbone, and reported a Sensitivity of 0.672.252

Their results on the MosMed test set show DSC 0.584, with Sensitivity 0.768 . Us-253

ing the Kaggle-COVID-19 dataset the authors reported [34] DSC 0.7103, Sensitivity254

0.6860. Combination of the test sets Kaggle-COVID-19 and Seg-nr.2 was also reported.255

The authors in Ref. [8], using the R2UNet as backbone, obtained a DSC of 0.851.256

On the other hand, using the basic U -Net as backbone [7] attained DSC 0.80. The257

Medseg (combination of CT-Seg and Seg-nr.2) dataset resulted in DSC 0.77 [31]. This258

establishes the effectiveness of our EAMC, the ensembled classifier using AMC-Net,259

in terms of these compared performance metrics over all test datasets.260

2.5 Ablations261

The first set of experiments were performed by evaluating the role of each of the com-262

ponents in AMC-Net, viz. MS-block and AG, when used in EAMC. The traditional263

U -Net is thus the baseline, with Attention U -Net incorporating only the AG. The264

U -Net with only the MS-block is termed the MSU -Net. The AMC-Net is the U -Net265

with both AG and MS-block. All four models were trained using the same ensembled266

LOPO framework. Comparative results on the four test datasets of Table 1, evalu-267

ated in terms of the performance metrics of eqns. (9)-(11), and Area Under the ROC268

Curve (AUC), are presented in Fig. 6. Here It is observed that the proposed AMC-269

Net performs the best, over all the metrics in all test datasets, as compared to the270

rest (lacking one or more of its modules). This helps justify the effectiveness of the271

proposed EAMC, which ensembles with LOPO a set of AMC-Net models.272

The second task was to explore the effect of the different loss functions of eqns.273

(3)-(8) on the performance of the base model AMC-Net, without any ensembling.274

Results are provided in Table 3, over all the four test datasets. Here the ROI (GGO275

and consolidation) covers a minuscule portion of a CT slice. The Focal loss FL is276

found to be the best because of its capability in handling class imbalance; thereby,277

reducing misclassification error. As it predicts the outcome as probability, it can better278

distinguish between grades of severity in outcome. A mechanism of down-weighting279

the easier samples while emphasizing the more challenging ones, helps FL focus on the280

smaller ROIs while suppressing the background regions.281

Note that ensembling in EAMC enhances the corresponding performance (as re-282

ported in Fig. 6) in terms of DSC.283

Finally investigations were pursued with different Dilation rates in the convolution284

layers of the MS-block. It was observed that the combination D = 1, 2, 3, and 5,285

provides the best results over the test data, in terms of average DSC.286
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Figure 6: Role of different components of AMC-Net, as base classifier in EAMC, over the
test datasets

2.6 Severity assessment287

The methodology of grading the severity of COVID-19 infection, as developed by the288

Russian Federation [20], is based on individually computing the volume ratio of lesions289

in each lung and using the maximal value to assess the overall severity score. The range290

of the score is divided into five categories based on volume of damaged lung tissue.291

• CT-0: not consistent with pneumonia (including COVID-19), ie, normal292

• CT-1: infection involvement of ≤ 25 %293

• CT-2: infection involvement of 25-50 %294

• CT-3: infection involvement of 50-75 %295

• CT-4: infection involvement of 75-100 %296

Patients with CT-3 (severe pneumonia) or higher are typically hospitalized, with CT-4297

(acute pneumonia) required to be admitted to an intensive care unit.298

Table 5 quantifies the infected region in the sample test images, comprising the299

eight slices (two each from the four sets of test data) of Fig 8, along similar lines.300

Fig. 7 depicts the qualitative assessment of the severity of infection, over the same301

eight sample slices, based on the color mask of the segmented output generated by JET302

Colormap [33]. The visualization uses the predicted probability values of the various303
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Table 3: Effect of various loss functions on AMC-Net, measured in terms of DSC, over the
test datasets

