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Highlights: 34 

• We establish a new deep learning method for image segmentation. 35 
• Our method improves segmentation of small structures from large volumetric 36 

data. 37 
• Using our method, we assess bone marrow fat fraction (BMFF) in UK Biobank 38 

MRI data. 39 
• This is the first use of deep learning for large-scale, multi-site BMFF analysis. 40 
• Our results highlight the potential of BMFF as a new clinical biomarker.41 
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ABSTRACT 42 
 43 
OBJECTIVES: Bone marrow adipose tissue (BMAT) represents >10% of total fat mass 44 
in healthy humans and further increases in diverse clinical conditions, but the impact 45 
of BMAT on human health and disease remains poorly understood. Magnetic 46 
resonance imaging (MRI) allows non-invasive measurement of the bone marrow fat 47 
fraction (BMFF), and human MRI studies have begun identifying associations between 48 
BMFF and skeletal or metabolic diseases. However, such studies have so far been 49 
limited to smaller cohorts: analysis of BMFF on a larger, population scale therefore 50 
has huge potential to reveal fundamental new knowledge of BMAT’s formation and 51 
pathophysiological functions. The UK Biobank (UKBB) is undertaking whole-body MRI 52 
of 100,000 participants, providing the ideal opportunity for such advances. 53 
 54 
MATERIALS AND METHODS: Herein, we developed a deep learning pipeline for 55 
high-throughput BMFF analysis of these UKBB MRI data. Automatic bone marrow 56 
segmentation was achieved by designing new lightweight attention-based 3D U-Net 57 
convolutional neural networks that allowed more-accurate segmentation of small 58 
structures from large volumetric data. Using manual segmentations from 61-64 59 
subjects, the models were trained against four bone marrow regions of interest: the 60 
spine, femoral head, total hip and femoral diaphysis. Models were validated using a 61 
further 10-12 datasets for each region and then used to segment datasets from a 62 
further 729 UKBB participants. BMFF was then determined and assessed for expected 63 
and new pathophysiological characteristics. 64 
 65 
RESULTS: Dice scores confirmed the accuracy of the models, which matched or 66 
exceeded that for conventional U-Net models. The BMFF measurements from the 67 
729-subject cohort confirmed previously reported relationships between BMFF and 68 
age, sex and bone mineral density, while also identifying new site- and sex-specific 69 
BMFF characteristics.  70 
 71 
CONCLUSIONS: We have established a new deep learning method for accurate 72 
segmentation of small structures from large volumetric data. This method works well 73 
for accurate, large-scale BMFF analysis from UKBB MRI data and has the potential to 74 
reveal novel clinical insights. The application of our method across the full UKBB 75 
imaging cohort will therefore allow identification of the genetic and pathophysiological 76 
factors associated with altered BMAT. Together, our findings establish the utility of 77 
deep learning for population-level BMFF analysis and promise to help elucidate the 78 
full impact of BMAT on human health and disease.79 
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1. INTRODUCTION 80 
Bone marrow adipose tissue (BMAT) accounts for up to 70% of total bone marrow 81 

(BM) volume and approximately 10% of total fat mass in lean, healthy humans (1). 82 
BMAT further increases with ageing and in diverse clinical conditions, including 83 
osteoporosis, obesity, type 2 diabetes, oestrogen deficiency, chronic kidney disease, 84 
radiotherapy and glucocorticoid treatment (1). In striking contrast to other adipose 85 
depots, BMAT also increases during caloric restriction in animals and in humans with 86 
anorexia nervosa (1-4). Thus, BMAT is a major component of normal human anatomy; 87 
is distinct to other types of adipose tissue; and is altered in numerous clinical contexts. 88 

 These observations suggest roles for BMAT in normal physiological function and 89 
the pathogenesis of multi-morbidities, including major ageing-associated diseases. 90 
Indeed, clinical and preclinical studies suggest that BMAT can directly influence 91 
skeletal remodelling, haematopoiesis and energy homeostasis (1, 5, 6) and have 92 
revealed endocrine properties through which BMAT may exert systemic effects (3). 93 
However, study of BMAT has been limited, especially in comparison to other major 94 
adipose depots (1); hence, BMAT formation and function remains poorly understood. 95 

