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Abstract. We model the observed dynamics of COVID-19 in Mexico and
Peru and explore the impact of hypothetical non-pharmaceutical interventions

applied on key days of civic, religious, or political nature that increased con-

tacts and transmission events. Using as a baseline the observed epidemic
curve, we apply hypothetical reductions in the contact rates during the first

year of the pandemic: i) near the beginning, ii) at the beginning of the second

outbreak, and iii) end of the year. The effects of the interventions are differ-
ent for Mexico and Peru but underlie the fact that strong early interventions

do reduce the prevalence and, in general, allow for an epidemic evolution of

relatively lower prevalence than interventions applied once the epidemic is un-
derway. We provide evidence that key calendar days are good approximations

of times when contact rates change and, therefore, are efficient periods for ef-
fective interventions particularly in places with low testing and lack of contact

tracing. This has helped us to recreate different outbreaks of the COVID-19

disease dynamics in Mexico and Peru and explore the impact of hypothetical
interventions that reduce the contact rate.

1. Introduction

Emerging infectious diseases can be defined as infections that have newly appeared
in a population or have existed but are rapidly increasing in incidence or geographic
range [24]. Recent examples are H1N1 influenza (2009), Chikungunya (2014), Zika
(2015), and COVID-19 (2019 to the present), the latter being the cause, so far, of
more than 6.6 million deaths around the world [22].

Mathematical modeling has been widely used to study the COVID-19 epidemic.
The transmission dynamics has been described with many different methodologies,
several of them centered on estimating the effective reproduction number Rt with
some version of the well-known Kermack-McKendrick model [7,17,30,35]. Dur-
ing 2020 and 2021, much effort was centered on projecting the COVID-19 pan-
demic and evaluating the efficacy of the mitigation strategies adopted to contain
it [6,16]. Around the world, the implementation of these measures has varied in
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strength ranging from strict and mandatory governmental enforcement to a vol-
untary personal decision. Regardless of the particular version of the mitigation
strategy followed, these strategies were based on local factors that combine public
health status, economic impact and political conditions [4].

The central phenomena of human behavior that we explore are superspreading
events occurring in particular calendar dates associated with religious, commercial,
or civic holidays specific to each country. During or after these events (depending
on their length), the contact rate changes. We, therefore, use these events as change
points. We argue that in Mexico and Peru (both middle-income countries with a
very stressed economic activity due to the pandemic), these change points (key cal-
endar dates) reflect on the contact rate more clearly than changes imposed by the
government (non-pharmaceutical interventions or NPIs) [13,19]. Using key calen-
dar dates has another advantage from the perspective of forecasting: these dates
are known in advance and therefore mobility can be anticipated (short vacations,
family visits, buying sprees, etc).

Here, we present a methodology that uses the known history of the disease
reflected in the contact rate as a baseline to recreate the observed disease dynamics.
In [13], the authors have used a similar idea but, in our case, to determine changes in
the contact rate, we look at particular events occurring on dates related to school,
civic or religious periods (vacations, civic holidays, commercial events) that are
known in advance each year for a given country. With this historical information
in hand, we describe the short-term evolution of the COVID-19 pandemic. Our
results are illustrated considering as examples some Mexican states (Mexico City,
Queretaro, Quintana Roo, and Sonora) and some departments of Peru (Arequipa,
Cusco, Lima, and Piura). The main objective is to analyze, in retrospective, the
impact of hypothetical non-pharmaceutical interventions in several keydates. In
particular, we analyze the effect of these interventions in the cumulative number of
confirmed cases and deaths.

The COVID-19 epidemic impact on the regional and global economy has influ-
enced decisions on how and when businesses, public centers, tourism, schools and
universities can safely reopen [23]. For decision-makers it is important to count
with a quantitative evaluation of the measures that were taken and those that
could have been taken during the SARS-CoV-2 pandemic in order to design and
apply better and more effective mitigation strategies in the likely event of a new
infectious disease emergency. This knowledge is even more pressing in countries
that lack the full infrastructure to acquire a more precise or, perhaps we should
say, a less uncertain idea of the behavior of the pandemic. This paper attempts to
provide such evaluation.

