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Abstract  

Disruptions to brain networks, measured using either structural (sMRI), diffusion (dMRI), or 

resting-state functional (rs-fMRI) MRI, have been shown in people with multiple sclerosis 

(PwMS), highlighting the importance of damage to regions in the core of the connectome. Here, 

using a multilayer network approach, we aimed to integrate these three modalities to portray 

an enriched representation of the brain’s core-periphery organization and explore its alterations 

in PwMS. 

In this retrospective cross-sectional study, 1048 PwMS (695F, mean±SD age: 43.3±11.4yr), 

and 436 healthy controls (250F, mean±SD age: 38.3±11.8yr) with complete multimodal brain 

MRI acquisitions were selected from 13 European centres within the MAGNIMS network. 

Clinical variables included the Expanded Disability Status Scale (EDSS) and the Symbol Digit 

Modalities Test (SDMT), measuring physical disability and cognition, respectively. 

SMRI, dMRI, and rs-fMRI data were parcellated into 100 cortical (Schaefer atlas) and 14 

subcortical (FSL-FIRST) regions to obtain networks of morphological covariance, structural 

connectivity, and functional connectivity, respectively. Following statistical harmonization and 

preprocessing, connectivity matrices were merged in a multiplex, from which regional 

coreness, defined as the probability of a node being part of the multiplex core, and coreness 

disruption index (κ), quantifying the global weakening of the core-periphery structure, were 

computed. 

The associations of regional coreness and κ with disease status (PwMS versus healthy 

controls), clinical phenotype, and physical (EDSS) and cognitive (SDMT z-scores) disability 
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were tested with permutation testing, one-way ANOVA, and Spearman and Pearson 

correlation, respectively. We used random forest permutation feature importance to assess the 

relative weights of κ in the multiplex and single-layer domains, in addition to conventional 

MRI measures (brain and lesion volumes), for the prediction of disease status, level of physical 

disability (EDSS≥4 vs EDSS<4), and cognitive impairment (SDMT z-score<-1.5).  

PwMS showed widespread deviations in regional coreness compared to healthy controls, with 

a prominent decrease in the thalami (Hedges’ g>0.90). At the global level, PwMS showed 

significant disruption of the multiplex core-periphery organization (κ=-0.19, Hedges’ g=0.61, 

p<0.001), correlating with clinical phenotype (F=5.42, p=0.001), EDSS (rho=-0.08, p=0.01) 

and SDMT (r=0.19, p<0.0001). Multiplex κ was the only connectomic measure adding to 

conventional MRI for the prediction of disease status and cognitive impairment, while physical 

disability depended also on single-layer contributions. 

We show that multilayer networks represent a biologically and clinically meaningful 

framework to model multimodal MRI data, with disruption of the core-periphery structure 

emerging as a potential novel biomarker for disease severity and cognitive impairment in 

multiple sclerosis. 
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Abbreviations:  

BOLD = blood oxygenation level dependent; BPF = brain parenchymal fraction; CIS = 

clinically isolated syndrome; CSF = cerebrospinal fluid; dMRI = diffusion MRI; DMT = 

disease-modifying treatment; EDSS = Expanded Disability Status Scale; FC = functional 

connectivity; GM = gray matter; HC = healthy controls; MC = morphological covariance; 

PPMS = primary-progressive multiple sclerosis; RRMS = relapsing-remitting multiple 

sclerosis; rs-fMRI = resting-state functional MRI; SC = structural connectivity; sMRI = 

structural MRI; SPMS = secondary-progressive multiple sclerosis; PwMS = people with 

multiple sclerosis; SDMT = Symbol Digit Modalities Test; TIV = total intracranial volume; 

WM = white matter.  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.12.17.22283623doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.17.22283623


5 
 

Introduction  

In multiple sclerosis, there is a well-recognized gap between clinical-cognitive impairment and 

brain pathology as assessed through conventional MRI.1 The field of connectomics has now 

started to bridge this gap, as clinically relevant disruptions to macro-scale brain networks, 

measured  using structural (sMRI), diffusion (dMRI), or resting-state functional (rs-fMRI) 

MRI, have been extensively demonstrated in people with multiple sclerosis (PwMS), to the 

point that it has been described as a network disorder.2,3 

Our current understanding points towards abnormal connectivity centred around hubs like the 

thalamus and the default mode network, evolving along the disease course and representing a 

possible common mechanism through which cumulative brain damage eventually leads to 

long-term disability.2,3 Nevertheless, MRI-based connectivity studies yield conflicting results, 

somehow failing to identify a unified connectomic hallmark of multiple sclerosis and related 

disability.4,5 While this is partly explained by multiple sclerosis’ intrinsic neurobiological and 

phenotypic heterogeneity,6,7 methodological issues may as well play a role, including the 

disparity of image processing strategies, and the small sample sizes. Also, one major 

conceptual problem lies in the focus on single-modality networks, providing only a partial 

representation of the brain’s complex organization. 

