
   
 

   
 

1 

Outcomes in Patients with Acute Hypoxemic Respiratory Failure Secondary to COVID-19 

Treated with Noninvasive Respiratory Support versus Invasive Mechanical Ventilation 

 

Julia M Fisher, PhD1,4, Vignesh Subbian, PhD2,3,4, Patrick Essay, PhD2, Sarah Pungitore, MS5, 
Edward J Bedrick, PhD1,4, Jarrod M Mosier, MD6,7 

 
1 Statistics Consulting Laboratory, The University of Arizona, Tucson, AZ  
2 Department of Systems and Industrial Engineering, College of Engineering, The University of 

Arizona, Tucson, AZ 
3 Department of Biomedical Engineering, College of Engineering, The University of Arizona, 

Tucson, AZ 
4  BIO5 Institute, The University of Arizona, Tucson, AZ  
5 Program in Applied Mathematics, The University of Arizona, Tucson, AZ 
6 Department of Emergency Medicine, The University of Arizona College of Medicine, Tucson, 

AZ 
7 Division of Pulmonary, Allergy, Critical Care, and Sleep, Department of Medicine, The 

University of Arizona College of Medicine, Tucson, AZ  

 
Corresponding Author:  
Jarrod M. Mosier, MD FCCM 
Department of Emergency Medicine 
1501 N. Campbell Ave., AHSL 4171D 
PO Box 245057 
Tucson, AZ  85724-5057 
Phone: 520-626-2038 
jmosier@aemrc.arizona.edu 
ORCHID ID: 0000-0002-5371-0845 
 
Descriptor number: 4.6 
 
Word count: 2923 
 
Keywords: COVID-19, noninvasive respiratory support, high-flow nasal oxygen, respiratory 
failure, mechanical ventilation  
 
Statements and Declarations 

 
Source of Support: This work was supported by an Emergency Medicine Foundation grant 
sponsored by Fisher & Paykel, and in part by the National Science Foundation under grant 
#1838745 and the National Heart, Lung, and Blood Institute of the National Institutes of Health 
under award number 5T32HL007955. Neither funding agency or sponsor was involved in the 
design or conduct of the study or interpretation and presentation of the results.  
 
Disclosures: JMM, VS, and JMF received grant support for this work by the Emergency 
Medicine Foundation.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.19.22283704doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.12.19.22283704
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

2 

 
Author Contributions: JMM, VS, JMF, and PE conceived the study idea. PE, VS, and JMM 
developed the phenotyping algorithm. PE, JMF, JMM, and SP preprocessed the data. PE and 
VS applied the phenotyping algorithm. JMF, EJB, and SP performed the statistical analysis. 
JMM and JMF drafted the initial manuscript, and all authors participated in manuscript revisions.  
 
Acknowledgements: The authors would like to thank Don Saner and Mario Arteaga from the 
Banner Health Network Clinical Data Warehouse for their support during this project.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.19.22283704doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.19.22283704
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

3 

Abstract 

Purpose 

The goal of this study was to compare noninvasive respiratory support to invasive mechanical 

ventilation as the initial respiratory support in COVID-19 patients with acute hypoxemic respiratory 

failure.  

Methods  

All patients admitted to a large healthcare network with acute hypoxemic respiratory failure 

associated with COVID-19 and requiring respiratory support were eligible for inclusion. We 

compared patients treated initially with noninvasive respiratory support (noninvasive positive 

pressure ventilation by facemask or high flow nasal oxygen) with patients treated initially with 

invasive mechanical ventilation. The primary outcome was time-to-in-hospital death analyzed 

using an inverse probability of treatment weighted Cox model adjusted for potential confounders. 

Secondary outcomes included unweighted and weighted assessments of mortality, lengths-of-

stay (intensive care unit and hospital) and time-to-intubation.  

Results 

Over the study period, 2354 patients met inclusion criteria. Nearly half (47%) received invasive 

mechanical ventilation first and 53% received initial noninvasive respiratory support. There was 

an overall 38% in-hospital mortality (37% for invasive mechanical ventilation and 39% for 

noninvasive respiratory support).  Initial noninvasive respiratory support was associated with an 

increased hazard of death compared to initial invasive mechanical ventilation (HR: 1.61, p < 

0.0001, 95% CI: 1.33 - 1.94). However, patients on initial noninvasive respiratory support also 

experienced an increased hazard of leaving the hospital sooner, but the hazard ratio waned with 

time (HR: 0.97, p < 0.0001, 95% CI: 0.96 - 0.98). 

Conclusion  

These data show that the COVID-19 patients with acute hypoxemic respiratory failure initially 

treated with noninvasive respiratory support had an increased hazard of in-hospital death.  
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Introduction 

The optimal management strategy for patients with acute hypoxemic respiratory failure 

due to SARS-CoV-2 infection has undergone particular interest and scrutiny. Early, intense 

discussion occurred in the published literature and on social media. High failure rates with 

noninvasive positive pressure ventilation (NIPPV) during the SARS-CoV outbreak in 2003,1 

concerns over aerosol transmission with noninvasive support strategies,2-8 potential novelty of 

respiratory physiology with COVID-19,9-18 impending ventilator shortages,19-21 and the high 

mortality initially reported with invasive mechanical ventilation (IMV)22,23 all factored in the 

discussion over timing of intubation and the utility of noninvasive strategies.  

The current literature on noninvasive respiratory support (NIRS) — NIPPV or high flow 

nasal oxygen (HFNO) — for patients with COVID-19 report disparate outcomes. Importantly, 

these studies compare noninvasive strategies to each other, or to conventional oxygen therapy, 

but not to invasive mechanical ventilation. The goal of this study was to explore the optimal initial 

treatment for COVID-19 patients admitted with acute hypoxemic respiratory failure by comparing 

invasive versus noninvasive strategies.  

 

Methods 

Study Design and Setting 

This study is a retrospective cohort observational study using clinical data. Clinical data 

were obtained from the Banner Health Network clinical data warehouse, covering 26 hospitals 

across six states in the western United States. Data were extracted for all adult patients (≥18 

years) admitted for respiratory failure associated with COVID-19 between January 1, 2020 and 

January 7, 2021. Data consist of de-identified structured data generated from the Cerner (Cerner 

Corporation, North Kansas City, MO, USA) electronic health record. This work adheres to the 
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STROBE reporting guidelines and was approved by the University of Arizona (IRB #1907780973) 

and Banner Health Institutional Review Boards (IRB #483-20-0018). 

Study Participants and Treatment Assignment 

We generated seven cohorts using a phenotyping algorithm24 based on the sequence of 

therapies received: (1) IMV only, (2) NIPPV only, (3) HFNO only, (4) NIPPV requiring subsequent 

IMV, (5) HFNO requiring subsequent IMV, (6) IMV extubated to NIPPV, (7) IMV extubated to 

HFNO, and (8) evidence of all three treatments but unclear treatment ordering. Those treated with 

any noninvasive respiratory support modality first were compared to those treated with invasive 

mechanical ventilation first. Subsequent analyses separated NIPPV and HFNO and included 

pairwise comparisons of initial IMV, NIPPV, and HFNO. 