The manuscript is organized as follows. In Section 2, we present the formu-
lation of the mathematical model and the methodology for parameter estimation.
In Section 3, we show the results of the model fitting for Mexico and Peru. Sec-
tion 4 makes a retrospective analysis considering hypothetical interventions that
occurred on predefined key dates. Finally, discussion and conclusions can be found
in Section 5.
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2. Methods

2.1. Mathematical model. A compartmental model is used to describe the
evolution of the COVID-19 pandemic. The model considers three classes of in-
fected individuals: Asymptomatic (I), Symptomatic (Y) and Reported (T). Once
reported, infected individuals are effectively isolated and no longer participants in
the transmission process. The model allows Susceptible (S) individuals to be Vac-
cinated (V) with a vaccination rate ψ. It is assumed that the vaccine is not perfect
which implies that vaccinated people can be infected. Likewise, it is assumed that
vaccinated individuals become susceptible after a certain period. Vital dynamics
are also included since this work models the first year of the pandemic. Figure 1
shows the corresponding model diagram.
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Figure 1. Mathematical model diagram. There are three
types of infectious individuals: asymptomatic, symptomatic and
reported. Reported cases do not play a role in transmission. Here,
λS(t) and λV (t) represent the infection force related to susceptible
and vaccinated people, respectively.

The mathematical model is given by the system of ordinary differential equa-
tions shown in the system (2.1).

S′ = ωR+ ϕV + χM − β(t)(Y + qI)
S

N
− [χ+ ψ]S,

V ′ = ψS − (1− σ)β(t)(Y + qI)
V

N
− [ϕ+ χ]V,

E′ = β(t)(Y + qI)
S

N
+ (1− σ)β(t)(Y + qI)

V

N
− [γ + χ]E,

I ′ = ργE − [δ + χ]I,(2.1)

Y ′ = (1− ρ)γE − [ϵη + (1− ϵ)ν + χ]Y,

T ′ = (1− ϵ)νY − [α(t)κ+ (1− α(t))µ+ χ]T,

R′ = δI + ϵηY + α(t)κT − [ω + χ]R,

D′ = (1− α(t))µT,
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Note that, in (2.1), N = S + V + E + I + Y +R and M = N + T . Table 1 shows
a description of all the model’s parameters and their values.

Table 1. Description and values of the model’s parameters
given in System 2.1. See [1,28] for sources.

Parameter Description Value Units
ψ Vaccination rate varying days−1

ν Screening rate varying days−1

µ Disease mortality rate varying days−1

ϕ Vaccine immunity waning rate 0.006 days−1

ω Natural immunity waning rate 0.006 days−1

γ Incubation rate 0.196 days−1

δ Asymptomatic recovery rate 0.143 days−1

η Symptomatic recovery rate 0.071 days−1

κ Reported recovery rate 0.1 days−1

χ Natural mortality rate 3.629×10−5 days−1

ρ Proportion of asymptomatic 0.35 %
ϵ Proportion of symptomatic recovered 0.94 %
q Asymptomatic infectiousness reduction 0.45 %
σ Vaccine efficacy varying %
α(t) Proportion of reported recovered people estimated %
β(t) Effective transmission contact rate estimated days−1

The model depicted in Figure 1 is standard, but its main feature is how the
contact rate β and the proportion of reported recovered people α are handled.
Both parameters are time-dependent and defined through the interpolation of k
change points. Interpolation is done using Hermite polynomials instead of splines
to guarantee that both rates remain positive at any point in time. It is possible
to estimate these two functions by using two time series: the number of reported
cases and deaths. The k points in time when changes in β and α occur are pre-
defined dates associated with the beginning of the mitigation measures and civic
or religious holidays.