Indeed, despite the increasing availability of multimodal neuroimaging data, most studies so 

far have focused on one aspect of brain connectivity using a single imaging modality (e.g., 

morphological covariance, MC, with sMRI; structural connectivity, SC, with dMRI; functional 

connectivity, FC, with rs-fMRI).2 Integrating different neuroimaging modalities into a unified 

brain network model holds promise to enhance our understanding of the brain and its disorders, 

by informing us about how structure shapes function, how they are jointly impacted by disease, 

and which aspects are relevant for cognitive functioning and clinical manifestations.8 In 

particular, the brain can be modelled as a multilayer network where different connectivity 

domains, each encoding a specific type of information about the system, are jointly embodied 

in the same topological space.9,10 Intriguingly, such a model can capture higher-order emergent 

properties that are not evident from conventional single-layer architectures, thus potentially 

containing additional and novel information relating to clinical status.9–11 

Among the topological properties shown to meaningfully scale to a multilayer setting is the 

core-periphery structure,12,13 a fundamental feature of many real-world complex networks 

(including the brain), characterized by a subgraph of densely connected and topologically 

central nodes (the core), and a set of nodes that are strongly connected with the core but 
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sparsely interconnected with each other (the periphery).14 A strong core-periphery organization 

is thought to be crucial for healthy brain functioning as it optimizes efficiency-cost balance and 

robustness to perturbations (all critical constraints on brain network topology),14 and its 

disruption within single connectivity layers has been shown in several psychiatric15 and 

neurological16 disorders, including multiple sclerosis.17 However, while it has been shown that 

the core of the human connectome can be more accurately described in a multilayer setting,12 

the impact of brain pathology on the multilayer core-periphery structure is still largely 

uncharted.   

Here, leveraging unique access to a large multicentric cohort of PwMS, we used a multilayer 

network approach to integrate information from sMRI, dMRI, and rs-fMRI data and portray an 

enriched representation of the brain’s core-periphery organization. We hypothesised that joint 

brain network changes across morphological, structural, and functional levels would reveal a 

more consistently disrupted multilayer core-periphery structure in PwMS compared to healthy 

people. A multilayer analysis should be more sensitive to multiple sclerosis-related 

pathophysiological alterations and enable more accurate predictions of physical and cognitive 

disability. 
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Materials and methods  

Participants  

In this retrospective, cross-sectional study, we collected MRI and clinical data of people 

diagnosed with multiple sclerosis according to 2010 McDonald criteria18 or clinically isolated 

syndrome (CIS)19 from 13 European centers (MAGNIMS: www.magnims.eu). Healthy 

controls (HC) without history of neurologic or psychiatric disorders were also included.  

Written informed consent had been obtained from each participant independently at each 

center. The final protocol for this study was reviewed and approved by the local Ethics 

Committee and the European MAGNIMS collaboration for the analysis of pseudonymized 

data. 

Neurological and neuropsychological assessment 

At the time of MRI, PwMS were clinically evaluated using the Expanded Disability Status 

Scale (EDSS)20 and the Symbol Digit Modalities Test (SDMT),21 measuring physical disability 

and cognition, respectively. Raw SDMT scores were transformed to age-, sex- and education-

adjusted z-scores according to population-specific normative data.22–26 

MRI data acquisition and processing 

All participants were imaged on 3T scanners with a brain MRI protocol including isotropic T1-

weighted (T1w), T2-weighted fluid-attenuated inversion recovery (FLAIR), dMRI, and RS-

fMRI sequences. Details of the different acquisition protocols are provided in Supplementary 

Table 1, while a schematic illustration of the analysis pipelines discussed below is shown in 

Figure 1. 

Structural MRI and morphological covariance networks 

For PwMS, T2-hyperintense lesions were automatically segmented on FLAIR images using 

the Lesion Segmentation Tool (LST) 3.0.0 (www.statistical-modelling.de/lst.html). 

Corresponding masks were used to fill lesions in T1w images with estimated white matter 

(WM) tissue for subsequent analyses27 and to compute total lesion volume (TLV). We used the 

Computational Anatomy Toolbox (CAT12.7, http://www.neuro.uni-jena.de/cat) to segment 

T1w volumes into grey matter (GM), WM, and cerebrospinal fluid (CSF), and to parcellate the 
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brain into 100 cortical regions (nodes) from the Schaefer atlas.28 This functional parcellation 

is designed to optimize both local gradient and global similarity measures of the fMRI signal.28 

The nodes are also associated with 7 canonical functional system labels including visual, 

somatomotor, dorsal attention, ventral attention, limbic, control, and default mode networks.29 

We chose the 100 parcel version to best fit the spatial resolution of the available data 

(Supplementary Table 1) and to reduce the impact of an inaccurate alignment between the atlas 

and individual scans.30 In addition, we used FSL-FIRST to segment 14 subcortical GM 

regions.31 Throughout the diffusion and functional workflows, T1w images were used as 

reference and underwent additional processing steps, including cortical surface reconstruction 

with recon-all (FreeSurfer 6.0.1).32 

Single-subject GM networks were obtained by adapting a previously described pipeline.33 

Briefly, regional GM volumes were transformed into z-scores while adjusting for the 

physiological (i.e., estimated in the HC group) effects of age, sex and total intracranial volume 

(TIV), and a measure of shared deviation from the reference norm was computed for each 

nodes’ pair to fill a 114 x 114 MC matrix. 