 Despite this relative ignorance, recent studies have revealed new fundamental 96 
knowledge of BMAT biology. One key finding is that BMAT’s characteristics and 97 
functions differ according to its skeletal location. BMAT is proposed to exist in two 98 
broad subtypes, dubbed ‘constitutive’ and ‘regulated’ (7, 8): constitutive BMAT 99 
predominates in the appendicular skeleton, particularly at more-distal sites, whereas 100 
regulated BMAT develops in the axial skeleton and in proximal regions of the long 101 
bones, such as the femoral head and epiphysis. Adipocytes within regulated BMAT 102 
increase or decrease in size and/or number in response to altered environmental, 103 
physiological and pathological conditions, whereas those within constitutive BMAT are 104 
relatively resistant to expansion or breakdown in such contexts (7, 8). Thus, efforts to 105 
further elucidate BMAT formation and function must consider these fundamental site-106 
specific differences. 107 

 Magnetic resonance imaging (MRI) and proton MR spectroscopy have emerged 108 
as key tools for non-invasively assessing BMAT properties in humans (9), including 109 
the extent of BM adiposity and the proportions of saturated and unsaturated lipids 110 
within the BM (10). The former depends on analysis of BM fat fraction (BMFF) using 111 
chemical shift-encoding based water-fat separation methods. These approaches have 112 
been applied in various small- and mid-scale human cohort studies, revealing some 113 
insights into BMAT’s association with human skeletal and metabolic health (11, 12). 114 
For example, multiple studies have shown that BMFF is increased in osteoporosis and 115 
is associated with lower bone mineral density (BMD) in non-osteoporotic subjects (11-116 
13). However, these cohort studies have never included more than 560 people (13), 117 
limiting the ability to detect other associations. Thus, analysis of BMFF on a larger 118 
scale has enormous potential to reveal fundamental new knowledge of BMAT 119 
formation and function, including the association with other physiological, pathological 120 
and genetic variables. This would provide new understanding about the factors that 121 
regulate BMAT development, as well as highlighting how altered BMFF impacts 122 
human health and disease. 123 

 The UK Biobank (UKBB) is undertaking the world’s largest health imaging study 124 
(14), providing an ideal opportunity for such large-scale BMFF analysis. Of the 125 
500,000 UKBB participants, 100,000 are undergoing MRI of the brain, heart and whole 126 
body, as well as dual-energy X-ray absorptiometry to measure BMD. As of August 127 
2022, approximately 53,000 participants have been scanned. Efficient measurement 128 
of BMFF from these MRI datasets will require development of new automated analysis 129 
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methods. Several groups have developed machine learning for automated 130 
segmentation of other anatomical regions from the UKBB MRI data (15-17). Machine 131 
learning has also recently been used to segment the knee or vertebral BM from Dixon 132 
images in smaller cohorts outwith the UKBB (18-20); however, machine learning has 133 
not yet been developed for automated segmentation of the BM from other skeletal 134 
sites, and never using MR data from the UKBB. These were the goals of the present 135 
study. 136 

 Given the potential insights that could be gained from such large-scale BMFF 137 
analysis, herein we developed a deep learning pipeline for automated BM 138 
segmentation from UKBB MRI data. Our findings establish the utility of deep learning 139 
for large-scale analysis of BMFF within the UKBB and the potential of this approach 140 
for revealing the impact of BMAT on human health and disease.141 
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2. MATERIALS AND METHODS 142 
2.1. UKBB Imaging study – participants 143 
Full details of the UKBB imaging study have recently been reported by Littlejohns et 144 
al, who summarise the study as "a population-based cohort of half a million 145 
participants aged 40–69 years recruited between 2006 and 2010. In 2014, UK Biobank 146 
started the world’s largest multi-modal imaging study, with the aim of re-inviting 147 
100,000 participants to undergo brain, cardiac and abdominal magnetic resonance 148 
imaging, dual-energy X-ray absorptiometry and carotid ultrasound” (14).  As of August 149 
2022, over 53,000 participants have undergone the UKBB imaging protocol. The 150 
phenotypic and imaging data used in this study were obtained from UKBB and 151 
analysed under an approved project application (ID 48697). All work reported herein 152 
was done in accordance with UKBB ethical requirements. 153 
 154 
2.2. UKBB – MRI acquisition 155 
MRI data were acquired on a 1.5 T whole-body MR system (Magnetom Aera, Siemens 156 
Medical Solutions, Erlangen, Germany). Tridimensional two-point Dixon sequences 157 
were used to give coverage from neck to knees, consisting of six volumes. In the 158 
present study we analysed three of these volumes: the abdomen, hips, and upper leg. 159 
For the abdomen and hips, breath-hold sequences were acquired by using a 3D dual-160 
echo spoiled gradient-echo (FLASH) T1-weighted acquisition using the following 161 
parameters: TR/TEin-phase/TEout-of-phase: 6.7/4.8/2.4 ms; field of view (FOV): 500 x 381 162 
mm; slice thickness: 4.5 mm; isotropic in-plane spatial resolution of 2.2 mm; number 163 
of slices: 44. Parallel imaging factor 2 in both frequency/phase directions and a partial 164 
Fourier reconstruction of 71% were used to reduce acquisition time. For the upper leg 165 
slice, slice thickness was reduced to 3.5 mm and 72 slices were acquired with the 166 
same resolution. Detailed technical parameters are available in the UKBB rationale 167 
(14).  168 
 169 
2.3. UKBB – DXA scans for bone mineral density measurement and body 170 

