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Abstract  21 

 22 

The Omicron BQ.1.1 variant is now the major SARS-CoV-2 circulating strain in many 23 

countries. Because of the many mutations present in its Spike glycoprotein, this variant is 24 

resistant to humoral responses elicited by monovalent mRNA vaccines. With the goal to 25 

improve immune responses against Omicron subvariants, bivalent mRNA vaccines have 26 

recently been approved in several countries. In this study, we measure the capacity of plasma 27 

from vaccinated individuals, before and after a fourth dose of mono- or bivalent mRNA 28 

vaccine, to recognize and neutralize the ancestral (D614G) and the BQ.1.1 Spikes. Before 29 

and after the fourth dose, we observe a significantly better recognition and neutralization of 30 

the ancestral Spike. We also observe that fourth-dose vaccinated individuals who have been 31 

recently infected recognize and neutralize better the BQ.1.1 Spike, independently of the 32 

mRNA vaccine used, than donors who have never been infected or have an older infection. 33 

Our study supports that hybrid immunity, generated by vaccination and a recent infection, 34 

induces higher humoral responses than vaccination alone, independently of the mRNA 35 

vaccine used. 36 

 37 

Keywords: COVID-19, SARS-CoV-2, mRNA bivalent vaccine, Hybrid immunity, Humoral 38 

responses, BQ.1.1   39 
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Introduction 40 

The Omicron BQ.1.1 variant is a sublineage of the BA.5 variant that spreads very rapidly 41 

and is now the major circulating lineage in several countries [1,2]. Recent studies have shown 42 

that original SARS-CoV-2 mRNA vaccines, based on the ancestral Wuhan strain Spike (S), 43 

lead to poor humoral responses against several Omicron subvariants, including the BQ.1.1 44 

variant [3–5]. With the goal to improve immune responses against these subvariants, 45 

Moderna and Pfizer bivalent vaccines have recently been approved by health authorities in 46 

many countries [6–8]. These updated versions of the vaccines are composed of mRNA coding 47 

for the expression of both the ancestral and an Omicron subvariant S [9,10]. However, the 48 

continued evolution of SARS-CoV-2 has resulted in the emergence of multiple Omicron sub-49 

lineages showing signs of convergent evolution by the acquisition of the same immune 50 

escape mutation in the RBD region of the Spike protein. Notably, all five recent convergent 51 

mutations are present in BQ. 1.1: R346T, K444T, L452R, N460K, or F486V [3]. Because of 52 

these newly acquired mutations, the benefits of bivalent compared to monovalent vaccines 53 

against this lineage remain to be established. 54 

It is well accepted now that hybrid immunity leads to better immune responses and 55 

protection from severe outcomes than vaccination alone [11–17]. Because the original 56 

mRNA vaccines poorly prevent viral transmission, an important part of the vaccinated 57 

population have been recently infected by Omicron subvariants, leading to improved immune 58 

responses in these individuals compared to SARS-CoV-2 naïve individuals who have just 59 

been vaccinated.  60 

In this study, we evaluated the capacity of plasma antibodies to recognize and neutralize 61 

the original D614G and the Omicron BQ.1.1 subvariant S four weeks (W4-Va3) and four 62 

months (M4-Va3) after the third dose and four weeks after the fourth dose (W4-Va4) of 63 

mRNA vaccines (Figure 1A). These participants mainly received as their first three doses of 64 

vaccine the Pfizer monovalent vaccine, and as the fourth dose either the Pfizer or Moderna 65 

monovalent or Pfizer (BA.4/5) or Moderna (BA.1) bivalent vaccines. We also measured the 66 

anti-nucleocapsid (N) level to determine if the donors had recent breakthrough infection 67 
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(BTI), i.e., they have been infected between their third and fourth doses of vaccine by a 68 

Omicron sublineage. Basic demographic characteristics of the cohort are summarized in 69 

Table 1. 70 

 71 

Materials and Methods  72 

Ethics statement 73 

The study was conducted in accordance with the Declaration of Helsinki in terms of 74 

informed consent and approval by an appropriate institutional board. The protocol was 75 

approved by the Ethics Committee of CHUM (19.381, approved on February 28, 2022) and 76 

Héma-Québec (2022-016, approved on October 7, 2022).  77 

Human subjects 78 

The study was conducted in 63 individuals (25 males and 38 females; age range: 24-84 79 

years). 20 of these individuals had recent breakthrough infection with an Omicron sublineage 80 

(9 males and 11 females; age range: 24-67 years), i.e. as determined by the increase in anti-81 

N levels between W4-Va3 and M4-Va3 or between M4-Va3 and W4-Va4 using a recently 82 

described analytical approach [18] (Figure S1). For the other donors (16 males and 27 83 

females; age range: 31-84 years), we did not observe a significant increase of the anti-N 84 

levels, although some of them have a history of infection. No other specific criteria such as 85 

number of patients (sample size), sex, clinical or demographic were used for inclusion. 86 