Diffusion MRI and structural connectivity networks 

Preprocessing of diffusion MRI data was performed using QSIPrep 0.14.3,34 which is based on 

Nipype 1.6.1.35 MP-PCA denoising as implemented in MRtrix3’s dwidenoise was applied with 

a 5-voxel window, followed by B1 field inhomogeneity correction using dwibiascorrect from 

MRtrix3 with the N4 algorithm.36,37 FSL (version 6.0.3)’s eddy was used to correct for head 

motion and eddy currents.38 A deformation field to correct for susceptibility distortions was 

estimated using available sequences (phase-encoding polarity method,39 phase-difference B0 

estimation,40 or registration-based fieldmap-less estimation41) and used to calculate an 

unwarped b=0 reference for a more accurate co-registration with the anatomical reference. The 

diffusion-weighted time-series was then resampled to the T1w volume, producing a 

preprocessed diffusion-weighted series with 2mm isotropic voxels. Then, multi-tissue fiber 

response functions were generated using the Dhollander algorithm,42 and fiber orientation 

distributions (FODs) were estimated via constrained spherical deconvolution and intensity-

normalized using mtnormalize.43,44 Tractography was performed based on WM FODs with 

MRtrix3’s tckgen, using the iFOD2 probabilistic tracking method to generate 10 million 

streamlines, with anatomical constraints provided by a hybrid surface/volume segmentation 

created ad hoc.45,46  
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Finally, weights for each streamline were calculated using SIFT247 and a 114 x 114 SC matrix 

was filled with the sums of weights of streamlines connecting each node’s pair. In addition, 

structural connectivity matrices were log10-transformed to better account for differences at 

different magnitudes and to make the distribution of edges’ weight more comparable to other 

layers.14,48 

Resting-state functional MRI and functional connectivity networks 

Preprocessing of rs-fMRI data was performed using fMRIPrep 20.2.6,49 which is based on 

Nipype 1.7.0.35 From blood oxygenation level dependent (BOLD) data, a reference volume 

and its skull-stripped version were generated using a custom methodology of fMRIPrep. 

Similar to dMRI processing, a deformation field to correct for susceptibility distortions was 

estimated based on available sequences and used to calculate a corrected EPI reference for a 

more accurate co-registration with the anatomical reference. The BOLD reference was then co-

registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-

based registration.50 Head-motion parameters for the BOLD reference were estimated before 

any spatiotemporal filtering using mcflirt (FSL 5.0.9).51 After slice-timing correction using 

3dTshift from AFNI 20160207,52 the BOLD time-series were resampled onto their original, 

native space by applying a single, composite transform to correct for head-motion and 

susceptibility distortions. Several confounding time-series were calculated based on the 

preprocessed BOLD, including the identification of noise components using ICA-AROMA.53 

Nuisance variables were removed from preprocessed BOLD using Nilearn 0.8.1,54 following a 

previously described strategy55 including removal of the first 4 timepoints, band-pass filter 

(0.008-0.08 Hz), detrending, standardization and confound regression (non-aggressive ICA-

AROMA denoising plus removal of mean WM and CSF signal).53,56 

Finally, residual mean BOLD time series were obtained from the atlas-defined parcels, and, for 

each node’s pair, the Pearson correlation coefficient was computed and Fisher z-transformed 

to fill a 114 x 114 FC matrix. In addition, matrices were absolutized as inverse correlations 

may encode relevant information and most analysis strategies tend to neglect negative 

values.55,57 

Quality control and cross-site harmonization 

MRI quality was assessed through metric-guided visual inspection. Scans that were marked as 

outliers (i.e., outside 1.5 times the interquartile range in the adverse direction of the 
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measurement distribution) according to one or more image quality metrics obtained via CAT12 

(for sMRI), qsiprep (for dMRI) and mriqc 0.16.1 (for sMRI and rs-fMRI)58 were reviewed and 

discarded based on visual evaluation where appropriate. 

To eliminate nonbiological site-related variability, we used ComBat harmonization to model 

and remove site effects from brain volumes and structural and functional connectivity matrices, 

while preserving the biological associations with age, sex and disease status.59 

Multiplex networks and core-periphery organization  

To correct for differences in average link weight across layers, MC, SC and FC connectivity 

matrices underwent singular-value decomposition normalization before the construction of a 

multimodal multiplex, a particular case of multilayer network where there is a one-to-one 

correspondence between nodes at different layers.60 For each brain region, we extracted 

coreness using the brain network toolbox (https://github.com/brain-network/bnt), following a 

previously described procedure.12 Briefly, each layer is filtered by preserving the strongest 

weights for the full range of density-based thresholds. At each threshold, a measure of node 

richness in the multiplex setting is computed by linearly combining node strengths in all layers 

through a vector of coefficients modulating the relative importance of each layer. We derived 

the coefficients in a data-driven manner, exploring the parameter space to maximize the 

separation between PwMS and HC regional coreness. Specifically, we used a Bayesian 

optimization algorithm implemented in MATLAB R2020a (The MathWorks Inc.), with default 

parameters, to maximize the ratio of the between-class variance to the within-class variance 