Loss function
Kaggle-COVID-19:
Part-2

CT-Seg Seg-nr.2 MosMed

DL 0.7521 ± 0.174 0.7238 ± 0.201 0.7218 ± 0.136 0.8465 ± 0.251
CEDL 0.7272 ± 0.142 0.7377 ± 0.193 0.7996 ± 0.147 0.8129 ± 0.180
IoU 0.7937 ± 0.137 0.7190 ± 0.165 0.7660 ± 0.125 0.8706 ± 0.197
FL 0.8706 ± 0.129 0.7821 ± 0.151 0.8315 ± 0.132 0.9513 ± 0.096
TL 0.7103 ± 0.176 0.7201 ± 0.130 0.7542 ± 0.203 0.8360 ± 0.071
FTL 0.8238 ± 0.192 0.7725 ± 0.144 0.8285 ± 0.194 0.8973 ± 0.214

Table 4: Effect of varying Dilation rate D on AMC-Net, measured in terms of DSC over
the test datasets

D in MS-block
Kaggle-COVID-19:
Part-2

CT-Seg Seg-nr.2 MosMed

1,2,3,4 0.8017 ± 0.182 0.7018 ± 0.176 0.7552 ± 0.150 0.8910 ± 0.101
1,2,4,8 0.7482 ± 0.149 0.6617 ± 0.168 0.7001 ± 0.152 0.8527 ± 0.107
1,2,3,5 0.8706 ± 0.129 0.7821 ± 0.151 0.8315 ± 0.132 0.9513 ± 0.096

Table 5: Prediction of affected region, by EAMC, considering two samples slices from each
test dataset

Dataset
Sample no.
in Fig. 8

Ground
truth (%)

Prediction
(%) by EAMC

Kaggle-COVID-19:
Part-2

S1 57.63 57.71
S2 85.28 84.71

CT-Seg
S3 89.11 88.12
S4 78.82 79.34

Seg-nr.2
S5 60.91 61.15
S6 62.71 62.18

MosMed
S7 11.62 10.98
S8 13.74 14.02

regions, to illustrate the grading of severity. Here red corresponds to the most severe,304

yellow indicates moderate, and blue refers to the least severe infections. Such analysis305

can be of assistance in predicting the grading of infection in a sample patient, along306

with an estimation of the expected prognosis.307

3 Discussion308

Medical imaging provides useful assistance for the safe, efficient, and early detection,309

diagnosis, isolation, and prognosis of diseases. It enables non-invasive examination of310

the interior organs, bones and tissues, allowing for accurate assessment of disease sever-311

ity. Particularly, with the advancement in CT imaging technology, very high resolution312

images serve as suitable diagnostic tool in the medical domain. The recent COVID-19313
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Figure 7: Visualization of infection, in the eight sample slices from Fig. 8, as predicted by
EAMC. (a) Input CT scan, (b) corresponding annotation, and (c) JET ColorMap on the
prediction

pandemic demonstrated that CT images are often more accurate as compared to the314

standard RT-PCR tests, which can exhibit False Positives. The CT images can provide315

a lot more information, like the severity of infection and the presence and distribution316

of pathologies like GGO and Consolidation. Therefore, CT images are gradually be-317

coming a primary tool for the detection and prognosis in COVID-19. As the increased318

number of cases for diagnosis made the job over-burdening, the need for automated319

and more accurate segmentation, detection and analysis became evident.320

Our research using deep convolutional networks in medical imaging analysis, demon-321

strated efficient extraction of valuable features. The results depict how observable322

features from the COVID-19 ROI, encompassing GGOs and consolidations, could be323

effectively retrieved from various blocks at different levels. The severity of the disease324

could also be assessed. The qualitative and quantitative statistics illustrate the su-325

periority of our model with respect to related methods in literature. The qualitative326

output demonstrates that the proposed EMAC generates very few misclassified pixels327

corresponding to the ROI. The data revealed the presence of a substantial propor-328

tion of pixels from the background region, with a relatively smaller number from the329