composition 171 
As part of the UKBB Imaging study, bone mineral density (BMD) was measured at the 172 
lumbar spine (L1–L4) and at the non-dominant hip for femoral neck and total hip by 173 
DXA scan (GE-Lunar iDXA). Machines were calibrated daily, and quality-assurance 174 
tests were carried out periodically. WHO criteria were used to define osteoporosis 175 
(BMD T-score ≤−2.5) and osteopenia (BMD T-score between −1.0 and −2.5). All 176 
UKBB imaging participants also underwent total-body DXA scanning (GE-Lunar 177 
iDXA). Fat, lean, and bone masses for the total body and per region (arms, legs, and 178 
trunk) were measured and analyzed using the manufacturer’s validated software, with 179 
visceral adipose tissue (VAT, kg) also measured. Daily quality-control and calibration 180 
procedures were performed using the manufacturer’s standards. 181 
 182 
2.4. Training and validation cohort 183 
To develop a deep learning method for automated BM segmentation we focussed on 184 
a subset of UKBB Imaging participants, consisting of 729 male and female subjects 185 
aged 60-69 years old (Table 1). This cohort was selected to include control subjects 186 
(with normal BMD) and subjects with osteopaenia or osteoporosis. Subjects with 187 
obesity and type 2 diabetes were excluded because these conditions can influence 188 
BMFF (1, 6), leaving only non-diabetic subjects with a body mass index (BMI) within 189 
the normal range (18.5-25 kg/m2). 190 
 191 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 6, 2022. ; https://doi.org/10.1101/2022.12.06.22283151doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.06.22283151
http://creativecommons.org/licenses/by/4.0/


  