We estimated the propensity to be given each modality using generalized boosted models 

and used inverse probability of treatment weighting in the models to account for non-random 

treatment assignment.25 The variables for propensity score estimation included age, body mass 

index, sex, ethnicity (non-Hispanic, Hispanic), race (white, non-white), respiratory rate and 

SPO2/FIO2 ratio most immediately prior to first treatment, hospital size by American Hospital 

Association category (small [< 100 beds], medium [100-499 beds], large [> 500 beds]), and either 

hours from hospital admission to first treatment or hours from ICU admission to first treatment, 

transformed via the Box-Cox method with negatives.26 These variables were additionally included 

in Cox models to further improve balance between treatment groups. 

 

Outcomes and Data Analysis 

The primary outcome is time-to-in-hospital death. We fit a Cox model from first treatment 

initiation to death with censoring occurring at hospital discharge. However, there are multiple 

potential pathways for a patient (1. death, 2. discharge alive [from hospital or ICU], 3. remain in 

the hospital, and 4. intubation [if on NIRS]). We modeled discharge alive and intubation with three 

additional hazard models. First, we fit a cause-specific hazard model for time-to-hospital 
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discharge alive with death as a competing risk where time zero was set as time of first treatment 

initiation. For this outcome, we performed a planned sensitivity analysis with time zero set as time 

of hospital entrance.  Second, we fit a cause-specific hazard model for time-to-ICU discharge 

alive (from ICU admission) with death as a competing risk. Only visits with an ICU stay were 

included in this analysis; thus, results are conditional on having been admitted to the ICU and by 

nature excluded ICU-level of care patients who remained outside of the ICU. Third, we conducted 

a competing risks analysis for time-to-intubation with death as a competing risk and censoring 

occurring at hospital discharge. Only visits with known time to event (96.3% of possible visits) and 

a noninvasive initial treatment were included. The competing risks analysis used a modification 

of Gray's test that incorporates inverse probability of treatment weighting.27  Statistical significance 

was judged via the median p-value approach.28 Planned sensitivity analyses were performed to 

assess preprocessing and analysis decisions made for the competing risks (see online 

supplement for details).  

We analyzed unweighted outcomes of mortality, intubation rate, duration of mechanical 

ventilation in patients who failed initial NIRS treatment, length-of-hospital-stay, and ICU-free days 

using Fisher’s Exact and Kruskal-Wallis rank sum tests where appropriate. For all outcomes, the 

predictor of interest was first treatment (noninvasive respiratory support or invasive mechanical 

ventilation). We assessed if the proportional hazard assumption was violated in the Cox models 

by including an interaction of time by first treatment. If the interaction was statistically significant 

at α = 0.05, we report the interaction model; otherwise, we report the proportional hazards model.   

Data preprocessing is described in detail in the online supplement. As a retrospective 

study based on routinely collected EHR data, it is expected that the extent of observed data will 

be different for different clinical variables.29-31 Missing data were handled by using multiple 

imputation by chained equations (MICE).32,33 For each non-competing risks analysis, we created 

50 imputed data sets using all variables in the propensity score construction, the Nelson-Aalen 

estimate of the available time-to-event data, the time-to-event itself, and event information (e.g., 
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death, hospital discharge alive, ICU discharge alive). Age, body mass index, SpO2/FiO2, the 

transformed time-from-hospital admission (or ICU admission) to first treatment, respiratory rate, 

time-to-event, and the Nelson-Aalen estimate of the time-to-event were imputed via predictive 

mean matching. Sex, ethnicity, race, the outcome event, hospital size, and first treatment were 

imputed with logistic regression (two-category variables) or multinomial log-linear models via 

neural networks (> two category variables) as appropriate. Raw time-to-event was imputed but 

not used to predict other variables in the MICE algorithm. Instead, for the Cox models and some 

competing risk models, temporal information was used in the prediction of other missing values 

via the Nelson-Aalen estimate.  For the competing risk models using the median p-value inference 

approach, no outcome information was allowed to predict other variables in the MICE algorithm. 

Since each imputed data set had different values for variables used in the propensity score 

algorithm, we estimated propensity scores for each imputed data set separately. For the Cox 

models, the propensity scores from a specific imputed data set were used to do inverse probability 

of treatment weighting with the analysis of that data set,34 and results were combined using 

Rubin's Rules. For the competing risks analyses, the propensity scores from each imputed data 

set were handled differently depending on the inference approach.  See the supplementary 

information for further details.  All data preprocessing and statistical analyses were done using R 

version 4.0.435  and included the following packages: twang34, survival36,37, survminer,38 MICE32, 

xtable,39 and tidyverse.40 

 

Results 

 During the study period, there were 2354 COVID-19 patients that met criteria for inclusion. 

There were 326 that were not classified by the phenotyping algorithm but received all three 

treatments. Of the 2028 patients that were reliably classified, invasive mechanical ventilation was 

used as the first therapy in 947 (47%) patients and noninvasive respiratory support in 1081 (53%), 

Figure 1, Table 1. Of those on noninvasive respiratory support, 811 (75%) received NIPPV first 
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and 270 (25%) received HFNO first. There was imbalance in NIRS use among hospitals of 

different sizes with larger hospitals disproportionately using NIPPV first (large hospitals 81% 

[433/536], medium hospitals 70% [346/495], small hospitals 64% [32/50]) Table 1. For the 326 

unclassifiable records, the first treatment was imputed using multiple imputation. Since treatment 

assignments may have varied between imputed data sets, demographics for this group are 

reported separately in the online supplement. 

All-cause in-hospital mortality was 38%. For those on IMV first, mortality was 37%. For 

those treated with noninvasive respiratory support first and never required intubation, mortality 

was 29%, but rose to 60% for those that required intubation. There was also an imbalance in 

mortality rates between NIPPV and HFNO, Table 2. Intubation rates for those treated with HFNO 

and NIPPV were 32% (87/270) and 33% (268/811), respectively.  

 

NIRS vs IMV 

Initial noninvasive respiratory support was associated with an increased hazard of in-

hospital death compared to initial invasive mechanical ventilation (HR: 1.61, p < 0.0001, 95% CI: 

1.33 - 1.94), and there was no significant interaction of treatment and time with this association 

(HR: 1.00, p = 0.6038, 95% CI: 0.98 - 1.01) Figure 2. However, being on initial noninvasive 

respiratory support was also associated with an early increased hazard of leaving the hospital 

alive, but this hazard ratio decreased over time due to an interaction between time and treatment.  

This eventually resulted in the hazard ratio reversing such that initial noninvasive respiratory 

support was later associated with a decreased hazard of leaving the hospital alive (HR: 0.97, p < 

0.0001, 95% CI: 0.96 - 0.98) FIGURE 2. This was consistent with the sensitivity analysis where 

time zero is hospital admission (online supplement). There was also a similar pattern in the 

difference between initial NIRS and initial IMV in the time-to-ICU discharge alive: early on, initial 

noninvasive respiratory support was associated with an increased hazard of discharge alive from 

the ICU, but this hazard ratio decreased over time because of a statistically significant interaction 
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between treatment and time (HR: 0.98, p = 0.0321, 95% CI: 0.97 - 1.00), resulting in no significant 

differences between non-invasive and invasive initial support at later time points.. 