Plasma samples and antibodies 87 

Plasma samples were either recovered from whole blood or directly obtained from the 88 

PlasCov biobank [19], heat-inactivated for 1 hour at 56°C and stored at -80°C until use in 89 

subsequent experiments. Pre-pandemic plasma samples were used as negative controls in 90 

cytometry assays (data not shown). The conformationally independent S2-specific 91 

monoclonal antibody CV3-25 was used as a positive control and to normalize Spike 92 

expression in flow cytometry assays, as described [4,20–23]. Alexa Fluor-647-conjugated 93 

goat anti-human antibodies (Abs) able to detect all Ig isotypes (anti-human IgM+IgG+IgA; 94 

Jackson ImmunoResearch Laboratories, Cat # 109-605-064) were used as secondary Abs to 95 

detect plasma binding in flow cytometry experiments.  96 

Plasmids  97 
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The plasmids encoding the SARS-CoV-2 D614G and BQ.1.1 Spike variants were 98 

previously described [4]. The pNL4.3 R-E-Luc plasmid was obtained from the NIH AIDS 99 

Reagent Program (Cat# 3418). The pIRES2-EGFP expressing plasmid was purchased from 100 

Clontech (Cat# 6029-1). 101 

Cell lines 102 

293T human embryonic kidney cells (obtained from ATCC, Cat# CRL-3216) were 103 

maintained at 37°C under 5% CO2 in Dulbecco's modified Eagle's medium (DMEM) 104 

(Wisent) containing 5% fetal bovine serum (FBS) (VWR) and 100 μg/ml of penicillin-105 

streptomycin (Wisent). 293T-ACE2 cell line was previously reported [24].  106 

Enzyme-linked immunosorbent assay (ELISA) 107 

All samples were tested for anti-N total immunoglobulin levels using an in-house anti-108 

N ELISA. The assay protocol is similar to the anti-SARS-CoV-2 RBD ELISA previously 109 

developed by our group [25], except that recombinant N (Centre National en Électrochimie 110 

et en Technologies Environnementales Inc., Shawinigan, Canada) was used (0.25 µg/ml) in 111 

lieu of the RBD antigen (2.5 µg/ml). 112 

Cell surface staining and flow cytometry analysis 113 

293T were transfected with full-length SARS-CoV-2 Spikes and a green fluorescent 114 

protein (GFP) expressor (pIRES2-eGFP) using the calcium-phosphate method. Two days 115 

post-transfection, Spike-expressing 293T cells were stained with the CV3-25 Ab (5 μg/mL) 116 

as control or plasma (1:250 dilution) for 45 min at 37°C. AlexaFluor-647-conjugated goat 117 

anti-human IgM+IgG+IgA (1/800 dilution) were used as secondary Abs. The percentage of 118 

Spike-expressing cells (GFP + cells) was determined by gating the living cell population 119 

based on viability dye staining (Aqua Vivid, Invitrogen). Samples were acquired on a 120 

LSRFortessa cytometer (BD Biosciences), and data analysis was performed using FlowJo 121 

v10.7.1 (Tree Star). The conformationally-independent anti-S2 antibody CV3-25, effective 122 

against all Spike variants, was used to normalize Spike expression, as reported [4,20,22,23]. 123 

The Median Fluorescence intensities (MFI) obtained with plasma were normalized to the 124 

MFI obtained with CV3-25 and presented as percentage of CV3-25 binding. 125 

Virus neutralization assay 126 

293T cells were transfected with the lentiviral vector pNL4.3 R-E− Luc and a plasmid 127 

encoding the D614G or the BQ.1.1 S glycoprotein at a ratio of 10:1 to produce SARS-CoV-128 
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2 pseudoviruses. Two days post-transfection, cell supernatants were harvested and stored at 129 

−80°C until use. For the neutralization assay, 293T-ACE2 target cells were seeded at a 130 

density of 1×104 cells/well in 96-well luminometer-compatible tissue culture plates 131 

(PerkinElmer) 24h before infection. Pseudoviral particles were incubated with several plasma 132 

dilutions (1/50; 1/250; 1/1250; 1/6250; 1/31250) for 1h at 37°C and were then added to the 133 

target cells followed by incubation for 48h at 37°C. Cells were lysed by the addition of 30 μL 134 

of passive lysis buffer (Promega) followed by one freeze-thaw cycle. An LB942 TriStar 135 

luminometer (Berthold Technologies) was used to measure the luciferase activity of each 136 

well after the addition of 100 μL of luciferin buffer (15mM MgSO4, 15mM KH2PO4 [pH 137 

7.8], 1mM ATP, and 1mM dithiothreitol) and 50 μL of 1mM d-luciferin potassium salt 138 