2.5. Data management and workflow 192 
MRI data was downloaded from UKBB, consisting of multiple volumes acquired using 193 
the 2-point Dixon technique, based on the parameters listed above. For each volume 194 
the in- and out-of-phase, fat and water images were available. The data were 195 
downloaded in flat format and sorted by sequence to expedite data access. The 196 
volumes required were identified by their sequence number assuming a standard 197 
acquisition protocol, which was determined from the data. As shown in Figure 1, we 198 
began by downloading and analysing data from the 729-subject training and validation 199 
cohort. 200 
 201 
2.6. Manual segmentation of MRI data 202 
A training dataset of 75 subjects (Fig. 1A) was extracted from the test dataset to be 203 
used for the training and validation of the deep learning algorithms. Each of these 75 204 
datasets was segmented by a single observer for consistency, generating manual 205 
segmentations. For each subject, the fat images were used to define four distinct 206 
volumes of interest (VOIs) corresponding to BM regions of pathophysiological 207 
relevance: the spine, the femoral head, the total hip, and the femoral diaphysis. The 208 
spine consisted of all the vertebral marrow in the principle abdominal volume, which 209 
contained 6-7 vertebrae ranging from T8 to L3. The reason for this range of vertebrae 210 
is that the multiple abdominal acquisitions have a fixed volume and are continuous 211 
across the patient's body; hence, the range of vertebrae within each abdominal volume 212 
depends on the patient’s height. The femoral head and total hip regions were 213 
segmented from the hip volume. Here, the total hip consisted of the femoral neck and 214 
the hip between the lesser and greater trochanter. The femoral diaphysis, located in 215 
the upper leg volume, was segmented at the mid-shaft of the femur, which was 216 
identified by locating the point of the shaft with the narrowest cross section. Each 217 
femoral volume was segmented from the non-dominant left femur to allow more-direct 218 
comparison with DXA measurements, which are usually performed at the non-219 
dominant hip. Femoral BMFF does not show significant contralateral differences (21), 220 
meaning that BMFF measurements from the left femur should be representative of 221 
both sides. Segmentation was performed on the native axial images on a slice-by-slice 222 
basis in Analyze 12.0 software (AnalyzeDirect, Overland Park, KS, USA) following an 223 
overall inspection of each volume to determine the extent of each region excluding 224 
partial volume, defined as a drop in signal intensity > 50% compared to the centre of 225 
the region.  226 
 227 
Of the 75 manually segmented datasets (Fig. 1A), 64 were used to train the deep 228 
learning model for the spine; 61 were used for the femoral head and diaphysis; and 229 
62 were used for the total hip (Fig. 1B). To do so, the fat images and their 230 
corresponding manual segmentations were used iteratively to build a separate model 231 
to segment each region individually and generate a deep learning segmentation (Fig. 232 
1D). The remaining datasets (Fig. 1C) were not used in training the models but instead 233 
were used as unseen validation data to test the models: 12 datasets were used for 234 
testing the spine, 11 for the femoral head, and 10 each for the total hip and diaphysis 235 
models. For these validation datasets, comparison of the deep learning segmentations 236 
with the manual segmentations (Fig. 1E) allowed dice coefficients to be calculated for 237 
the four different algorithms (Table 2).  238 
 239 
All the deep learning segmentations for the training and validation datasets were 240 
manually checked. This identified several data issues and segmentation failures that 241 
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required the development of specific error-checking rules. These rules were based on 242 
determining if the VOIs generated were physiologically appropriate: VOIs could not 243 
consist only of single voxels, nor were gaps allowed within the VOIs. Therefore, the 244 
initial error-checking steps automatically removed any single-voxel VOIs and joined 245 
together any discontinuous VOIs. Additional error checking was used to identify those 246 
segmentations that were outliers within the distribution of regions generated. This was 247 
based on the centre of mass being greater than 3 standard deviations from the mean 248 
of the training dataset. This is useful for identifying erroneous segmentations that have 249 
been caused by data quality issues or deviations from the standard MRI protocol.     250 
    251 
2.7. U-Net design and rationale 252 
Directly segmenting 3D data using a traditional U-Net (22) has several drawbacks: i), 253 
the size of input data and the depth of the model are limited by the available GPU 254 
memory; ii), due to the highly imbalanced distribution between classes, the traditional 255 
3D U-Net (22) tends to label all voxels as background; and iii), the fixed size of the 256 
receptive field limited the ability of the model to effectively utilize the global correlations 257 
between local features.  258 
 259 
To address these issues, we developed a novel light-weight attention-based U-Net 260 
model for simultaneous detection and segmentation of tiny structures in large 3D data. 261 
Figure 2 shows the architecture of this new Attention ROI U-Net model. The encoding 262 
subnetwork output feature maps four resolution levels (23). Each encoding block 263 
consists of a conventional U-Net convolutional layer (3D conv + Relu + Instance 264 
normalization), a convolutional layer equipped with a modified convolutional block 265 
attention module (CBAM) (24), and a down-sampling layer implemented as a stride 2 266 
3X3X3 convolution operation. The last encoding block consists of two CBAM 267 
convolutional layers with a non-local spatial attention layer (25) inserted between 268 
them. Unlike the original CBAM, which generates two attention maps using average 269 
and max pooling, we used 1X1X1 convolution to generate one single fixed-size 270 
attention map from each CBAM layer. The 5 attention maps are all resized to 271 
96X96X96 and then fused by a mini convolutional neural network (CNN) with a 272 
Softmax layer to generate a probability map 𝑷. The centre, (𝑥, 𝑦, 𝑧)!"#, of a region of 273 
interest (ROI), which indicates the location of the segmented anatomical structure, is 274 
then given by: 275 

(𝑥, 𝑦, 𝑧)!"# = 	𝑷⊙ (𝒖, 𝒗,𝒘), 276 
Here, 𝒖, 𝒗,𝒘 are grid of data coordinates normalized to [-1, 1]. With this centre, a cubic 277 
ROI is extracted from the encoder feature maps of all resolution levels with sizes 32, 278 
16, 8 and 4. The U-Net decoder then generates the segmentation of this ROI. The 279 
final segmentation results are produced by recovering the ROI location within the 280 
original data volume.  281 
 282 
Detection of the ROI location is realised by minimizing a ROI centre localization loss, 283 
𝐿$%&, defined on the predicted and ground-truth ROI centres. We use the conventional 284 
Dice loss, 𝐿!"#, to optimize the segmentation of the detected ROI. Because minimize 285 
bias in traduced by the class imbalance on the final segmentation results, we also 286 
compute a weighted Dice loss, 𝐿'(), using the full image segmentation, where the 287 
weight of each class is defined as the reciprocal of the number of voxels. To sum up, 288 
the loss function for trains ing our new U-Net model is defined as: 289 