2.1.1. Vaccination parameters. Many countries worldwide are using more than
one vaccine. However, our model does not incorporate a detailed vaccination dy-
namic with different vaccines, doses, and efficacy since there is limited information
regarding this process in Mexico and Peru.

The lack of information on the vaccination process affects the knowledge of
important parameter values. Thus, as a first approach, it is assumed that suscep-
tible individuals are vaccinated at a rate ψ to estimate the vaccination rate. Since
the probability of having been vaccinated at time t is 1− exp(−ψt) then, if a pro-
portion p of the susceptible population is already vaccinated at time TV , then the
vaccination rate that achieves this coverage is given by

(2.2) ψ = − log(1− p)

TV
.

Parameters p, TV and therefore, ψ, will vary between regions depending on
the start of vaccination and vaccine stock. More details about the above will be
provided in the Section 3.
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2.2. Parameter estimation.
2.2.1. Data. We use the available COVID-19 data of Mexico and Peru [9–11,

15]. Data consists of daily records of reported cases for Mexico, confirmed cases
for Peru, and deaths for both countries. We considered data from the start of the
pandemic (late February to early March, depending on the specific location) until
June 16, 2021.

2.2.2. Statistical inference. A Bayesian approach is used to estimate key pa-
rameters of system 2.1: the time dependent contact rate β(t) and the proportion
of recovered reported individuals α(t).

To simplify the estimation process of functions β(t) and α(t), it is assumed
that each of them is determined by their values at preset times τ1, τ2, . . . , τk, which
are associated to the key dates of the studied regions. Let ai be the proportion of
reported recovered individuals at time τi, and bi the contact rate at time τi, for
i = 1, . . . , k. Values of β(t) and α(t) for any other point in time are obtained by
interpolation using Hermite polynomials instead of splines to guarantee that both
rates remain positive.

Let θ = (a1, a2, . . . , ak, b1, b2, . . . , bk) the vector of parameters that will be
estimated. All the other parameters needed to solve system 2.1 are fixed and their
values can be found in Table 1. It is assumed that parameters bi are positive and
parameters a1 must take values in (0,1).

LetWj andXj be the random variables that count the number of daily COVID-
19 reported infected individuals and deaths at time tj , respectively, for j = 1, 2, ...n.
Here, tj represents the number of days since the start of the pandemic in each region.
It is assumed that the probability distribution of Wj , conditional on the vector of
parameters θ, is a Poisson distribution such that E[Wj ] = C(tj |θ)−C(tj−1|θ), with
C(t|θ) being the cumulative number of reported cases according to System 2.1. Sim-
ilarly, the probability distribution of Xj , conditional on the vector of parameters θ,
is a Poisson distribution such that E[Xj ] = D(tj |θ)−D(tj−1|θ), with D(t|θ) being
the cumulative number of deaths according to the compartmental model. Assuming
that variables W1,W2, . . . ,Wn and X1, X2, . . . , Xn are conditionally independent,
then the likelihood function is given by

π(w1, . . . , wn, x1, . . . , xn|θ) =
n∏

j=1

[C(tj |θ)− C(tj−1|θ)]wj exp{−[C(tj |θ)− C(tj−1|θ)]}
wj !

×
n∏

j=1

[D(tj |θ)−D(tj−1|θ)]xj exp{−[D(tj |θ)−D(tj−1|θ)]}
xj !

(2.3)

The joint prior distribution for vector θ is a product of independent uniform
distributions and independent log-normal distributions. For parameters a1, . . . , ak,
the prior is Uniform(0,1), and for b1, . . . , bk the prior is log-normal(0.3, 2). Then

π(θ) =
k∏

i=1

π(bi)π(ai) ∝
k∏

i=1

1

bi
exp

{
− [ln(bi)− µ]2

2σ2

}
.