ROI. Such a significant class imbalance is effectively addressed by the loss function330

discussed. Our patch-based method performs exceptionally well, in terms of accuracy331

and loss over training and validation, for an effective management of overfitting in332

deep learning. Use of CT images, obtained from several other sources, established the333

robustness of our methodology in handling imaging differences at the source.334

A novel ensembling method by LOPO was developed for a collective, efficient delin-335

eation of COVID-19 affected region in the lung, along with a gradation of the severity336

of the disease, using very limited training data. Multi-scalar attention with deep su-337

pervision enabled enhanced accuracy, in terms of improved sensitivity and precision in338

segmentation of ROI, for the proposed model EAMC. The loss function helped focus339

on the imbalanced representation of the ROIs, in terms of GGOs and consolidations in340

the CT slices. While the training was performed on one set of annotated data, the test-341

ing set comprised of an assortment of data from different sources of publicly available342

sets. The superiority of the network was thus established in a broader generalization343

framework.344

Sample qualitative results in Fig. 8, corresponding to the models compared in Fig. 5,345

help establish the robustness and effectiveness of EAMC under ensembling by LOPO346

on the backbone AMC-Nets. The output is evaluated in terms of the annotated masks.347

The eight samples explored were (i) S1, S2 from Kaggle-COVID-19: Part-2; (ii) S3,348
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Figure 8: Sample segmentation output by base classifiers, in the uniform framework of
ensembling with LOPO. (a) Original CT scan, with (b) Annotated masks. Segmentation
obtained by (c) U -Net, (d) Attention U -Net, (e) AMC-Net, (f) R2UNet, (g) Inception
Net, (h) Xception Net, and (i) DenseNet, where regions Green: True Positive, Red: False
Negative, Yellow: False Positive

S4 from CT-Seg; (iii) S5, S6 from Seg-nr.2; and (iv) S7, S8 from MosMed. It is349

observed that the AMC-Net, of column (e) in the figure, performed the best. Results350

were corroborated with the confusion matrix of Fig. 9, providing an indication of the351

distribution of misclassified pixels for a sample segmentation mask S4. The confusion352

was seen to be the least in case of the AMC-Net [column (c)]. It resulted in the353

minimum over-and under-segmentation for all eight samples considered here.354

Note that over-segmentation corresponds to higher count of FP pixels (yellow) and355

under-segmentation refers to higher FN (red). Considering sample S4 as an example,356

it is clearly evident that state-of-the-art models U -Net, Attention U -Net, Inception357

Net, Xception Net, DenseNet demonstrate under-segmentation, while model R2UNet358

is indicative of over-segmentation. On the other hand, our AMC-Net [column (e), Fig.359

5] exhibited significantly lower under- and/or over-segmentation for the same sample360

S4. The corresponding confusion matrix in Fig. 9 corroborates these findings.361

The model complexity, in terms of the number of parameters, is enumerated in362
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Figure 9: Confusion matrix for a sample S4 from Fig. 8 segmentation mask, by the base
classifiers, in the uniform framework of ensembling with LOPO. Models (a) U -Net, (b)
Attention U -Net, (c) AMC-Net, (d) R2UNet, (e) Inception Net, (f) Xception Net, and (g)
DenseNet

Table 6: Comparative computational analysis of base model parameters, along with DSC
obtained

Model U -Net
Attention
U -Net

MSU -Net AMC-Net R2UNet
Inception

Net
Xception

Net
DenseNet

#parameters 1.96M 1.99M 3.31M 3.34M 6.00M 11.99M 2.05M 4.26M

D
S
C

on

Kaggle 0.6082 0.7492 0.7477 0.8840 0.6772 0.5924 0.7972 0.6729
CT-Seg 0.5124 0.7054 0.6924 0.7955 0.5762 0.6327 0.7172 0.6766
Seg-nr.2 0.5921 0.7180 0.7173 0.8431 0.6304 0.6275 0.8331 0.8105
MosMed 0.6896 0.8300 0.8224 0.9584 0.7029 0.7145 0.8908 0.8220

Table 6. Although the proposed EAMC involves slightly more parameters than U -Net,363

Attention U -Net, MSU -Net, Xception Net, it is less than that of R2UNet, DenseNet,364

and much lower as compared to Inception Net. Note that the overall comparative365

performance of EAMC is better than the state-of-the-art methods, as evident in Fig.366