(i.e., Fisher’s optimization criterion).13  

Multiplex richness is then fed into a core-periphery decomposition procedure, and coreness is 

calculated as the number of times that each node is present in the network core across all 

explored thresholds, normalized by the maximum theoretical value. Coreness disruption index 

(κ), representing a global measure of core-periphery reorganization, was also computed as the 

slope of the linear regression model between the mean local coreness of the HC group at each 

node, taken as a reference, and the differential nodal coreness between that reference and the 

subject(s) under study.61 

Statistical analysis  

Second-level analyses were carried out using R (version 4.1.2), and MATLAB (R2020a). The 

effects of biological confounders (i.e., age and sex) on variables of interest (i.e., regional 
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coreness and coreness disruption index) were removed using nuisance regression, with weights 

estimated in the HC group. Significance level was set at α=0.05 for all tests, adjusting for 

multiple comparisons when appropriate. 

Differences between patients and HC in terms of κ and nodal coreness (over the full set of brain 

parcels) were assessed using permutation t tests, controlling for the false discovery rate with 

the Benjamini-Hochberg procedure.62 Additionally, to assess possible κ differences across 

clinical phenotypes (CIS vs RRMS vs SPMS vs PPMS), we performed a one-way ANOVA 

analysis, with post hoc tests using Tukey’s method. The associations between κ and clinical 

measures of physical (EDSS) and cognitive (SDMT) disability were assessed using Spearman 

and Pearson correlation, respectively. 

To evaluate the added value of our multiplex approach over single-layer metrics, we computed 

κ within the MC, SC, and FC layers separately and looked at the ability of measures in different 

domains to discriminate between PwMS and HC, as well as between different levels of physical 

disability (EDSS≥4 vs EDSS<4),63 and between impaired (SDMT z-score < -1.5) and preserved 

information processing speed (IPS-I vs IPS-P).22 Comparison was made also with other 

established MRI measures of multiple sclerosis-related brain damage (i.e., age- and sex-

adjusted BPF, and TLV). First, we compared effect sizes (Hedges’ g) of the between-groups 

differences for the different MRI-derived variables, by computing 95% bootstrap confidence 

intervals with 5000 resamples. Additionally, we used κ in the different domains and 

conventional MRI measures to train and validate random forest models for the prediction of 

disease status (PwMS vs HC), level of physical disability and IPS impairment. Specifically, 

decision tree learners were combined with bootstrap aggregation, and relevant hyperparameters 

were tuned using Bayesian optimization in order to minimize the 10-fold CV classification 

error (1 - accuracy). Model performance was expressed with out-of-bag (OOB) accuracy, while 

the relative weight of different predictors was estimated using OOB permutation feature 

importance.64 

Data availability  

Data from patients are controlled by the respective centers (listed in Supplementary Table 1) 

and therefore are not publicly available. Request to access raw data should be forwarded to 

data controllers via the corresponding author. Derived data supporting the findings of this study 

can be requested by qualified investigators from the corresponding author. 
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Results  

Participants 

A total of 1517 participants were considered for this study. Of these, 33 were excluded due to 

poor MRI quality or image processing failure, leading to a final population including 1048 

PwMS and 436 HC. Demographic, clinical, and conventional MRI characteristics are reported 

in Table 1.  

Multiplex core-periphery organization 

Average preprocessed connectivity matrices in the HC group are shown in Supplementary 

Figure 1. Following the optimization procedure, the coefficients maximizing the separation 

between PwMS and HC in terms of regional coreness were determined to be 0.75, 0.79, and 

0.24 for the MC, SC, and FC layers, respectively.  

In the HC group, the multiplex core included on average subcortical GM structures, especially 

the thalami and putamina, as well as cortical areas participating in both sensorimotor 

(somatomotor and visual) and associative (default-mode, control, and attention) networks 

(Figure 2). Maps of average HC regional coreness in the single-layer domains are shown in 

Supplementary figure 2.  

Disrupted multiplex core-periphery structure in multiple sclerosis 

PwMS showed widespread deviations in regional coreness compared to the HC group (Figure 

3A), with the greatest effect sizes observed at the level of deep GM structures (reduced 

coreness) and associative areas in the medial prefrontal, cingulate and lateral temporal cortices 

(increased coreness) (Supplementary Table 2). At the global level, the anatomical distribution 

of the observed changes was such that topologically central nodes were generally more 

impacted than peripheral ones (which tended to have preserved or even increased coreness 

values), as expressed by κ = -0.19 (Hedges’ g = 0.61 p < 0.001) (Figure 3B).  