The posterior distribution of the parameters of interest is

π(θ|w1, . . . , wn, x1, . . . , xn) ∝ π(w1, . . . , wn, x1, . . . , xn|θ)π(θ),
and it does not have an analytical form since the likelihood function depends on the
numerical solution of the ODE System 2.1. We analyze the posterior distribution
using an MCMC algorithm called t-walk [12]. For each region, 3 chains of 8 million
iterations are run, from which 200,000 are discarded as burn in. At the end, only
1000 iterations are retained to create the estimations presented in this work.
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Of course, confirmed COVID-19 cases can be grouped in different forms in
order to represent the epidemic curve. In the case of Mexico, the number of cases
can be grouped by date of symptoms onset, by the date when individuals seek
medical attention (or tests), and by date of test results. In the case of Mexico,
reported cases X1, . . . , Xn are those who seek medical attention at time t. This is
why parameter ν is referred as the screening rate, the time from symptoms onset to
testing. In the case of Peru, reported cases X1, . . . , Xn are those that got positive
test results at time t. In that case, ν−1 represents the time from symptoms onset
to test results. Notice that there is no need to modify the compartmental model to
handle the difference between these two types of data, it is enough to change the
parameter ν, although the interpretation of the model is slightly different.

3. Results

The estimation of the time-varying contact rate β(t) is central to our work. We
first fit the observed cases for both Mexico and Peru. The estimated function β(t)
constitutes the baseline on which comparisons are made when evaluating hypothet-
ical interventions. Figure 2 illustrates the baseline time-dependent contact rate
for Mexico City and Lima, estimated from the open repositories of incidence data
available in each country. The perturbations that will be described in the following
subsections are local, i.e., only change the contact rate on an specific time interval.
For each perturbation, outside this interval the rest of the contact rate remains
equal to the baseline β(t) plotted in Figure 2.
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Mar 2021

May 2021
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ta
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Figure 2. Baseline time-dependent contact rate for Mex-
ico City (red) and Lima (blue).

3.1. COVID-19 dynamics in Mexico. As mention above, we use the avail-
able COVID-19 data of each Mexican state [15]. The dates when parameters β and
α are assumed to change are shown in Table 2. These dates are the same for all
states except for the start of the pandemic.

To calculate the vaccination rate in Eq 2.2, let, for each state, TV be the num-
ber of days from the start of vaccination up to June 16, 2021. The proportion of
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Table 2. Key-dates used to estimate the contact rate and
the proportion of reported recovered people for Mexican
States.

Description Dates Description Dates
First case Varying Day of the virgin 2020-12-12
NPIs start 2020-03-23 Christmas 2020-12-24
Childrens day 2020-04-30 New Year 2020-12-31
Mothers day 2020-05-10 Wise men day 2021-01-06
Fathers day 2020-06-21 Valentines day 2021-02-14
Independence day 2020-09-16 Easter 2021-04-04
Day of the dead 2020-11-02 Childrens day 2021-04-30
Buen Fin ends 2020-11-21 Mothers day 2021-05-10

vaccinated people p during that period is approximated from official communica-
tions of the Mexican government [14]. On the other hand, we consider the total
number of vaccines applied until June 16, 2021 [14], and the reported efficacy of
the vaccines used in Mexico [8] to calculate the weighted vaccine efficacy (σ).

Figure 3 shows the COVID-19 model dynamics of reported cases in comparison
with the observed data from the beginning of the pandemic to June 9, 2021. To
exemplify the results, we chose states located at the north, center, and south of
the country: Sonora, Mexico City, Queretaro, and Quintana Roo. Note that each
epidemic curve has a different behavior. Nevertheless, the proposed scheme based
on key dates provides a good fit for the data.
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Figure 3. New reported COVID-19 cases in four Mexican
states. (A) Mexico City, (B) Queretaro, (C) Sonora, and (D)
Quintana Roo. Blue bars show reported cases data. Red lines
show the median posterior estimates. The gray shadow represents
95% pointwise probability regions.