 

HFNO vs NIPPV vs IMV 

Both HFNO (HR: 2.37, p < 0.0001, 95% CI: 1.85 - 3.03) and NIPPV (HR: 1.44, p = 0.0003, 

95% CI: 1.18 - 1.74) were associated with increased hazards of in-hospital mortality compared to 

invasive mechanical ventilation. HFNO had an increased hazard of in-hospital death compared 

to NIPPV (HR: 1.65, p = 0.0001, 95% CI: 1.29 - 2.10). The interactions of time and both NIPPV 

and HFNO were not statistically significant and were excluded from the final model (both p > 

0.05).   

For time-to-hospital discharge alive, there were significant interactions between treatment 

and time for both NIRS modalities (time by HFNO HR: 0.96, p = 0.0011, 95% CI: 0.94 - 0.98 and 

time by NIPPV HR: 0.98, p = 0.0231, 95% CI: 0.97 - 1.00). Similar to the models that grouped 

NIPPV and HFNO, these models showed increased hazards of discharge alive  for both HFNO 

and NIPPV compared to invasive mechanical ventilation that decreased over time but at different 

rates (HFNO faster, NIPPV slower), FIGURE 3.  This resulted in no statistically significant 

differences between NIPPV and invasive mechanical ventilation at later time points but a 

decreased hazard of discharge alive for HFNO compared to invasive mechanical ventilation. 

Patients who started on HFNO first and were intubated were more likely to be intubated 

sooner than those who started on NIPPV (p < 0.001).  First treatment with both IMV and NIPPV 

were associated with a higher hazard of  ICU discharge alive than first treatment with HFNO (IMV 

HR: 1.50, p = 0.0226, 95% CI: 1.06 - 2.13; NIPPV HR: 1.84, p = 0.0014, 95% CI: 1.27 - 2.68), 

and first treatment with NIPPV was associated with a higher hazard of leaving the ICU alive than 

first treatment with IMV (HR: 1.23, p = 0.0341, 95% CI: 1.02 - 1.48). There was no significant 

interaction between time and treatment for time-to-ICU discharge alive (time by HFNO HR: 0.99, 

p = 0.4065, 95% CI: 0.97 - 1.01; time by NIPPV HR: 0.99, p = 0.3047, 95% CI: 0.97 - 1.01), and 
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these interactions were left out of the final model. All competing risk sensitivity analyses showed 

the same pattern and were also statistically significant (all p < 0.001, see online supplement). In 

the sensitivity analysis of time-to-hospital discharge alive, the interaction of time with HFNO was 

statistically significant (p = 0.0055) but the interaction of time with NIPPV was not (p = 0.0848). 

Despite this, the relationship between therapies with the time by treatment interaction was 

consistent with the model where time zero was set to first treatment initiation. 

 

Discussion 

Our results show that initial noninvasive respiratory support presents a double-edged 

sword for COVID-19 patients with acute respiratory failure. Patients supported first by NIRS 

experience a greater hazard of in-hospital death compared to those intubated first. However, 

those same patients also experience a greater hazard of being discharged alive up to about 15-

35 days, after which that hazard decreases either to the point of reversing direction (for NIRS in 

general and HFNO specifically) or no longer being statistically significant (for NIPPV). Essentially, 

patients initially treated noninvasively have higher hazards of both in-hospital death and discharge 

alive up to about a month.  After that, their hazard of in-hospital death remains elevated but their 

hazard of discharge alive decreases.  Moreover, those started on HFNO first experience faster 

intubation compared to those started on NIPPV first. 

These results offer several important contributions. Studies utilizing NIRS for patients with 

COVID-19 compare one or both noninvasive respiratory support strategies either to each other 

or to conventional oxygen therapy and have reported mixed findings. Some report improved 

outcomes with high flow nasal oxygen compared to conventional oxygen therapy,41-43 or to 

noninvasive positive pressure ventilation,44 while others report improved outcomes with 

noninvasive positive pressure ventilation compared to conventional oxygen therapy,45 or to high 

flow nasal oxygen.46 Yet some studies report no difference in outcomes compared to conventional 

oxygen therapy,43,45,47 or to each other.46-50 Those studies utilize intubation directly as the primary 
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outcome alone or as part of a composite outcome with mortality.41-48,51,52 We found that invasive 

mechanical ventilation as a comparator intervention may be the optimal method of respiratory 

support for COVID-19 patients that need more than conventional oxygen.  

Additionally, most studies are limited to patients admitted to the ICU, which carries 

inherent selection bias and confounding potentially reflected as higher intubation rates of around 

50%. We included all patients regardless of location as many patients were cared for outside of 

the physical ICU location or the ICU service from pandemic-strained resources.  

We found that the benefit of leaving the hospital alive has a relationship with time. There 

are several potential explanations for this. NIRS cohorts are classified by a phenotyping algorithm 

based on the first therapy received but could have crossed over between NIRS modalities at any 

point with or without intubation. Crossover in those patients requires failing NIRS twice before 

intubation. Second, intubation could have been delayed for various reasons at the cost of 

worsening acute lung injury that may have benefitted from lung protective ventilation. 

Gershengorn found similar results in that the overall 46% failure rate on HFNO evolved from a 

decreased odds of failure for those on HFNO for a short time to an increased odds of failure for 

those on HFNO for longer.52 Similar findings were reported with NIPPV, which reduced mortality 

only in patients with short hospital stays, but was associated with higher mortality in those 

hospitalized longer than seven days.53  

There are several issues to consider when generalizing and interpreting data on 

noninvasive respiratory support and invasive mechanical ventilation in COVID-19 patients. Early 

in the pandemic, early intubation was often recommended to avoid aerosol exposure to healthcare 

staff and based on the high failure rates of NIPPV in the SARS epidemic. This was followed by a 

concerningly high early mortality reported in patients on mechanical ventilation22 and debate over 

the clinical syndrome seen in COVID-19 that contributed to variability in mechanical ventilation 

(e.g., high tidal volumes or alternative ventilator modes) or an avoidance of intubation altogether 

in some patients.54-59 Simultaneously, pharmacological adjuncts to standard of care have changed 
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over time, especially during the duration of this study60, including convalescent plasma 61-63, 

corticosteroids,64-68 interleukin 69-76 and janus kinase 77-79 inhibitors, antivirals 80-83, 

hydroxychloroquine 80,84,85, and anticoagulation strategies.86-88 Lastly, patient surges89 and surge 

capacity almost certainly contributed to patient outcomes as more patients were managed outside 

of traditional ICUs, or in expansion ICUs, and facilities were faced with impending ventilator 

shortages, staffing ratio changes, and an increase in traveling staff. These results are, however, 

hypothesis generating for non-COVID-19 acute respiratory distress syndrome patients where 

NIPPV has been shown in some studies to be associated with higher mortality than IMV.90 

There are also important limitations to our study. Our data are limited to the COVID-19 

patients in 2020 and the evolution of COVID-19 management potentially limits generalizability. 