5. A representative study for DSC on all the four test datasets is also provided in the367

table.368

The technique holds promise in other medical image domains, including (but not369

limited to) detection of lesions in MRI images of the brain or pathologies in fundus370

images of the eye for screening diabetic retinopathy.371

4 Methodology372

The architecture of our EAMC is novel. It consists of an ensemble of Attention-373

modulated Multi-Scalar (MS) blocks along the encoding and decoding paths of a374

U-Net. Incorporation of dilated convolutions in the MS-block, in lieu of down- and/or375

up-sampling, improves the overall performance and makes it robust to generalization.376

Focal loss function [18] is employed for effectively handling class imbalance in the377

data. The Leave-One-Patient-Out (LOPO) ensembling effectively trains a network378

from scratch (each time leaving one patient sample out). This scheme creates the379

necessary diversity in data, while training a completely new model with different pa-380

rameters and scarce annotated samples.381

The Attention-modulated MS-blocks form the AMC-Net modules, serving as the382

base classifier for our ensembled EAMC. This is illustrated in Fig. 2, with elaborated383
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description of the individual modules being provided in Tables 7-9. The MS-block ex-384

tracts multi-scalar features using a concatenation of four dilated convolutional layers,385

having dilation rates D = 1, 2, 3, 5. A dilated convolution (Fig. 10) inserts holes into386

the standard convolution map, thereby expanding its receptive fields. Thus dilated387

convolutions can enlarge a receptive field, without any loss of information, while re-388

taining the kernel size. Finally 1 × 1 convolutions are employed on the concatenated389

multi-scalar feature map. The MS-block is depicted in Fig. 2(b) and Table 8.390

Table 7: AMC-Net module of Fig. 2(a)

Block: i Input: (128 * 128 * 1) CT image

1

conv1(3*3), 16
MS-Block(conv1), 16 (Described in Table 8)
conv2(3*3), 16
maxpooling1(2*2)

2

conv3(3*3), 32
MS-Block(conv3), 32
conv4(3*3), 32
maxpooling2(2*2)

3

conv5(3*3), 64
MS-Block(conv5), 64
conv6(3*3), 64
maxpooling3(2*2)

4

conv7(3*3), 128
MS-Block(conv7), 128
conv8(3*3), 128
maxpooling4(2*2)

5

conv9(3*3), 256
conv10,(3*3), 256
Upsampling1(2*2)
AG(conv8, Upsampling1), 64 (Described in Table 9)

6

concat1 (Upsampling1, Multiply1)
conv11(3*3), 128
MS-Block(conv11), 128
conv12(3*3), 128
Upsampling2(2*2)
AG (conv6 Upsampling2), 32

7

concat2 (Upsampling2, Multiply2)
conv13(3*3), 64
MS-Block(conv13), 64
conv14(3*3), 64
Upsampling3(2*2)
AG (conv4, Upsampling3), 16

8

concat3 (Upsampling3, Multiply3)
conv15(3*3), 32
MS-Block(conv15), 32
conv16(3*3), 32
Upsampling4(2*2)
AG (conv2, Upsampling4), 8

9

concat4 (Upsampling4, Multiply4)
conv17(3*3), 16
MS-Block(conv17), 16
conv18(3*3), 16
conv19(1*1), 1
Sigmoid activation

Output: (128 * 128 * 1)

Table 8: MS-block module of Fig. 2(b)

MS-Block(convM), n (n = No. of features)

Input(convM) -> convD−1(3*3), n
Input(convM) -> convD−2(3*3), n
Input(convM) -> convD−3(3*3), n
Input(convM) -> convD−5(3*3), n
concat (convD−1, convD−2, convD−3, convD−5)

Table 9: Attention Gates (AG) of Fig. 2(c)

AG (convX , UpsamplingY ), n (n = No. of features)

Input(UpsamplingY ) -> conva(1*1), n
Input(convX) -> convb(1*1), n
conva + convb
ReLU activation
convc(1*1), 1
Sigmoid Activation -> SA
convX * SA -> MultiplyY