𝐿 = 𝐿'() + 𝜆*𝐿!"# + 𝜆+𝐿$%& , 290 
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where  𝜆* and 𝜆+ control the weights between different losses. In this work, we set  291 
𝜆* = 𝜆+ = 1. The proposed algorithm was implemented in Pytorch (26) with an Adam 292 
optimizer (27).  293 
 294 
2.8. Fat fraction mapping 295 
Fat fraction (FF) measurements from MRI data allow for the determination of the 296 
relative quantities of water and fat present within tissue, based on the different 297 
resonant frequencies of hydrogen atoms bound to fat and water. Acquisition of in- and 298 
out-of-phase images allows fat and water images to be generated. Based on the 299 
intensities of these images the FF was calculated as a percent of the voxel volume. 300 
This was done for all volumes of interest. The specific VOIs, segmented using our 301 
novel U-Net model, were then applied to the FF maps to allow extraction of the FF for 302 
each VOI. This used the fat and water images for each volume of interest and nearest-303 
neighbour smoothing was applied to the images before the maps were calculated to 304 
minimise the influence of any noise spikes in the data. In house code (Matlab 2019B, 305 
The Mathworks Inc, Natick, Massachusetts, USA) applied the deep learning 306 
segmentations to the FF maps after erosion of the spine, head and total hip regions 307 
by a single boundary voxel in plane to ensure measurements were from marrow and 308 
not bone. This erosion step was not applied to the diaphysis segmentations because 309 
of the small cross section of this region (for some patients the diaphyseal cross section 310 
is so small that it would be eliminated by the erosion step). 311 
 312 
2.9. Data presentation and statistical analysis 313 
Data were analysed for normal distribution using the Anderson-Darling test. For results 314 
tables of summary statistics, normally distributed data are reported as mean ± SEM 315 
and were compared using one-way or two-way ANOVA with Šídák’s test for multiple 316 
comparisons. Non-normally distributed data are reported as median [interquartile 317 
range] and were compared using the Kruskal-Wallis test, with Dunn’s test for multiple 318 
comparisons; the latter was also used when comparing normally distributed data with 319 
non-normally distributed data. Images of manual and deep learning segmentations 320 
were generated using 3DSlicer (v4.11) and colours adjusted using GIMP2. Graphs of 321 
summary data are presented as Violin plots overlaid with individual data points. 322 
Visualisation and statistical analysis of these summary data were done using Prism 323 
software (v9.4.1, GraphPad, USA). Univariable regression analyses were done in 324 
RStudio v2022.02.1 (Build 461), with multivariable regression performed using finalfit 325 
(R package v1.0.5) (28). Subjects with any erroneous measurements (e.g. a BMD of 326 
0 g/cm2) were excluded from the regression analyses. A Bonferroni-adjusted P-value 327 
<0.05 was considered statistically significant. 328 
 329 
2.10. Data and code availability 330 
All data for FF and segmentation volumes will be uploaded to the UKBB. Code for the 331 
deep learning models will be made available via GitHub. Code for regression analyses 332 
will be made available via DataShare (https://datashare.ed.ac.uk). Until these data are 333 
publicly available, the authors will agree to all reasonable requests for code and data 334 
sharing, in accordance with UKBB guidelines.  335 
 336 
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3. RESULTS 337 
3.1. U-Net development and training 338 
We first used MRI data from 61-64 subjects for manual segmentation of four VOIs: the 339 
spine, consisting of lumbar and thoracic vertebrae; the femoral head; total hip; and 340 
femoral diaphysis. We then trained separate U-Net models for each VOI and tested 341 
their performance on 10-12 subjects in a validation dataset (Fig. 1). Figure 2 shows 342 
the architecture of our new U-Net, while Table 2 shows the comparison Dice index 343 
results between the conventional U-Net and our new U-Net models for each site. 344 
Visual comparison of manual vs deep learning segmentations further confirmed the 345 
accuracy of the outputs from each of our deep learning models (Fig. 3). 346 