Additionally, results are based on the first assigned therapy and patients who crossed over 

between NIRS and any imbalance between those crossovers could confound the findings. There 

were also some necessary assumptions based on the nature of the observational dataset from 

the electronic health record. For instance, we only considered a given patient’s first COVID-19 

hospital visit where they required respiratory support.  If two visits that appeared to belong to the 

same person were less than 24 hours apart, we assumed a hospital transfer occurred and 

combined these records into the same visit. We attempted to control for confounding, including 

by indication, by weighting our analysis by the inverse probability for treatment assignment, further 

adjusting for potential confounders in the Cox models, and by a competing risks analysis where 

death and intubation were competing risks. Additionally, some patients had evidence of all three 

treatments but no clear treatment ordering for which we performed sensitivity analyses to assess 

how dependent our results are on our specific inclusion, exclusion, or imputation decisions. Lastly, 

clinical care was not protocolized and there were likely important differences between flow rates 

with HFNO, airway pressures with NIPPV (of which only facemask NIPPV was available), and 

mechanical ventilator settings that could confound these results. Despite these limitations, the 

size of our dataset and statistical analyses still provide valuable results.  
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We found that patients intubated early without a trial of noninvasive respiratory support 

had a lower hazard of in-hospital death, but also a lower hazard of hospital discharge alive up to 

about a month. Clinical focus should shift to not delaying intubation in patients in whom 

noninvasive respiratory support has not reduced work of breathing or hypoxemia. Meanwhile, 

studies are needed to identify optimal patients for each noninvasive respiratory support modality 

and early prediction and identification of failure of that modality.    
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Figure 1: STROBE Statement  
 
 

 
 
Figure Caption: 326 participants had evidence of high-flow nasal oxygen, noninvasive positive 
pressure ventilation, and invasive mechanical ventilation but were unable to be reliably classified by 
the phenotyping algorithm because of nonsensical time stamps for timing of therapies. See text and 
online supplement for further description and demographics of this group. “Additional exclusions” 
includes 4 participants that were excluded because of nonsensical hospital discharge time stamps, 
and an additional group of patients excluded only from the model assessing time-to-ICU exit.  
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Table 1: Demographics 
 

Measure Invasive Mechanical 
Ventilation 

Noninvasive 
Positive Pressure 

Ventilation 
High Flow Nasal 

Oxygen Total 

N (%) 947 (47%) 811 (40%) 270 (13%) 2028 
Sex         

               Male 555 (59%) 465 (57%) 159 (59%) 1179 (58%) 
               Female 392 (41%) 346 (43%) 111 (41%) 849 (42%) 

Age 60 (49 - 69) 65 (52 - 75) 70 (56 - 80) 63 (51 - 73) 
BMI 31.43 (26.57 - 37.74) 32.37 (26.9 - 39.6) 30.29 (25.64 - 35.73) 31.64 (26.58 - 37.96) 

Ethnicity         
               Not Hispanic or Latino 537 (59% of 917) 489 (61% of 800) 154 (58% of 266) 1180 (60% of 1983) 

               Hispanic or Latino 380 (41% of 917) 311 (39% of 800) 112 (42% of 266) 803 (40% of 1983) 
Race         

               White 652 (71% of 914) 636 (80% of 799) 215 (81% of 267) 1503 (76% of 1980) 
               Black or African American 43 (5% of 914) 45 (6% of 799) 10 (4% of 267) 98 (5% of 1980) 

               Asian/Native 
Hawaiian/Other Pacific Islander 11 (1% of 914) 18 (2% of 799) 6 (2% of 267) 35 (2% of 1980) 

               American Indian or Alaska 
Native 136 (15% of 914) 52 (7% of 799) 25 (9% of 267) 213 (11% of 1980) 

               Other 72 (8% of 914) 48 (6% of 799) 11 (4% of 267) 131 (7% of 1980) 
Hospital Sizea         

               small 21 (2%) 32 (4%) 18 (7%) 71 (4%) 
               medium 329 (35%) 346 (43%) 149 (55%) 824 (41%) 

               large 597 (63%) 433 (53%) 103 (38%) 1133 (56%) 
APACHE IVa Score on Admission 67 (51 - 90) 56 (44.25 - 74) 60 (45.25 - 76.75) 63 (48 - 83) 

Vital Signs on Treatment Assignment         
HR 96 (78 - 112) 83 (70 - 97) 85 (72 - 101.75) 89 (74 - 105) 

SBP 120 (103 - 142) 126 (111.5 - 142) 122 (110 - 136) 123 (108 - 141) 
DBP 68 (59 - 80) 72 (64 - 81) 71 (63 - 79) 71 (61 - 80) 

SpO2 96 (93 - 99) 94 (91 - 96) 93 (89 - 95) 95 (91 - 98) 
Oxygen Flow Rate (L) 15 (15 - 50) 15 (8 - 40) 40 (27.25 - 40) 15 (15 - 40) 

FiO2b 100 (60 - 100) 70 (50 - 100) 100 (66 - 100) 90 (60 - 100) 
SpO2:FiO2 100 (95 - 152.08) 130.3 (94 - 198) 96.44 (90.16 - 141.3) 104.44 (94 - 166.67) 

Temperature (C) 37 (36.76 - 37) 37 (37 - 37) 37 (36.6 - 37) 37 (36.8 - 37) 
Respiratory Rate 22 (18 - 26) 24 (20 - 30) 22 (19 - 27) 22 (18 - 28) 

Comorbiditiesc         
Diabetes 513 (61% of 846) 466 (64% of 733) 151 (61% of 246) 1130 (62% of 1825) 

Chronic Kidney Disease 226 (27% of 846) 168 (23% of 733) 55 (22% of 246) 449 (25% of 1825) 
Heart Failure  203 (24% of 846) 179 (24% of 733) 45 (18% of 246) 427 (23% of 1825) 
Hypertension 663 (78% of 846) 576 (79% of 733) 191 (78% of 246) 1430 (78% of 1825) 

Chronic Liver Disease 182 (22% of 846) 96 (13% of 733) 36 (15% of 246) 314 (17% of 1825) 
Neoplasm or Immunosuppression 70 (8% of 846) 49 (7% of 733) 14 (6% of 246) 133 (7% of 1825) 

COPD 216 (26% of 846) 252 (34% of 733) 55 (22% of 246) 523 (29% of 1825) 
Labs on Admission         

PaO2 (Worst Value) 70 (58 - 90) 65 (56 - 82) 64 (56 - 79.75) 68 (57 - 86) 
PaO2:FiO2 (Worst Value) 82.5 (62.9 - 133.5) 86.44 (61 - 136.74) 74 (59 - 109.62) 83 (62 - 132) 

White Blood Cell Count 9.6 (6.6 - 13.65) 8 (5.8 - 11.4) 8.2 (5.73 - 11.1) 8.7 (6.2 - 12.3) 
Lactate 1.75 (1.2 - 2.8) 1.6 (1.2 - 2.2) 1.6 (1.2 - 2.2) 1.6 (1.2 - 2.4) 

pH 7.37 (7.28 - 7.43) 7.41 (7.36 - 7.46) 7.43 (7.38 - 7.46) 7.4 (7.32 - 7.45) 
PaCO2 38 (33 - 47) 35.1 (31 - 42) 34 (28 - 39) 37 (31.4 - 44) 
HCO3 21 (18 - 24) 22 (20 - 24) 22 (20 - 24) 22 (19 - 24) 