The AMC-Net contains nine convolutional blocks, four max-pooling layers, four391

Upsampling convolutional layers and eight MS-blocks. First the CT image patches of392

size 128× 128 are fed at the input. The patches percolate down four sets of iterations393

of 2×2 max-pooling layers, 3×3 convolutional and MS-block layers, involving a stride394
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of 1 in the encoder. The 2× 2 Upsampling layers in the decoder help recover the final395

resolution of an image.396

The MS-blocks are added after the ordinary convolutions in the first four encoder397

and the last four decoder layers. They help obtain multi-scalar contextual information,398

to reduce the error along the segmentation boundary for improved accuracy. The399

COVID-19 infection lesions are typically hard to segment; mainly due to their uneven400

distribution and varying dimensions. The high-level semantic feature maps in the401

decoder, concatenated through the attention mechanism, focus on the low-level details402

in the extracted feature maps (of the encoder) to accurately recover the details of the403

infected regions in the CT slices.404

The Attention gates (AG) of Fig. 2(c) provide the necessary importance to each405

pixel during decoding. The upsampled images, along with their encoded versions at406

the same level, are combined to enhance the importance of a pixel through spatial407

attention. Adaptive selection of spatial information is achieved by emphasizing pixels408

from the regions of interest, while suppressing the less relevant ones. Four attention409

modules are introduced for adaptive feature refinement. A sequential spatial attention410

module is embedded into each decoding block to avoid overfitting, while accelerating411

the training of the EAMC.412

Figure 10: D-dilated convolutions, with D = 1, 2, 3, 5

The activation function at the final layer of the AMC-Net is the sigmoid. It gener-
ates a probabilistic output for the ROI. The choice of a loss function has direct impact
on model performance. Loss functions represent the computation of error over each
batch, during backpropagation training, and reflect the adjustment of network weights.
It was found, after several experiments, that focal loss was the best choice. Let the
ground truth segmentation mask be y ∈ {±1}, with the corresponding predicted mask
being ŷ with estimated probability p ∈ [0,1]. Focal Loss (FL) [18] overcomes class
imbalance in datasets, where positive patches are relatively scarce. The cross entropy
(CE) loss for binary classification is defined as

CE(p, y) =

{
− log p, if y = 1,

− log(1− p), otherwise.
(1)

For convenience, let

pt =

{
p, if y = 1,

1− p, otherwise,
(2)

such that CE(p, y) = CE(pt) = −log(pt). The α-balanced focal loss is defined as

FL(pt) = −α(1− pt)
γlog(pt), (3)

with the choice of weighting factor α = 0.8 and focusing parameter γ = 2 being made413

after several experiments.414
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Some of the other loss functions, explored in the ablation studies, include the Dice
Loss (DL) [38]

DL(y, ŷ) =

(
1− 2yŷ + 1

y + ŷ + 1

)
, (4)

where 1 is added in the numerator and denominator to ensure that in edge case sce-
narios, such as when y = ŷ = 0, the function does not become undefined. The CEDL
loss [18] is defined as a combination of DL and the cross-entropy (CE) loss for binary
classification, thereby incorporating the benefits from both. We have

CEDL(y, ŷ) = −{y log(ŷ) + (1− y) log(1− ŷ)) +DL(y, ŷ)}. (5)

The IoU metric [40], or Jaccard Index, is computed as the ratio between the overlap
of the positive instances between two sets, and their mutual combined values. It is
expressed as

IoU(y, ŷ) =

(
1− yŷ + 1

y + ŷ + yŷ + 1

)
. (6)

The Tversky loss (TL) [1] optimises the segmentation on imbalanced medical datasets.
It adjusts the constants α and β to give special weightage to errors like FP and FN
We have

TL(y, ŷ) =

(
1− yŷ + 1

yŷ + β(1− y)ŷ + αy(1− ŷ) + 1

)
. (7)

The Focal Tversky loss (FTL) [1] also focuses on the difficult samples, by down-
weighting easier (or common) ones. It attempts to learn the harder examples, like
small ROIs, with the help of the γ coefficient. It is defined as

FTL(y, ŷ) = (1− TL)1/γ . (8)