Figure 4 shows the daily mortality given by the model in comparison with the
observed deaths until June 9, 2021 for the same Mexican sates. The fit is also good
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even when the observed data shows state specific patterns. Furthermore, observe
that the dynamics of reported cases and deaths is typical to each state.
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Figure 4. New reported COVID-19 deaths in four Mex-
ican States. (A) Mexico City, (B) Queretaro, (C) Sonora, and
(D) Quintana Roo. Black bars show reported deaths. Red lines
show median posterior estimates. The gray shadow represents 95%
pointwise probability regions.

3.2. COVID-19 dynamics in Peru. Using COVID-19 data from Peru from
the beginning of the epidemic until June 16, 2021 [9, 10], the corresponding key
dates used to estimate parameters β and α for Peru are shown in Table 3. Data
used to calculate values for ψ and σ can be found in [11].

Table 3. Key-dates used to estimate the contact rate and
the proportion of reported recovered people by depart-
ment (political unit) of Peru.

Description Dates Description Dates
First case Varying
NPIs start 2020-03-16 Saints’ day 2020-11-01
Easter 2020-04-12 Immaculate Conception day 2020-12-08
Labor day 2020-05-01 Christmas 2020-12-24
Mothers day 2020-05-10 New Year 2021-01-01
Fathers day 2020-06-21 Wise men day 2021-01-06
St Peter and St Paul day 2020-06-29 Valentines day 2021-02-14
Independence day 2020-07-28 Easter 2021-04-04
Santa Rosa de Lima day 2020-08-30 Labor day 2021-05-01
Battle of Angamos 2020-10-08 Mothers day 2021-05-09

Figures 5 and 6 show observed and fitted COVID-19 confirmed cases and mor-
tality, respectively, in four departments of Peru: Arequipa, Cusco, Lima and Piura.
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We can see that, despite obvious differences in the shape of the epidemic curve be-
tween both countries, the fit continues to be good for confirmed cases and deaths.
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Figure 5. New confirmed COVID-19 cases in four depart-
ments of Peru. (A) Arequipa, (B) Cusco, (C) Lima, and (D)
Piura. Blue bars shows confirmed cases. Red lines show the me-
dian posterior estimates. The gray shadow represents 95% point-
wise probability regions.
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Figure 6. New reported COVID-19 deaths in some de-
partments of Peru. (A) Arequipa, (B) Cusco, (C) Lima, and
(D) Piura. Beige bars shows reported cases data. Red lines show
the median posterior estimates. The gray shadow represents 95%
pointwise probability regions.
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4. Looking back: hypothetical trends under different interventions

As we know, at the beginning of the COVID-19 pandemic, countries around
the world implemented different mitigation measures to control COVID-19 disease
transmission. However, these measures were largely insufficient to control disease
contagion and mortality in many places. A high mortality rate and the occurrence of
more than one outbreak in the first year of the pandemic are evidence of this fact.
As we have argued before, key calendar dates are civic, religious or commercial
days where transmission was observed to increase because of the relaxation or
lack of enforcement of NPIs indicatives. To explore the impact of stricter NPIs
executed or enforced during key calendar dates, we use our mathematical model. We
evaluate the hypothetical epidemic trends obtained by the reduction of the contact
rate at different strengths and different key dates. Contact rate perturbations are
continuous and are defined on an interval of successive key dates in a continuous
way. The percentage reduction that we report refers to the maximum reduction
achieved in this interval. Changes in the contact rate are applied in three periods
during the first year of the pandemic: (i) near the beginning of the pandemic, (ii)
at the beginning of the second outbreak, and (iii) at the end of the year.

In the following we present our results arising from making local changes in
the contact rate at the times listed above. Recall that, for our scenarios, except
for the local perturbation in each case, the rest of the contact rate is the same as
in the baseline case. This assumes that the general social distancing behavior and
compliance with NPIs of the population observed during 2020, expressed in the
magnitude and trend of the contact rate, does not change except on the perturbed
key dates (scenarios (i), (ii), and (iii) above).