BNP 619 (177 - 3034) 559 (194 - 2154) 427.5 (145.75 - 2009.25) 562.5 (180 - 2413.5) 
Creatinine 1.05 (0.76 - 1.56) 0.99 (0.74 - 1.4) 0.95 (0.74 - 1.31) 1 (0.75 - 1.45) 
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Table 1 (Continued): Demographics 
 

Measure Invasive Mechanical 
Ventilation 

Noninvasive 
Positive Pressure 

Ventilation 
High Flow Nasal 

Oxygen Total 

Therapies         
Therapeutic Anticoagulationd 726 (77%) 651 (80%) 225 (83%) 1602 (79%) 

Hydroxychloroquine 146 (15%) 21 (3%) 15 (6%) 182 (9%) 
Remdesivir 229 (24%) 525 (65%) 152 (56%) 906 (45%) 

Corticosteroidse 779 (82%) 755 (93%) 244 (90%) 1778 (88%) 
Tocilizumab 1 (0%) 0 (0%) 0 (0%) 1 (0%) 

Continuous Paralysis 297 (31%) --   -- 406 (20%) 
Vasopressors         

Before Treatment 263 (28%) 68 (8%) 31 (11%) 362 (18%) 
At or After Treatment 745 (79%) 266 (33%) 89 (33%) 1100 (54%) 

Location at Treatment Assignment         
               Emergency Department 218 (23% of 940) 73 (9% of 809) 13 (5% of 270) 304 (15% of 2019) 

               ICU 640 (68% of 940) 305 (38% of 809) 100 (37% of 270) 1045 (52% of 2019) 
               Non-ICU ward 34 (4% of 940) 120 (15% of 809) 43 (16% of 270) 197 (10% of 2019) 

               Stepdown 48 (5% of 940) 311 (38% of 809) 114 (42% of 270) 473 (23% of 2019) 
a hospital size categorized by American Hospital Association category (small [< 100 beds], medium [100-499 beds], large [> 500 beds]). 
bFiO2 determined by documented FiO2, if documented, or by FiO2 = 100(0.21 + oxygen flow [L/min-1] x 0.03 if a flow rate was documented.  
ccomorbidities determined by documented ICD codes 
dTherapeutic anticoagulation included: continuous infusions of an anticoagulant (e.g., heparin, bivalirudin), or therapeutic weight-based dosing of 
subcutaneous injections, oral direct anticoagulants, therapeutic dosing anti-platelet agents, and oral warfarin.  
eCorticosteroids included systemic oral or intravenous hydrocortisone, prednisone, dexamethasone, and methylprednisolone. 
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Table 2: Unmatched outcomes 
 

Measure 
Invasive 

Mechanical 
Ventilation 

Noninvasive 
Positive Pressure 

Ventilation 
High Flow Nasal 

Oxygen Total P-Value 

All-cause in-ICU mortality      
               Total 253 (28% of 891) 138 (32% of 426) 75 (57% of 131) 466 (32% of 1448) <0.001 

               Failure -- 99 (41% of 244) 47 (64% of 74) 146 (46% of 318) 0.001 
               Success -- 39 (21% of 182) 28 (49% of 57) 67 (28% of 239) <0.001 

All-cause hospital mortality      
               Total 348 (37% of 947) 281 (35% of 811) 140 (52% of 270) 769 (38% of 2028) <0.001 

               Failure -- 145 (54% of 268) 67 (77% of 87) 212 (60% of 355) <0.001 
               Success -- 136 (25% of 543) 73 (40% of 183) 209 (29% of 726) <0.001 

Failure (intubation rate) -- 268 (33% of 811) 87 (32% of 270) 355 (33% of 1081) 0.001 
Days to Intubation  -- 0.24 (0.13 – 1.18) 0.14 (0.06 – 0.56) 0.21 (0.11 – 1.05) <0.001 

Duration of mechanical ventilation (days) -- 8.08 (3.6 - 13.98) 8.36 (1.4 - 17.37) 8.09 (3.34 - 14.91) 0.516 
ICU length of stay (days)      

               Total 8.04 (3.49 - 16.75) 6.2 (2.25 - 12.7) 7.15 (2.59 - 13.66) 7.48 (3 - 15.2) <0.001 
               Failure -- 10.77 (5.02 – 18.03) 12.26 (3.5 – 19.36) 10.81 (4.65 – 18.73) 0.916 

               Success -- 2.68 (1.19 – 5.5) 3.99 (2.3 – 7.61) 2.91 (1.33 – 6.04) 0.014 
ICU free days (among those who were in 

the ICU) 
     

               Total 5.5 (0.56 – 12.59) 6.69 (2.03 – 11.96) 3.59 (0.3 – 9.41) 5.62 (0.99 – 12.22) 0.003 
               Failure -- 6.97 (1.69 – 12.71) 4.72 (0.74 – 11.81) 6.72 (1.43 – 12.43) 0.115 

               Success -- 5.6 (2.4 – 10.61) 2.27 (0.14 – 6.53) 5.03 (1.67 – 9.91) <0.001 
Hospital length of stay (days)      

               Total 17.59 (9.47 – 28.23) 12.32 (6.97 – 21.06) 11.75 (7.22 – 18.98) 14.46 (7.95 – 24.24) <0.001 
               Failure -- 20.17 (13.79 – 29.27) 17.61 (11.44 – 27.77) 19.85 (13.22 – 29.02) 0.157 

               Success -- 9.8 (5.84 - 15.22) 9.86 (5.93 - 14.8) 9.82 (5.85 - 15.03) 0.655 
Estimates are n (% of column n with available data) for categorical characteristics and median 
(interquartile range) for continuous characteristics. Inferences for categorical variables are the result of 
Fisher Exact Tests, with p-values computed via Monte Carlo simulation when necessary for computational 
efficiency. Inferences for continuous variables come from Kruskal-Wallis rank sum test of group 
differences.  
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Figure 2: Kaplan-Meier curves for NIRS vs IMV for death (left) and discharge alive (right) 
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Figure 3: Estimated Hazard Ratios for Time-to-Discharge Alive HFNO vs. IMV (left) and NIPPV vs. IMV (right) at 
various points in time.  Pointwise 95% confidence intervals included. 
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Data Preprocessing 