A value of γ = 2 was employed, after several experiments.415

Diversity is introduced in this ensembling of the AMC-Nets, by varying the training
datasets through LOPO; thereby, changing the initialization of the networks, and
modulating the choice of parameters of the EAMC system. The performance of the
models is evaluated in terms of the following metrics. We define the number of pixels,
(i) correctly classified as positive by True Positive (TP ), (ii) incorrectly classified as
positive, by False Positive (FP ), (iii) correctly identified as negative as True Negative
(TN), and falsely classified as negative by False Negative (FN).
The metrics used are Dice Score Coefficient

DSC =

(
2 ∗ TP

2 ∗ TP + FP + FN

)
, (9)

Precision =

(
TP

TP + FP

)
, (10)

Sensitivity =

(
TP

TP + FN

)
, (11)

and Area Under the Receiver Operating Characteristic Curve (AUC). The ROC curve416

typically plots the TP rate vs the FP rate, over different thresholds. Higher values of417

these indices imply a better quality of segmentation [30, 34].418

5 Data Preparation419

Pixel values in range [0, 255] were normalized, keeping the HU range in interval [-420

1024, 3071], to enable the model visualize and learn all the areas (like, infection, bone,421
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tissues) inside the CT scan images. Instead of initially extracting the lung part from422

the full CT slice [36], we directly detect the infected area from the entire image for423

subsequent segmentation of the COVID-infected ROI. Class imbalance between the424

infected and non-infected areas of the CT slices was considered, in terms of positive425

(infected) and negative (non-infected) patches over the data.426

Figure 11: Row 1: Patch extraction from training CT slices, depicting no infected regions.
1(a) Non-infected patches, and 1(b) corresponding annotated masks.
Row 2: Patch extraction from training CT slices, depicting infected regions. 2(a) Overlap-
ping patches, and 2(b) mapping to corresponding annotated masks.

5.1 Training427

Availability of annotated training data, depicting infection masks, is scarce and leads428

to class imbalance. In order to circumvent this problem, we extracted overlapping429

patches to increase the training data while uniformly representing relevant ROI.430

The ground truth corresponding to each axial slice, of each CT volume of the431

training data was checked. If there existed no infected region on a slice then it was432

labeled as “non-infected” (Fig. 11, Row: 1 ). Random 128×128 patches were extracted.433

When there existed a region of infection in any axial slice, it was labeled as434

“̀ınfected” (Fig. 11, Row: 2 ). Twenty random 128× 128 bounding boxes were drawn435

over the ROI to extract the patches. Next all twelve 128×128 boundary patches (inside436

the 512× 512 axial slice) were considered.437

The distribution of infected and non-infected slices and/or patches, after patch438

extraction to create the training set, is displayed in Table 10. Representative extracted439

patches, along with the corresponding annotated masks, are presented in Fig. 12.1 for440

the infected slices and Fig. 12.2 for the non-infected ones.441
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Table 10: Distribution of infected and non-infected Slices & Patches extracted for training

Patient
No.

Sample Name Slices Patches

Infected Non-infected Infected Non-infected

P1 coronacases org 001 161 140 3534 1758
P2 coronacases org 002 143 57 3114 1519
P3 coronacases org 003 137 63 3198 1249
P4 coronacases org 004 113 157 2341 1432
P5 coronacases org 005 116 174 2342 1544
P6 coronacases org 006 70 143 1503 880
P7 coronacases org 007 93 156 2067 1065
P8 coronacases org 008 216 85 4647 2350
P9 coronacases org 009 111 145 2276 1421
P10 coronacases org 010 191 110 4375 1847

Figure 12: The (a) extracted patches, and (b) corresponding annotation (post-run-time
augmentation), for sample slices which are 1: infected, and 2: non-infected

5.2 Testing442

As only the ROI and background need to be separated for the test images, here the443

extraction of non-overlapping patches serve the purpose. Axial slices (512× 512) were444

extracted from each test CT volume. Sixteen 128× 128 non-overlapping patches were445

obtained from each slice, as depicted in Fig. 13.446

Figure 13: Patch extraction from test CT slices.
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