4.1. Mexico City. Figures 7 and 8 show Mexico City scenarios regarding
newly reported COVID-19 cases and deaths, respectively. Gray, blue, and green
lines show COVID-19 dynamics when reducing the value of transmission contact
rate to 25%, 50%, and 75%, respectively. Red line represents our baseline COVID-
19 dynamics. We can observe that both figures evidence similar trends in their
behaviors.

Figure 7A shows that all reductions in case (i) lead to a period of slow growth
longer than observed in the baseline. We have argued before [28] that this is due
to the proximity of the intervention day to the peak of the epidemic that occurred
in the last week of May. With respect to outbreaks, all contact rate reductions
generate outbreaks with lower intensity than the baseline. Moreover, taking June
9, 2021 as the final date of our analysis, the most extreme intervention (75% reduc-
tion) produces a reduction close to 56% of the baseline cumulative incidence (see
Figure 7D).

Figure 7B illustrates that reductions in case (ii) occur at a period of epidemic
growth far from the observed peak. For this case the reductions on incidence
are significant; in particular, the most extreme intervention (75% reduction), the
incidence changes direction and takes a downward trend. However, if we consider
June 9, 2021, as the final date of our analysis, the most extreme intervention in
case (ii) is less effective than in case (i). Cumulative incidence presents a reduction
close to 52% regarding the baseline dynamics (see Figure 7E). This last may be a
consequence of the length of the period perturbation in case (i) being greater than
in case (ii).
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Finally, Figure 7F shows that acting on a period coincident with the peak
of the curve (case (iii)) achieves comparatively poor reductions in the cumulative
incidence even in the case of the most extreme intervention (where the reduction
is close to 19% of the baseline cumulative incidence). However, Figure 7C shows
that both medium and extreme interventions notably reduce second-peak levels of
incidence which is very useful to avoid the health centers’ saturation.
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Figure 7. Mexico City Scenarios - New reported COVID-
19 cases. Upper and lower rows represent the daily and cumu-
lative reported COVID-19 cases, respectively. Panels A and D
illustrate COVID-19 dynamics when perturbing the transmission
contact rate on Mother’s day. Panels B and E show COVID-19 dy-
namics when perturbing the transmission contact rate by the end
of the Buen Fin. Panels C and F illustrate COVID-19 dynamics
when perturbing the transmission contact rate on New Year’s day.
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Figure 8. Mexico City Scenarios - New reported COVID-
19 deaths.Upper and lower rows represent the daily and cumu-
lative reported COVID-19 deaths, respectively. Panels A and D
illustrate COVID-19 dynamics when perturbing the transmission
contact rate on Mother’s day. Panels B and E show COVID-19 dy-
namics when perturbing the transmission contact rate by the end
of the Buen Fin. Panels C and F illustrate COVID-19 dynamics
when perturbing the transmission contact rate on New Year’s day.

4.2. Lima. Figures 9 and 10 show Lima scenarios regarding new confirmed
COVID-19 cases and new reported COVID-19 deaths, respectively. Gray, blue,
and green lines show COVID-19 dynamics when reducing the value of transmission
contact rate to 25%, 50%, and 75%, respectively. Red line represents our baseline
COVID-19 dynamics. We can observe that both figures evidence similar trends in
their behaviors.

Figure 9 shows the COVID-19 epidemic curve for Lima. It certainly differs
from that observed in Mexico City. Even though a curfew was imposed, there was
more than one outbreak at the beginning of the pandemic. This indicates that the
curfew did not achieve the intended aim which was to reduce transmission hinting,
perhaps, of a defficient enforcement and compliance. The case of China shows that
efficient curfews can be very effective in suppressing transmission.