There was a significant effect of clinical phenotype on the weakening of the core-periphery 

structure of multimodal brain networks (F[3, 1044] = 5.42, p = 0.001), with progressively 

greater disruption going from CIS to SPMS participants, and intermediate κ values in patients 

with PPMS (Figure 4). Moreover, patients with a stronger core-periphery organization had 

lower EDSS (rho = -0.08, p = 0.01) and higher SDMT (r = 0.19, p < 0.0001) scores (Figure 5).  
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Added value of multiplex over single-layer network measures 

Of all PwMS, 27 % had an EDSS score ≥ 4 and 29 % had impaired IPS on the SDMT. 

Disease status (CIS/MS vs HC) and IPS performance (IPS-I vs IPS-P) were more strongly 

associated with disruption of the core-periphery structure in the multiplex setting (Hedges’g = 

0.61 [95% CI = 0.51 – 0.72] and 0.40 [95% CI = 0.26 – 0.54], respectively) than with any of 

the single-layer measures. As for the level of physical disability (EDSS≥4 vs EDSS<4), the 

effect size associated with the disruption of the multiplex core-periphery organization (Hedges’ 

g = 0.13 [95% CI = 0.00 – 0.25]) was not significantly higher than for homologous single-layer 

measures (Figure 6A-C). 

Random forest models leveraging both conventional and global core-periphery organization-

related MRI measures reached OOB accuracies of 0.71, 0.73 and 0.74 for the CIS/MS vs HC, 

EDSS≥4 vs EDSS<4 and IPS-I vs IPS-P classifications, respectively. For both disease and 

cognitive status predictive models, disruption of the core-periphery structure in the multiplex 

domain was the only connectomic metric independently contributing to the classification along 

with MRI-derived volumes. On the other hand, core-periphery disruption in single-layer 

domains (i.e., MC and FC) were at least as important as the homologous multiplex measure in 

predicting the level of physical disability (Figure 6D-F).   
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Discussion  

By jointly modelling three different MRI modalities in a multilayer framework, we revealed 

clinically relevant disruption of the core-periphery organization of multimodal (structural-

functional) brain networks in a large multicentric sample of PwMS. We showed that the degree 

of weakening of the multiplex core-periphery depends on the disease phase and is associated 

with physical disability and cognition, being more sensitive than conventional single-layer 

measures to multiple sclerosis-related pathophysiological and cognitive changes. 

As the information conveyed by connectivity data is multivariate in nature and multimodal 

datasets become increasingly available, it has been advocated that multilayer networks, rather 

than single-layer architectures, may represent the ideal mathematical framework to study the 

brain as a complex system.10–12 However, how to meaningfully model together structural and 

functional aspects of brain connectivity is still debated, with novel possible methodological 

solutions continuing to emerge.10–12 

The method adopted here to detect the core-periphery of multiplex networks has the advantage 

of minimizing the need for a priori assumptions, reducing the variable degree of arbitrariness 

and information loss that are inevitably associated with the processes of, e.g., 

thresholding/binarizing connectivity matrices or assigning predefined weights to the different 

layers.12 In our large multi-centre population, the data-driven optimization procedure showed 

that all three modalities are necessary to maximize the separation between PwMS and HC in 

regional coreness, with greater estimated contribution coefficients for structural rather than 

functional layers. This is in line with previous findings in Alzheimer’s disease,13 and may be 

partially explained by the known robustness of diffusion-based networks relative to functional 

layers, which are characterized by higher inter-subject variability.65,66 Also, this is consistent 

with the interpretation of multiple sclerosis being primarily characterised by cumulative 

structural brain damage, with functional organization that can be relatively preserved or exhibit 

compensatory changes, especially in the early phases.67  

In keeping with previous knowledge on the structural and functional cores of the human 

connectome,68–70 average coreness maps in the HC group revealed that the SC core included 

the superior frontal and superior parietal cortex, as well as subcortical GM structures, while 

rolandic and occipital cortical regions participating in the somatomotor and visual networks 

constituted the functional core. On the other hand, a less pronounced core-periphery 

organization was observed in the MC layer, with lower absolute values of core nodes resulting 

from a more distributed coreness pattern. Notably, while the coreness of the multiplex network 
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was strongly influenced by the SC layer, it also captured the role of functional hubs (e.g., in 

the occipital cortices) whose importance was neglected by diffusion-based networks. This 

confirms again that, while being sensitive to single-layer contributions, the multiplex setting 

provides a unique representation of the brain core-periphery structure.12  

In PwMS, the regional coreness profile deviated extensively from the control group, with some 

increases in the associative cortex, a prominent decrease in subcortical GM structures, and the 

greatest effect sizes observed at the level of the thalami. Indeed, the thalamus is widely 

recognized as a vulnerable site for multiple sclerosis-related damage, with atrophy, structural 

disconnection and functional reorganization occurring from the early stages, evolving with the 

disease course and driving disability progression and cognitive impairment.71 Hence, it is not 

surprising to observe how thalamic structural and functional modifications result in a reduced 

topological centrality in the multiplex setting. 