Data were preprocessed to exclude participants under age 18, visits for which a phenotype was not available, 
and participants who exited the hospital (either alive or dead) before treatment. Some patients appeared to have 
multiple applicable hospital visits. Hospital transfers were identified by looking for multiple entries with the same ID 
where the patients had the same gender, race, ethnicity, age (max one year difference), the patient was alive at 
transfer, and consecutive hospital discharge and admission times were fewer than 24 hours apart. Identified transfers 
were combined into a single visit entry, and for six visits, phenotypes were adjusted as appropriate. Overall, 48 
transfers were identified, and 122 later visits were discarded.  Later visits were discarded in order to sample from the 
population of first COVID-19 visits. Height and weight were defined preferentially as the first recorded height and 
weight and secondarily as the admission height and weight (available for ICU data only); among ICU visits, there were 
72 instances of using an admission instead of a time-stamped height and 11 instances of using an admission instead 
of a time-stamped weight.  Heights below 48 inches and weights below 50 pounds were classified as potential data 
errors, and the next valid height and/or weight was sought. For nine people, this resulted in no height data being 
available; for two people these rules resulted in no weight data being available. In the ICU data, 72 visits had an 
admission height but not a time-stamped height, and 11 visits had an admission weight but not a time-stamped weight. 
In order to work with a deidentified data set, for the 42 participants with age over 89 years (18 participants with “>89”, 
and 24 with specific ages >89), their age was marked as 90.  Race and ethnicity were standardized.  For the respiratory 
rate, FiO2, oxygen flow rate, and SpO2 variables, the value closest to and before first treatment were identified. For 
people with phenotype 8 (evidence of all three treatments but unclear order), the first treatment start time was taken 
to be the earliest treatment start time identified by the phenotyping algorithm. Oxygen flow rates were used to calculate 
FiO2 (FiO2 = 100(0.21 + oxygen flow [L/min-1] x 0.03), and the FiO2 value (either raw or calculated) selected for later 
use was the latter one. 
 
Propensity Score Estimation via Generalized Boosted Models: 
  

We follow McCaffrey et al.’s (2013) approach to estimating propensity scores by using generalized boosted 
models (GBMs).1 GBMs estimate propensity scores for the three treatments by fitting the models to the dichotomized 
outcomes of each treatment versus the other two. This results in three GBMs being fit each time propensity scores 
are estimated for models comparing NIPPV, HFNO, and IMV. Because each GBM consists of an iterative process of 
combining simple regression trees into a piecewise constant function, for each GBM, we must choose a point at which 
to stop adding onto the regression tree. Four criteria can readily be used to choose a stopping point; all four attempt 
to describe the difference between the distributions of covariates for the comparison groups for each dichotomized 
outcome (e.g., between patients who received IMV and all patients); the goal is to minimize the differences between 
the groups. Note that we wish to estimate the average treatment effect between pairs of treatments within the context 
of our entire population. This is considered in each stopping criterion:1 

 

1. Mean Absolute Standardized Bias: mean across covariates of the absolute standardized difference between the 
weighted mean of the covariate for the treatment group of interest and the unweighted mean of the covariate for 
the entire sample.  Weights are the inverse of the estimated propensity scores. Because we are interested in 
estimating the treatment effect in the general population of people receiving any of the three treatments, we 
standardize (i.e., divide) here by the estimated standard deviation from the unweighted, pooled, full sample. 

2. Maximum Absolute Standardized Bias: maximum across covariates of the absolute standardized difference 
between the weighted mean of the covariate for the treatment group of interest and the unweighted mean of the 
covariate for the entire sample. Weights and standardization are as described above. 

3. Mean Kolmogorov-Smirnov mean across covariates of the supremum of pointwise absolute differences between 
the weighted empirical distribution function for the covariate among those treated with the treatment of interest 
and the unweighted empirical distribution function for the entire sample. 

4. Maximum Kolmogorov-Smirnov: maximum across covariates of the supremum of pointwise absolute differences 
between the weighted empirical distribution function for the covariate among those treated with the treatment of 
interest and the unweighted empirical distribution function for the entire sample. 

  
For each GBM of a dichotomized outcome, we allow a maximum of 5000 simple regression trees. Empirically, this 

number appeared to allow all four criteria above to achieve their minimum and thus was large enough without being 
excessively large. For each outcome and each stopping criterion, the optimal number of trees was selected. Thus, for 
each treatment, we estimated four propensity scores for having been given the treatment in question. Inverse 
probability of treatment weighting was used in subsequent analyses by taking the inverse of the propensity scores. 
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For all non-interaction and non-sensitivity models, a separate analysis was done for each stopping criterion to ensure 
that results were not dependent on the particular criterion used. No result was dependent on stopping criterion.   
 

Sensitivity Analyses for Time to Intubation 
 
The competing risks analyses of time-to-intubation made a series of analytical decisions that could impact the 

subsequent inference. We thus designed a series of sensitivity analyses that systematically varied our assumptions 
and analytical approach to ensure that results were not dependent on specific decisions.  

The primary reason for sensitivity analyses was that 326 visits could not be reliably classified using the 
phenotyping algorithm. These unclassifiable visits always contained evidence of all three treatments (IMV, HFNO, 
and NIPPV). However, in these cases, conflicting information in the medical record often made it unclear to the 
algorithm which treatment came first. For example, a patient might appear to be intubated, switched to NIPPV, then 
reintubated in a 30-minute period. Such information would cause the algorithm to fail to assign a treatment ordering 
to that visit.  While these same cases were present in the other analyses, in those analyses, we were able to impute 
treatment, estimate propensity scores for each imputed data set, model each data set, then combine model estimates 
across data sets using Rubin's Rules.  

The weighted Gray’s test of competing risks, however, used a bootstrapped null distribution. There was thus no 
obvious way to use Rubin's Rules. A common alternative approach to combining propensity scores and multiple 
imputation --- estimating propensity scores for each imputed data set, averaging them, and choosing a single imputed 
data set at random to use in the analysis along with the averaged propensity scores --- wasn't applicable because of 
the need to impute treatment. When treatment is imputed, it is unclear how well a particular data set approximates 
the true but unknown treatment identities, and thus using the average propensity score approach is inappropriate.2  
Moreover, different observations could be included in each data set since people imputed to have an invasive first 
treatment would be excluded. Determining how to compute average propensity scores for people who were not 
consistently included in the analyses and how to appropriately handle the data from those individuals left out of the 
randomly sampled data set is beyond the scope of this paper. A final challenge of using the average propensity score 
approach came from the need to impute the time to event for 52 people; if the imputed outcomes were particularly 
outlying and influential for a randomly selected data set, then the inference may not be correct. An alternative to 
Rubin's Rules — judging statistical significance via the median p-value from the pooled p-values across all the imputed 
data sets, while appealing, is less common and would need to be utilized in an analysis scenario not covered in 
Eekhout et al.3 

The sensitivity analyses thus encompass a range of ways to handle the above challenges.  Each combines a 
data decision, an outcome decision, an imputation decision, and an inference approach decision to arrive at an 
analysis pipeline. Note that some combinations of the four decisions were not possible. Moreover, where it was 
possible to take either the average propensity score or median p-value approach, we did not always conduct both 
corresponding analyses. Rather, we defaulted to the average propensity score approach except when we are imputing 
time-to-event information; in those cases, we also conduct the corresponding analysis with the median p-value 
inference approach as an extra confirmation that the specific data set chosen in the average propensity score 
approach didn't have particularly influential imputed times-to-event. 
  
Data Decision: How and how much of the unclassifiable data to include. 