In contrast to Mexico City, Figure 9A shows that case (i) results in a different
trend for Lima. The intervention occurs on a date far from the observed peak and,
therefore, similarly to case (ii) in Mexico, the impact of these interventions reduces
the nearby outbreaks notably. Moreover, as in case (i) for Mexico, acting early does
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reduce cumulative incidence overall (see Figure 9D). However, we also observe that
all early reductions resulted in larger peaks on the third outbreak. This is likely a
consequence of a larger susceptible pool associated with early interventions.

Figure 9B illustrates that, in Lima, case (ii) happens when the epidemic curve
is in a downward trend and reaches a local minimum. The consequence of the
intervention at this time is an effective reduction of the size of the later peak.

Moreover, on June 9, 2021, the final date of our analysis, the most extreme
intervention (75% reduction) generates a reduction close to 51% of the baseline
cumulative incidence (see Figure 9E).

Figures 9C and F show that, as in the case of Mexico, case (iii) evidences a
poor reduction in prevalence even for the most strict of the reductions.

Moreover, on June 9, 2021, the final date of our analysis, the most extreme
intervention generates a reduction close to 17% of the baseline cumulative incidence
(see Figure 9F). However, we also observe that all reductions generate a decrease in
the incidence, that produce a plateau behavior for the most extreme intervention.
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Figure 9. Lima Scenarios - New confirmed COVID-19
cases.Upper and lower rows represent the daily and cumulative
confirmed COVID-19 cases, respectively. Panels A and D illus-
trate COVID-19 dynamics when perturbing the transmission con-
tact rate on Mother’s day. Panels B and E show COVID-19 dy-
namics when perturbing the transmission contact rate on Indepen-
dence day. Panels C and F illustrate COVID-19 dynamics when
perturbing the transmission contact rate on New Year’s day.
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Figure 10. Lima Scenarios - New reported COVID-19
deaths.Upper and lower rows represent the daily and cumula-
tive reported COVID-19 deaths, respectively. Panels A and D
illustrate COVID-19 dynamics when perturbing the transmission
contact rate on Mother’s day. Panels B and E show COVID-19
dynamics when perturbing the transmission contact rate on In-
dependence day. Panels C and F illustrate COVID-19 dynamics
when perturbing the transmission contact rate on New Year’s day.

5. Discussion and Conclusions

Emerging infectious diseases are an important concern for public health. COVID-
19 disease is the more recent example that has caused more than 6.6 million deaths
and 650 million confirmed cases around the world as of middle December, 2022 [22].
This disease has once again shown the role of mobility in the spread of acute respi-
ratory diseases [28]. This is consistent with research where superspreading events
are found to be [21].

The epidemic dynamics observed in all of Mexico have been driven by events
associated with heightened mobility and increased social activity [2,5,20,25,26,31,
34,36] during holidays and other important calendar key dates. The older popula-
tion as well as that with comorbidities, such as obesity, diabetes, and hypetension,
has been most affected [27]. Early in the pandemic, key calendar days as described
here, were associated with large gatherings violating the social-distancing policies
in effect at the time. These dates provide good support to putative changes in the
contact rates. As an example, in Mexico City the first case occurred by the end
of February 2020, and the first set of mitigation measures was applied on March
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23, 2020. Later that year, there were superspreading events in Mexico City during
Easter celebrations (April 6-12) and early May (April 30 to May 10) that shifted
the day of maximum incidence to the end of May, and pushed the epidemic into
a quasi-stationary state characterized by values of Rt ≈ 1 [1,28]. This behavior,
observed around the world, has been explored in [18,29,32]. In particular, [32]
claim that this quasi-linear growth and the maintenance of the effective reproduc-
tion number around Rt ≈ 1 for sustained periods of time, involves critical changes
in the structure of the underlying contact network of individuals. In the case of
Mexico City, we have argued [28] that these changes relate to superspreading events
on key calendar dates (Easter holidays and children’s, Holy Cross’ and Mother’s
days).