(Prolume). The neutralization half-maximal inhibitory dilution (ID50) represents the plasma 139 

dilution to inhibit 50% of the infection of 293T-ACE2 cells by pseudoviruses. 140 

Statistical analysis 141 

Symbols represent biologically independent samples from individuals. Statistics were 142 

analyzed using GraphPad Prism version 8.0.1 (GraphPad, San Diego, CA). Each dataset was 143 

tested for statistical normality and this information was used to apply the appropriate 144 

(parametric or nonparametric) statistical test. p values < 0.05 were considered significant; 145 

significance values are indicated as *P<0.05, **P<0.01, ***P<0.001, ***P<0.0001, ns, non-146 

significant. 147 

 148 

Results  149 

We first monitored the capacity of plasma to recognize the D614G and BQ.1.1 Spikes 150 

after the third and fourth doses of mRNA vaccine by flow cytometry (Figure 1B-D). For the 151 

D614G S, no significant differences were observed four weeks and four months after the 152 

third dose of vaccine between individuals with or without recent BTI. In contrast, four weeks 153 

after the fourth dose of mRNA vaccine, individuals with recent BTI recognized better the 154 

D614G S than donors with no recent BTI regardless of the vaccine type received (Figure 1B). 155 

For the BQ.1.1 S, at the M4-Va3 timepoint donors with recent BTI better recognized the S 156 

than individuals with no recent infection, and this difference in recognition was more 157 
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significant four weeks after the fourth dose (Figure 1C). The level of BQ.1.1 S recognition 158 

was significantly lower compared to D614G S in donors without recent BTI (Figure 1D), in 159 

agreement with recent reports [4,5]. In donors who had recently been infected, there was a 160 

significant but smaller difference in the level of recognition between the two Spikes 161 

compared to the other group. 162 

 163 

We also measured the neutralizing activity of plasma against the D614G and BQ.1.1 S 164 

(Figure 1E-G). We observed pattern similar to that measured for Spike recognition. No 165 

significant differences were observed between the two groups at W4-Va3 and M4-Va3 166 

timepoints (Figure 1E-F). In contrast, four weeks after the fourth dose, donors with recent 167 

BTI had a significantly higher level of neutralizing activity against D614G and BQ.1.1 S. All 168 

donors with recent BTI who received a fourth dose developed neutralizing antibodies against 169 

BQ.1.1 S, while some donors who just received four doses of vaccine were still not able to 170 

neutralize this Spike. As observed for S recognition (Figure 1D), BQ.1.1 Spike was 171 

significantly less neutralized than D614G S, even after four doses of mRNA vaccine (Figure 172 

1G). However, the difference in neutralization between the two S was smaller in the group 173 

with recent BTI.  174 

 175 

The Moderna BA.1 bivalent vaccine (blue points) tended to induce better recognition and 176 

neutralization than the other vaccine platforms including the Pfizer BA.4/5 bivalent vaccine 177 

with lesser decrease of recognition and neutralization of BQ.1.1 S (Figure 1B-G, Figure S2). 178 

These differences did not reach statistical significance; whether this is due to the relatively 179 

low number of samples tested remains to be determined. 180 

 181 

 182 

Discussion 183 

Since its emergence in late 2021, the Omicron variant continues to evolve into new 184 

subvariants that are increasingly resistant to monoclonal antibodies and vaccination [5,26–185 

30]. To address vaccine resistance, bivalent mRNA vaccines, expressing both the original 186 
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Spike and one of the parental lineages of Omicron (BA.1 or BA.4/5) Spike, have been 187 

developed and are now being administered in several jurisdictions worldwide. However, 188 

although the bivalent mRNA vaccine has been shown to increase the level of protection 189 

against BA.5 variant in mice [31], evidence of its superior effectiveness in the human 190 

population remains to be demonstrated, especially against sub-lineages with newly acquired 191 

immune escape mutations. Recent studies showed that both monovalent and bivalent 192 

vaccines induced low humoral responses against BQ.1.1, but recent breakthrough infection 193 

before vaccination strongly improved these responses [32]. The results presented herein 194 

support these observations.  195 

As previously reported in numerous studies, including ours, hybrid immunity led to 196 

better humoral responses against the BQ.1.1 and other recent variants than just vaccination 197 

[4,5,32]. Also, we observed that after 4 doses of mRNA vaccine and no recent BTI, some 198 

donors did not have neutralizing activity against pseudoviral particles bearing the BQ.1.1 199 

Spike. Whether these changes of recognition and neutralization translate into greater risk of 200 

severe disease is currently unknown. In contrast, BTI likely increased the breadth of 201 

neutralizing antibodies since all donors had detectable levels of neutralization against 202 