- Option A: We assume that we know everything about the unclassifiable data and base our knowledge on 
treatment start information. We exclude patients with IMV as the first marked treatment and assign patients 
with HFNO or NIPPV marked as the first treatment to the corresponding treatment group. If the two 
noninvasive therapies tie for first treatment (7 people), we randomly select one. 

- Option B: We assume that we know whether the first treatment was IMV or NIRS based on the treatment time 
stamps. Patients with IMV as the first treatment are excluded from analysis. However, because of potential 
nomenclature inconsistencies between NIPPV and HFNO, we assume that the first noninvasive treatment 
could have been either NIPPV or HFNO. We impute the initial noninvasive treatment type. 

- Option C: We assume that we do not know what treatment came first and thus whether or not anyone with the 
unclassifiable phenotype should be included in this competing risks analysis. Thus, we exclude them all from 
the analysis. 

Unknown Outcome Decision:  
- Yes: Include patients with unknown time-to-event. 
- No: Do not include patients with unknown time-to-event. 

Imputation Decision: The decision whether to do imputation impacts which predictors are used in the propensity 

score calculations. If imputation is conducted, the propensity score algorithm uses the previously described predictors; 

otherwise, it uses a restricted subset for which all information is available (age, gender, hospital size). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.19.22283704doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.19.22283704
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

- Yes: Conduct multiple imputation by chained equations. 
- No: Do not impute missing data. 

Inference Approach Decision:  
- Average Propensity Score Approach: In this approach, the propensity scores for each visit are averaged 

across imputed data sets. These averaged scores are used with a randomly-selected imputation dataset.  This 
approach is not appropriate when treatment is imputed. 

- Median P-Value Approach: In this approach, the weighted Gray's test is conducted on each imputed data set 
(with its own set of propensity scores). Then, the median p-value across data sets is taken for inference. 

- Single Propensity Score Approach: This case arises when we are not imputing data. Then, we estimate 
propensity scores once (based on the limited predictor set) and use them in the weighted Gray's test. 

The ten proposed competing risks analyses correspond to the following combinations of the four decision points (all 
p-values were <0.001): 
 

Analysis Data Decision Unknown Outcome 
Decision Imputation Decision Inference Approach 

Decision 
Sensitivity Analysis #1 A Yes Yes Average Propensity 

Score 
Sensitivity Analysis #2 A Yes Yes Median P-Value 

Sensitivity Analysis #3 A No Yes Average Propensity 
Score 

Sensitivity Analysis #4 A No No Single Propensity Score 
Sensitivity Analysis #5 B Yes Yes Median P-Value 
Primary Competing 

Risks Analysis B No Yes Median P-Value 

Sensitivity Analysis #6 C Yes Yes Average Propensity 
Score 

Sensitivity Analysis #7 C Yes Yes Median P-Value 

Sensitivity Analysis #8 C No Yes Average Propensity 
Score 

Sensitivity Analysis #9 C No No Single Propensity Score 
 
We considered the analysis Data Decision B + Unknown Outcome Decision: No + Imputation Decision: Yes + 
Inference Approach Decision: Median P-Value to be primary and the others to be sensitivity analyses.  Additionally, 
given the lack of inferential difference associated with the different propensity score estimation stopping rules, for all 
sensitivity analyses, we only used the mean absolute standardized bias stopping rule. We did, however, use all four 
stopping rules for the primary competing risks analysis.   
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Figure 1: Time-to-intubation sensitivity analyses.  In the estimation of these weighted survival plots, people who 
die remain in the risk set after their death because they have neither been censored nor experienced intubation.  All 
time-to-intubation analyses showed statistically significant differences between initial treatment with HFNO and 
NIPPV (p < 0.001). 
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Table 1: Demographics of Unclassifiable Cohort 
 

Measure Unknown 
N (%) 326 (14% of 2354) 
Sex  

               Male 222 (68% of 326) 
               Female 104 (32% of 326) 

Age 65 (58 - 71) 
BMI 31.82 (28.06 - 37.66) 

Ethnicity  
               Not Hispanic or Latino 165 (53% of 314) 

               Hispanic or Latino 149 (47% of 314) 
Race  

               White 245 (78% of 313) 
               Black or African American 16 (5% of 313) 

               Asian/Native Hawaiian/Other Pacific Islander 5 (2% of 313) 
               American Indian or Alaska Native 30 (10% of 313) 

               Other 17 (5% of 313) 
APACHE IVa Score on Admission 65 (51.75 - 82) 

Vital Signs on Treatment Assignment  
HR 87 (74 - 98.75) 

SBP 129 (114 - 144.5) 
DBP 74 (65 - 82) 

SpO2 91 (88 - 94) 
Oxygen Flow Rate/L 40 (15 - 50) 

FiO2* 100 (80 - 100) 
SpO2:FiO2 95 (90 - 119.22) 

Temperature (C) 37 (37 - 37) 
Respiratory Rate 25 (20 - 31.25) 

Comorbidities**  
Diabetes 203 (68% of 299) 

Chronic Kidney Disease 61 (20% of 299) 
Heart Failure  50 (17% of 299) 
Hypertension 246 (82% of 299) 

Chronic Liver Disease 74 (25% of 299) 
Neoplasm or Immunosuppression 21 (7% of 299) 

COPD 81 (27% of 299) 
Labs on Admission  

PaO2 (Worst Value) 62.55 (55.73 - 73) 
PaO2:FiO2 (Worst Value) 66.33 (56 - 90.32) 

White Blood Cell Count 8 (6 - 11.4) 
Lactate 1.6 (1.2 - 2.38) 

pH 7.42 (7.36 - 7.45) 
PaCO2 35 (30.6 - 41) 
HCO3 22 (20 - 24) 

BNP 356 (140 - 1184) 
Creatinine 0.97 (0.75 - 1.31) 

Therapies  
Therapeutic Anticoagulationa 307 (94% of 326) 

Hydroxychloroquine 12 (4% of 326) 
Remdesivir 237 (73% of 326) 

Corticosteroidsb 318 (98% of 326) 
Tocilizumab 0 (0% of 326) 

Continuous Paralysis 132 (40% of 326) 
Time from Hospital Admission to First Treatment 
Assignment (Hours) 114.32 (38.65 - 238.4) 

Vasopressor Use  
Before Treatment 32 (10% of 326) 

At or After Treatment 307 (94% of 326) 
Location at Treatment Assignment  

               Emergency Department 22 (7% of 326) 
               ICU 145 (44% of 326) 

               Ward 53 (16% of 326) 
               Stepdown 106 (33% of 326) 
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Table 2: Time-to-In-Hospital Death (NIRS vs IMV). Model estimates shown below correspond to the mean 
absolute standardized bias stopping rule in the generalized boosted models.  Inferential results were the same for 
the other stopping rules 
 

 
 
 
 
 
 
Figure 2: Time-to-In-Hospital Death (NIRS vs IMV). Time-to-in-hospital death weighted Kaplan-Meier curves for 
noninvasive respiratory support versus invasive mechanical ventilation. Curves use propensity scores estimated via 
the mean absolute standardized bias stopping rule in the generalized boosted models. 
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Table 3: Time-to-Hospital Discharge Alive (NIRS vs IMV). Death is treated as a competing risk. Time zero is time 
of first treatment assignment. 
 