This study extends the ideas presented in [28]. We develop a methodology
for the description of the epidemic curve based on key calendar days that allows
us to recreate the COVID-19 dynamics in different cities. Our main hypothesis
assumes that key calendar days are associated to events where the contact rates
change and, therefore, are central points to estimate parameters and explain the
observed epidemic dynamics. We employed the same methodology for Mexico and
Peru obtaining good results both for incidence and death dynamics (see Figures 3
to 6) showing that our approach can recreate different types of COVID-19 dynamics
and likely can be extended to other acute respiratory infections.

Using our model and the associated methodology, we explore the impact of hy-
pothetical interventions that reduce the contact rate in a given period. As expected,
all reductions decrease the cumulative incidence. The magnitude of this reduction
will depend on the magnitude of the reduction of the contact rate. For both Mexico
and Peru, reductions of the contact rate early in the epidemic are enough to lower
the prevalence for the whole year. However, in Peru, an early reduction can also
generate the opposite effect later in the year since our simulations show that the
outbreak in the first quarter of 2021 is always greater than the baseline. This phe-
nomenon can be explained by the existence of a large susceptible pool generated
by the early intervention on the contact rate. On the other hand, a reduction of
the contact rate at the end of the first year produces a smaller reduction in the
cumulative incidence, but will produce a significant reduction in the magnitude of
the following, later, outbreak. This effect is positive because it would help to reduce
hospitalizations and the saturation of the health centers that was almost reached
both in Mexico and Peru in early 2021 [3,33].

This study has shown that the key dates can be useful for the implementation of
non-pharmaceutical interventions (NPIs). Key dates are known, which would help
to design a strategy ahead of time. Likewise, we have shown that the enforcement
of NPIs will always generate a reduction in the cumulative incidence, which, even
if minimal, can greatly impact the magnitude of the epidemic outbreaks. Finally,
there are still relevant questions to answer mainly centered on planning strategies
in advance. We have shown that prior knowledge of key dates (civil, religious,
political) can be useful to provide an accurate description of epidemic trends when
testing and contact tracing are not widely available.
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18 M. ADRIAN ACUÑA-ZEGARRA ET AL.

[29] Singer, H. M.: The COVID-19 pandemic: growth patterns, power law scaling, and satura-

tion. In: Physical biology 17 (2020), Nr. 5, S. 055001. http://dx.doi.org/10.1088/1478-3975/

ab9bf5. – DOI 10.1088/1478–3975/ab9bf5. – ISSN 14783975
[30] Subramanian, R. ; He, Q. ; Pascual, M. : Quantifying asymptomatic infection and trans-

mission of COVID-19 in New York City using observed cases, serology and testing capacity.

In: PNAS 118 (2020), Nr. 9, S. e2019716118. http://dx.doi.org/10.1073/pnas.2019716118. –
DOI 10.1073/pnas.2019716118. – ISSN 10916490

[31] Sun, K. ; Wang, W. ; Gao, L. ; Wang, Y. ; Luo, K. ; Ren, L. ; Zhan, Z. ; Chen, X. ;

Zhao, S. ; Huang, Y. ; Sun, Q. ; Liu, Z. ; Litvinova, M. ; Vespignani, A. ; Ajelli, M. ;
Viboud, C. ; Yu, H. : Transmission heterogeneities, kinetics, and controllability of SARS-

CoV-2. In: Science 371 (2021), Nr. 6526. http://dx.doi.org/10.1126/science.abe2424. – DOI

10.1126/science.abe2424. – ISSN 10959203
[32] Thurner, S. ; Klimek, P. ; Hanel, R. : A network-based explanation of why most COVID-

19 infection curves are linear. In: Proceedings of the National Academy of Sciences of the
United States of America 1 (2020), Nr. 37, S. 22684–22689. http://dx.doi.org/10.1073/pnas.

2010398117. – DOI 10.1073/pnas.2010398117. – ISSN 1091–6490 (Electronic)

[33] VARELA, M. : Los hospitales de Ciudad de México bordean el
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