At the global level, multiple sclerosis was associated with weakening of the multiplex core-

periphery structure, with hub regions found to be more impacted than would be expected based 

solely on their reference coreness in non diseased subjects. From a network science perspective, 

this conceptually equates multiple sclerosis with a targeted (i.e., network elements are impacted 

according to some index of topological centrality), rather than a random (i.e., network elements 

are impacted with uniform probability), attack.72 Previous evidence from sMRI,73 dMRI,17 and 

fMRI2 studies suggested that multiple sclerosis-related brain damage occurs in a non-random, 

network-mediated fashion, a hypothesis that bears great transdiagnostic relevance as it seems 

to apply to many different neuropsychiatric disorders.74,75 Several mechanisms (not necessarily 

mutually exclusive) have been proposed to explain this phenomenon, including 

diaschisis/transneuronal degeneration, nodal stress, shared vulnerability, and propagation of 

toxic agents/neuroinflammatory response along neuronal connections.76,77 Our multimodal 

analysis suggests that these processes are likely to impact the different layers of brain 

connectivity in a synergistic manner, as witnessed by the greater sensitivity of the multimodal 

network model towards multiple sclerosis-related changes compared to single-layer 

architectures. 

While our sample was largely composed of patients with relapsing-remitting multiple sclerosis, 

an association between clinical phenotype and weakening of the core-periphery structure was 

still observable, with a linear trend of progressive disruption in relapse-onset forms suggesting 

that it may parallel the progression of brain damage along the disease course. Also, disruption 

of the multiplex core-periphery organization significantly explained physical and cognitive 

disability, in keeping with the idea of the core-periphery structure as a fundamental organizing 
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principle of brain networks, supporting efficient information integration and ultimately healthy 

brain functioning.14 

Core-periphery disruption in multimodal, rather than single-layer, networks contributed to the 

prediction of cognitive impairment, adding to conventional MRI measures and confirming that 

the information conveyed by multilayer networks is more than just the sum of its parts, 

capturing emergent properties that are relevant for cognition but not evident from single layers 

(alone or in combination). On the other hand, a noisier picture emerged for the prediction of 

physical disability, although the known limitations of EDSS from the clinimetric point of view 

and the contribution of spinal cord damage (unexplored here) are likely to play an important 

role.78,79 

The present study is not without limitations. First, the proposed approach is only one of the 

many possible solutions to model multivariate brain connectivity data, with alternative methods 

that may be more appropriate according to the research question and the available data or 

resources. Also, the purely cross-sectional nature of our dataset limits the potential for 

investigating causal relationships and exploring the prognostic value of the observed 

connectomic changes. In addition, clinical evaluations were limited to only EDSS and SDMT, 

while more advanced measures (e.g., assessing additional cognitive domains and specific 

motor functions) could yield additional information. Finally, we used multilayer networks with 

the merely descriptive purpose of characterizing brain connectivity modifications and their 

clinical correlates in multiple sclerosis. Future studies following a predictive approach will be 

needed to drive the analysis of multimodal connectivity data towards translational clinical 

impact. 

In conclusion, we show that multilayer networks represent a biologically and clinically 

meaningful framework to jointly model multimodal MRI data, with disruption of the core-

periphery structure emerging as a potential novel biomarker for disease severity and cognitive 

impairment in multiple sclerosis. 

 

  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.12.17.22283623doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.17.22283623


17 
 

Acknowledgements  

Jérémy Guillon, PhD, is gratefully acknowledged for the original implementation of the code 

for the analysis of the core-periphery structure of multiplex networks (https://github.com/brain-

network/bnt). 

Funding  

G.P. was supported by the ECTRIMS-MAGNIMS Research Fellowship Programme (2020). 

F.P. and B.K. are supported by the UK National Institute for Health Research (NIHR) 

Biomedical Research Centre (BRC) at UCLH and UCL. A.C. is supported by EUROSTAR 

E!113682 HORIZON2020. Sa.Co. is supported by a Rosetrees Trust Grant (PGL21/10079). 

M.A.F. is supported by a grant from the MRC (MR/S026088/1). L.D. Is supported by the Dutch 

Research Council (NWO, Vidi 198.015). The study was supported by grants from The 

Research Council of Norway (NFR, grant number 240102) and the South-Eastern Health 

Authorities of Norway (grant number 257955). 

Competing interests  

M.C. received speaker honoraria from Biogen, Bristol Myers Squibb, Celgene, Genzyme, 

Merck Serono, Novartis, and Roche and receives research support from the Progressive MS 

Alliance and Italian Minister of Health. Si.Co. serves on scientific advisory board for Amicus 

Therapeurics, has received speaker honoraria from Sanofi and research grants from Fondazione 

Italiana Sclerosi Multipla and Telethon. R.S. was awarded a MAGNIMS-ECTRIMS 

fellowship in 2019. M.F. is Editor-in-Chief of the Journal of Neurology, Associate Editor of 

Human Brain Mapping, Neurological Sciences, and Radiology; received compensation for 

consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche, Sanofi; speaking 

activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-

Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda, and TEVA; 

participation in Advisory Boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, 

Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme, Takeda; scientific direction of educational 

events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis, Sanofi-

Genzyme; he receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, 

Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla, and ARiSLA (Fondazione 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.12.17.22283623doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.17.22283623


18 
 

Italiana di Ricerca per la SLA). The University Hospital Basel (USB), as the employer of C.G., 

has received the following fees which were used exclusively for research support: (i) advisory 

board and consultancy fees from Actelion, Genzyme-Sanofi, Novartis, GeNeuro and Roche; 

(ii) speaker fees from Genzyme-Sanofi, Novartis, GeNeuro and Roche; (iii) research support 

from Siemens, GeNeuro, Roche. C.G. is supported by the Swiss National Science Foundation 

(SNSF) grant PP00P3_176984, the Stiftung zur Förderung der gastroenterologischen und 

allgemeinen klinischen Forschung and the EUROSTAR E!113682 HORIZON2020. E.A.H. 

received honoraria for lecturing and advisory board activity from Biogen, Merck and Sanofi-

Genzyme and unrestricted research grant from Merck. S.L. received compensation for 

consulting services and speaker honoraria from Biogen Idec, Novartis, TEVA, Genzyme, 

Sanofi and Merck. S.M. received honoraria for lecturing and advisory board activity from UCB 

and Biogen, and travel grant from Roche and Merck. M.M. has received research grants from 

the ECTRIMS-MAGNIMS, the UK MS Society, and Merck, and honoraria from Biogen, BMS 

Celgene, Ipsen, Merck, Novartis and Roche. J.P. has received support for scientific meetings 

and honorariums for advisory work From Merck Serono, Novartis, Chugai, Alexion, Roche, 

Medimmune, Argenx, UCB, Mitsubishi, Amplo, Janssen, Sanofi. Grants from Alexion, Roche, 

Medimmune, UCB, Amplo biotechnology. Patent ref P37347WO and licence agreement 

Numares multimarker MS diagnostics Shares in AstraZenica. Acknowledges Partial funding 

by Highly specialised services NHS England. M.P. discloses travel/meeting expenses from 

Novartis, Janssen, Roche and Merck, speaking honoraria from HEALTH&LIFE S.r.l.,  

honoraria for consulting services from Biogen and research grants from Baroni Foundation. 

D.P. has received funding for travel from Merck, Genzyme/Sanofi-Aventis and Biogen, as well 

as speaking honoraria from Biogen, Novartis and Merck. M.A.R. received consulting fees from 

Biogen, Bristol Myers Squibb, Eli Lilly, Janssen, Roche; and speaker honoraria from Bayer, 

Biogen, Bristol Myers Squibb, Bromatech, Celgene, Genzyme, Merck Healthcare Germany, 

Merck Serono SpA, Novartis, Roche, and Teva. She receives research support from the MS 

Society of Canada and Fondazione Italiana Sclerosi Multipla. She is Associate Editor for 

Multiple Sclerosis and Related Disorders. A.T. has been supported by grants from MRC 

(MR/S026088/1), NIHR BRC (541/CAP/OC/818837) and RoseTrees Trust (A1332 and 

PGL21/10079), has had meeting expenses from Merck, Biomedia and Biogen Idec and was 

UK PI for two clinical trials sponsored by MEDDAY (MS-ON - NCT02220244 and MS-SPI2 

- NCT02220244). P.V. received speaker honoraria from Biogen Idec. O.C. is an NIHR 

Research Professor (RP-2017-08-ST2-004); acts as a consultant for Biogen, Merck, Novartis, 

Roche, and Teva; and has received research grant support from the MS Society of Great Britain 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.12.17.22283623doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.17.22283623


19 
 

and Northern Ireland, the NIHR UCLH Biomedical Research Centre, the Rosetree Trust, the 

National MS Society, and the NIHR-HTA. M.M.S. serves on the editorial board of Neurology 

and Frontiers in Neurology, receives research support from the Dutch MS Research 

Foundation, Eurostars-EUREKA, ARSEP, Amsterdam Neuroscience, MAGNIMS and 

ZonMW and has served as a consultant for or received research support from Atara 

Biotherapeutics, Biogen, Celgene/Bristol Meyers Squibb, Genzyme, MedDay and Merck. F.B.: 

Steering committee and iDMC member for Biogen, Merck, Roche, EISAI. Consultant for 

Roche, Biogen, Merck, IXICO, Jansen, Combinostics. Research agreements with Novartis, 

Merck, Biogen, GE, Roche. Co-founder and share-holder of Queen Square Analytics LTD. The 

remaining authors report no competing interests. 

Supplementary material  

Supplementary material is available at Brain online. 