 
 
 
 
 
Figure 3: Time-to-Hospital Discharge Alive (NIRS vs IMV). Time-to-hospital discharge alive weighted Kaplan-
Meier curves for noninvasive respiratory support versus invasive mechanical ventilation. Time zero is time of first 
treatment assignment.  In these Kaplan-Meier estimates, people experiencing death are treated as censored. 
Curves use propensity scores estimated via the mean absolute standardized bias stopping rule in the generalized 
boosted models. 
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Table 4: Time-to-Hospital Discharge Alive (NIRS vs IMV) Sensitivity Analysis. Death is treated as a competing 
risk. Time zero is time of hospital admission. 
 

 
 
 
 
Figure 4: Time-to-Hospital Discharge Alive (NIRS vs IMV) Sensitivity Analysis. Time-to-hospital discharge alive 
weighted Kaplan-Meier curves for noninvasive respiratory support versus invasive mechanical ventilation. Time zero 
is time of hospital admission. In these Kaplan-Meier estimates, people experiencing death are treated as censored. 
Curves use propensity scores estimated via the mean absolute standardized bias stopping rule in the generalized 
boosted models. 
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Table 5: Time-to-ICU Discharge Alive (NIRS vs IMV), with death as a competing risk for noninvasive respiratory 
support versus invasive mechanical ventilation. Time zero is time of ICU admission.  
 

 
 
 
 
 
 
 
Figure 5: Time-to-ICU Discharge Alive Secondary Outcome (NIRS vs IMV). Weighted Kaplan-Meier curves for 
noninvasive respiratory support versus invasive mechanical ventilation. Time zero is time of ICU admission. In these 
Kaplan-Meier estimates, people experiencing death are treated as censored. Curves use propensity scores 
estimated via the mean absolute standardized bias stopping rule in the generalized boosted models. 
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Table 6: Time-to-In-Hospital Death (HFNO vs NIPPV vs IMV). Model estimates shown below correspond to the 
mean absolute standardized bias stopping rule in the generalized boosted models.  Inferential results were the 
same for the other stopping rules. 
 

 
 
 
 
 
 
Figure 6: Time-to-In-Hospital Death (HFNO vs NIPPV vs IMV). Time-to-in-hospital death weighted Kaplan-Meier 
curves for HFNO versus NIPPV versus invasive mechanical ventilation.  Curves use propensity scores estimated via 
the mean absolute standardized bias stopping rule in the generalized boosted models. 
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Table 7: Time-to-Hospital Discharge Alive (HFNO vs NIPPV vs IMV). Death is treated as a competing risk. Time 
zero is time of first treatment assignment. 
 

 
 
 
 
 
 
 
Figure 7: Time-to-Hospital Discharge Alive (HFNO vs NIPPV vs IMV). Time-to-hospital discharge alive weighted 
Kaplan-Meier curves for HFNO versus NIPPV versus invasive mechanical ventilation. Time zero is time of first 
treatment assignment. In these Kaplan-Meier estimates, people experiencing death are treated as censored. Curves 
use propensity scores estimated via the mean absolute standardized bias stopping rule in the generalized boosted 
models. 
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Table 8: Time-to-Hospital Discharge Alive (HFNO vs NIPPV vs IMV) Sensitivity Analysis. Death is treated as a 
competing risk. Time zero is time of hospital admission. 
 

 
 
 
 
 
 
 
Figure 8: Time-to-Hospital Discharge Alive (HFNO vs NIPPV vs IMV) Sensitivity Analysis. Time-to-hospital 
discharge alive weighted Kaplan-Meier curves for HFNO versus NIPPV versus invasive mechanical ventilation. 
Time zero is time of hospital admission. In these Kaplan-Meier estimates, people experiencing death are treated as 
censored. Curves use propensity scores estimated via the mean absolute standardized bias stopping rule in the 
generalized boosted models. 
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Table 9: Time-to-ICU Discharge Alive (HFNO vs NIPPV vs IMV), with death as a competing risk for HFNO versus 
NIPPV versus invasive mechanical ventilation. Time zero is time of ICU admission. Model estimates shown below 
correspond to the mean absolute standardized bias stopping rule in the generalized boosted models.  Inferential 
results were the same for the other stopping rules. 
 

 
 
 
 
 
 
 
Figure 9: Time-to-ICU Discharge Alive (HFNO vs NIPPV vs IMV). Weighted Kaplan-Meier curves for HFNO 
versus NIPPV versus invasive mechanical ventilation. Time zero is time of ICU admission. In these Kaplan-Meier 
estimates, people experiencing death are treated as censored. Curves use propensity scores estimated via the 
mean absolute standardized bias stopping rule in the generalized boosted models.  
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STROBE Checklist 
 
 Item 

No. Recommendation 
Page  
No. 

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or the abstract 1 

(b) Provide in the abstract an informative and balanced summary of what was done and what was found 3 

Introduction 
Background/rationale 2 Explain the scientific background and rationale for the investigation being reported 4 

Objectives 3 State specific objectives, including any prespecified hypotheses 4 

Methods 
Study design 4 Present key elements of study design early in the paper 4 

Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data 

collection 

4-5 

Participants 6 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe 

methods of follow-up 

4-5 

(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed 5-7 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic 

criteria, if applicable 

5-7 

Data sources/ 

measurement 

8*  For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe 

comparability of assessment methods if there is more than one group 

5-7 

Bias 9 Describe any efforts to address potential sources of bias 5-7 

Study size 10 Explain how the study size was arrived at 4 

Continued on next page   
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Quantitative 

variables 

11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen 

and why 

4-8 

Statistical 

methods 

12 (a) Describe all statistical methods, including those used to control for confounding 4-7 

(b) Describe any methods used to examine subgroups and interactions 4-7 

(c) Explain how missing data were addressed 6-7 

(d) Cohort study—If applicable, explain how loss to follow-up was addressed NA 

(e) Describe any sensitivity analyses 6-7 

Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, 

confirmed eligible, included in the study, completing follow-up, and analysed 

7 

(b) Give reasons for non-participation at each stage 7 

(c) Consider use of a flow diagram 13 

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and 

potential confounders 

7, 14-16 

(b) Indicate number of participants with missing data for each variable of interest 28-33% 

(c) Cohort study—Summarise follow-up time (eg, average and total amount) NA 

Outcome data 15* Cohort study—Report numbers of outcome events or summary measures over time 8-9 
Case-control study—Report numbers in each exposure category, or summary measures of exposure  
Cross-sectional study—Report numbers of outcome events or summary measures  

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% 

confidence interval). Make clear which confounders were adjusted for and why they were included 

8-9 

(b) Report category boundaries when continuous variables were categorized  

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 10 

Continued on next page   
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Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 8-9, 

supplement 

Key results 18 Summarise key results with reference to study objectives 9-10 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and 

magnitude of any potential bias 

11-12 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from 

similar studies, and other relevant evidence 

12 

Generalisability 21 Discuss the generalisability (external validity) of the study results 11 

Other information 
Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on 

which the present article is based 

2 

 
*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. 
 
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE 
checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at 
http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org. 
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