BQ.1.1.  203 

 204 

These results indicate that further efforts have to be devoted to improve vaccines against 205 

new SARS-CoV-2 variants of concern. Whether immune responses comparable to those 206 

observed with breakthrough infections could be obtained with new vaccine formulations 207 

remains to be determined. 208 
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Table 1. Characteristics of the SARS-CoV-2 vaccinated cohort 382 

 Entire cohort No recent BTI Recent BTI 

Number 63 43 20 

Age** 59 (24-84) 63 (31-84) 54 (24-67) 

Sex 
Female (n) 38 27 11 

Male (n) 25 16 9 

Days between the third and fourth 

doses**** 
186 (101-313) 155 (101-271) 268 (134-313) 

Fourth dose 

Pfizer monovalent 28 22 6 

Moderna monovalent 21 18 3 

Pfizer BA.4/5 4 1 3 

Moderna BA.1 10 2 8 

Days between the third and W4-Va3 26 (17-45) 25 (17-45) 28 (18-41) 

Days between the third and M4-Va3 120 (90-194) 120 (90-194) 122 (92-150) 

Days between the fourth and W4-Va4 28 (18-96) 28 (18-96) 25 (20-42) 

Values displayed are medians, with ranges in parentheses. Continuous variables between 383 

individuals with no recent and recent BTI were compared by using Mann-Whitney tests. p< 384 

0.05 was considered statistically significant for all analyses. Statistical differences between 385 

the two groups were found for the age of the donors and the interval between the third and 386 

fourth doses of vaccine. (** P < 0.01; **** P < 0.0001). 387 
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 388 

Figure 1. Recognition and neutralization of the D614G and BQ.1.1 Spikes after the third 389 

and fourth doses of SARS-CoV-2 vaccine in individuals with or without a recent 390 

breakthrough infection. (A) SARS-CoV-2 vaccine cohort design. The yellow box identifies 391 

the three timepoints under study shown in panels B, C, E and F and the red box the period 392 

presented in panels D and G. (B-D) 293T cells were transfected with the full-length D614G 393 

or BQ.1.1 S, stained with the CV3-25 mAb or with plasma from vaccinated individuals and 394 

analyzed by flow cytometry. The values represent the MFI normalized by CV3-25 mAb 395 

binding. (E-G) Neutralization activity was measured by incubating pseudoviruses bearing 396 

SARS-CoV-2 S glycoproteins, with serial dilutions of plasma for 1 h at 37°C before infecting 397 

293T-ACE2 cells. Neutralization half maximal inhibitory serum dilution (ID50) values were 398 

determined using a normalized non-linear regression using GraphPad Prism software. 399 

Individuals vaccinated with Pfizer monovalent, Moderna monovalent, Pfizer bivalent 400 
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(BA.4/5) or Moderna bivalent (BA.1) fourth dose are represented by orange, green, purple 401 

and blue points respectively. Limits of detection are plotted. Error bars indicate means ± 402 

SEM. (* P < 0.05; ** P < 0.01; **** P < 0.0001; ns, non-significant).  403 

  404 
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 405 

Figure S1. Anti-N level measured after the third and fourth doses of SARS-CoV-2 406 

vaccine. Anti-N level was measured in plasma from vaccinated donors by ELISA. Donors 407 

are considered to have a recent BTI when a significant increase of anti-N Abs level between 408 

W4-Va3 and M4-Va3 or between M4-Va3 and W4-Va4 is observed, according to a recently 409 

described analytical approach based on the ratio of anti-N absorbance. Individuals with no 410 

recent BTI and recent BTI are represented by gray and red dots respectively. (* P < 0.05; 411 

**** P < 0.0001; ns, non-significant).  412 

  413 
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 414 

Figure S2. Recognition and neutralization of the D614G and BQ.1.1 Spikes after the 415 

fourth doses of SARS-CoV-2 vaccine in individuals with or without a recent 416 

breakthrough infection. (A) 293T cells were transfected with the full-length D614G or 417 

BQ.1.1 S, stained with the CV3-25 mAb or with plasma from vaccinated individuals and 418 

analyzed by flow cytometry. The values represent the MFI normalized by CV3-25 mAb 419 

binding. (B) Neutralization activity was measured by incubating pseudoviruses bearing 420 

SARS-CoV-2 S glycoproteins, with serial dilutions of plasma for 1 h at 37°C before infecting 421 

293T-ACE2 cells. Neutralization half maximal inhibitory serum dilution (ID50) values were 422 

determined using a normalized non-linear regression using GraphPad Prism software. 423 

Individuals vaccinated with Pfizer monovalent, Moderna monovalent, Pfizer bivalent 424 

(BA.4/5) or Moderna bivalent (BA.1) fourth dose are represented by orange, green, purple 425 

and blue points respectively. Limits of detection are plotted. Error bars indicate means ± 426 

SEM. 427 
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