Appendix 

Authors are members of the MAGNIMS network (Magnetic Resonance Imaging in multiple 

sclerosis; https://www.magnims.eu/), which is a group of European clinicians and scientists 

with an interest in undertaking collaborative studies using MRI methods in multiple sclerosis, 

independent of any other organization. The group is run by a steering committee whose 

members are: Frederik Barkhof (Amsterdam), Nicola de Stefano (Siena), Jaume Sastre-Garriga 
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Figures 

Figure 1. Schematic illustration of the analysis pipeline. SMRI, dMRI and rs-fMRI are 

processed using the same brain parcellation scheme to obtain networks of morphological 

covariance, structural connectivity, and functional connectivity, respectively. Connectivity 

matrices are then merged in a multiplex network, a particular case of multilayer network where 

there is a one-to-one correspondence between nodes at different layers. The multiplex core-

periphery organization is characterized in terms of regional coreness, defined as the probability 

of a node being part of the multiplex core, and coreness disruption index (κ), quantifying the 

global weakening of the core-periphery structure. 
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Figure 2. Average multiplex coreness in the healthy controls group. (A) Color-coded (teal 

to red) map of multiplex coreness percentile ranks superimposed on surface renderings of the 

cortex and subcortical structures. Image was obtained with the ENIGMA toolbox.80 (B) 

Highest 10% multiplex coreness nodes and corresponding absolute values are shown. 

Nomenclature of cortical areas follows the 7-network Schaefer-100 parcellation.28 
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Figure 3. Differences in regional coreness between PwMS and HC and coreness 

disruption index. (A) Color-coded (blue to red) map of effect sizes (Hedges’ g) of the 

between-group difference superimposed on surface renderings of the cortex and subcortical 

structures. Image was obtained with the ENIGMA toolbox.80 (B) Scatterplot showing the 

between-group difference in regional coreness as a function of the average coreness in the HC 

group. The slope of the linear regression line corresponds to the coreness disruption index κ = 

-0.19. Each circle represents a brain region, color-coded as in panel A. 
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Figure 4. Coreness disruption index and clinical phenotypes. Coreness disruption index (κ) 

plots are shown for (A) clinically isolated syndrome (CIS), (B) relapsing-remitting (RRMS), 

(C) secondary-progressive (SPMS), and (D) primary-progressive (PPMS) patients. (E) 

Boxplots showing the distributions of κ values across different phenotypes. (*) Adjusted p < 

0.05; (**) Adjusted p < 0.01. In (A-D), each circle represents a brain region, with color 

encoding the magnitude of the between-group (MS/CIS versus HC) difference in terms of 

regional coreness. 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 18, 2022. ; https://doi.org/10.1101/2022.12.17.22283623doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.17.22283623


32 
 

Figure 5. Coreness disruption index and clinical variables. Scatterplots showing the 

correlations of coreness disruption index (κ) with (A) EDSS and (B) SDMT scores. Both κ and 

SDMT are expressed as confounder-adjusted z-scores. EDSS = Expanded Disability Status 

Scale; SDMT = Symbol Digit Modalities Test. 
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Figure 6. Added value of multiplex over single-layer measures. For indeces of coreness 

disruption in the multiplex and single-layer domains, as well as for brain parenchymal fraction 

(BPF) and total lesion volume (TLV), shown are: (top row) the effect sizes (Hedges’ g) and 

corresponding 95% confidence intervals associated with differences between (A) PwMS and 

healthy controls (MS/CIS vs HC), (B) patients with high and low levels of physical disability 

(EDSS≥4 vs EDSS<4), and (C) patients with impaired and preserved information processing 

speed (IPS-I vs IPS-P); (bottom row) results of the random forest classifiers and corresponding 

predictor importance analyses for the prediction of (D) disease status (MS/CIS vs HC), (E) 

level of physical disability (EDSS≥4 vs EDSS<4), and (F) impaired information processing 

speed (IPS-I vs IPS-P). 
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Tables 

 PwMS HC 

N 1048 436 

Age [yr], mean ± SD 43.3 ± 11.4 38.3 ± 11.8a 

Female, n (%) 695 (66.3) 250 (57.3)b 

Disease duration [yr], mean ± SD 11.6 ± 8.9 - 

Phenotype, n (%):  

CIS 

RRMS 

SPMS 

PPMS 

 

41 (3.9) 

817 (78.0) 

121 (11.5) 

69 (6.6)  

- 

 

 

 

 

EDSS, median (range) 2.5 (0.0 - 8.0) - 

SDMT [z-score], mean ± SD -0.77 ± 1.36  - 

DMT, n (%): yes/no 926 (88.4) / 122 (11.6) - 

TLV [ml], median (interquartile range) 3.14 (1.06 - 8.00) - 

BPF, mean ± SD 0.77 ± 0.05 0.80 ± 0.03c  

a p < 0.001 (permutation t test); b p = 0.001 (Chi-square test); c p < 0.001 (permutation t test).  

Table 1. Demographic, clinical, and MRI characteristics of the studied population. 

SD = standard deviation; PwMS = people with multiple sclerosis; CIS = clinically isolated 
syndrome; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive 
multiple sclerosis; PPMS = primary-progressive multiple sclerosis; HC = healthy controls; 
EDSS = Expanded Disability Status Scale; SDMT = Symbol Digit Modalities Test; DMT = 
disease-modifying treatment; TLV = total lesion volume; BPF = brain parenchymal fraction. 
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