 347 
3.2. Segmentation and Fat Fraction mapping of training and validation cohort 348 
To test if our U-Net models yield reliable BMFF results, we next applied them to FF 349 
maps from a cohort of 729 UKBB participants (Table 1). This cohort was chosen to 350 
include both males and females aged 60-69, comprising individuals with osteoporosis, 351 
osteopaenia, or normal BMD. The rationale for this is as follows: first, BMFF increases 352 
with age and, for humans aged 60-69, vertebral BMFF is expected to be greater in 353 
females than in males (29, 30); second, BMFF is increased in osteoporosis and 354 
negatively associated with BMD (1, 6, 12); and finally, BMFF is greater in the femur 355 
than in the lumbar spine (1, 31). Thus, applying our U-Net models to analyse spinal 356 
and femoral BMFF in this cohort allowed us to test if the resulting deep learning 357 
segmentations yield BMFF values that show these expected associations with sex, 358 
age, BMD, and anatomical site. If so, this would validate the accuracy of our new 359 
models for high-throughput BM segmentation and BMFF analysis. 360 
 361 
As shown in Figure 4, we found that BMFF in healthy control subjects significantly 362 
differed across the five regions analysed. This was most obvious for the spine, where 363 
BMFF was lower than in each femoral region. However, BMFF also differed between 364 
each femoral region, being highest in the femoral head and then decreasing 365 
progressively in the total hip (P = 0.0012 vs femoral head) and diaphysis (P <0.0001 366 
vs femoral head or total hip). There were also significant, region-dependent sex 367 
differences: spinal BMFF was greater in females than in males, whereas males had 368 
greater BMFF at each femoral site (Fig. 4).  369 
 370 
To further understand the regional and sex differences in BMFF, we investigated if 371 
BMFF at one site is associated with BMFF at the other sites. As shown in Table 3, 372 
there were strong positive associations between BMFF at each femoral site, with the 373 
relationship between total hip BMFF and diaphyseal BMFF being stronger in males 374 
than in females. Spinal BMFF was not associated with diaphyseal BMFF; however, it 375 
was positively associated with femoral head BMFF in females, and with total hip BMFF 376 
in males and females; the latter relationship was also stronger in females than in males 377 
(Table 3). Thus, BMFF at one site is generally positively associated with BMFF at other 378 
sites, and this relationship differs between the sexes.  379 
 380 
3.3. Effect of osteopaenia or osteoporosis on BMFF at each site 381 
We next investigated the effect of osteopaenia or osteoporosis on BMFF at each site. 382 
As shown in Figure 5, osteopaenic or osteoporotic females had higher BMFF than 383 
control females at each site analysed. In males, osteopaenia was associated with 384 
significantly increased BMFF at the total hip and femoral diaphysis, and total hip BMFF 385 
was also greater osteoporotic vs control males (Fig. 5). However, unlike in females, 386 
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BMFF at the spine or femoral head did not differ between normal, osteopaenic and 387 
osteoporotic males, while diaphyseal BMFF also did not differ between osteoporotic 388 
and normal males (Fig. 5).  389 
 390 
3.4. Univariable associations between BMD, BMFF and other traits. 391 
The lack of increased BMFF in osteoporotic males was unexpected and may result 392 
from the low numbers in this group (Table 1). Thus, we next used univariable 393 
regression to determine if BMFF shows the expected inverse association with BMD at 394 
each site, regardless of osteoporotic status. We also investigated which other 395 
variables are associated with BMD at each site. As shown in Supplemental Table 1, 396 
BMD and BMFF were inversely associated at the spine and this relationship did not 397 
differ between the sexes. A similar relationship existed between spine BMD and legs 398 
fat %. In contrast, spine BMD was positively associated with visceral adipose tissue 399 
(VAT) mass, android fat %, trunk fat % and BMI, with the latter relationship being 400 
stronger in males than in females. There was no significant relationship between spine 401 
BMD and age, total fat % or gynoid fat %; however, females showed a trend for lower 402 
spine BMD with increasing age. 403 
 404 
Univariable regression analyses for BMD at the femoral neck, total hip and femoral 405 
shaft are presented in Supplemental Tables 2, 3 and 4, respectively. For femoral neck 406 
BMD we detected robust inverse associations with BMFF at the femoral head, total 407 
hip and spine; the latter relationship was assessed to determine if spinal BMFF is a 408 
useful predictor of BMD at the femoral neck, given the clinical significance of fractures 409 
at this site. Notably, the relationship with femoral head BMFF showed strong sexual 410 
dimorphism, occurring robustly in females while being absent in males. Femoral neck 411 
BMD also showed an inverse relationship also with legs fat % and a positive 412 
association with BMI; however, no significant associations occurred for the other 413 
explanatory variables tested (Supplemental Table 2).  414 
 415 
Similar relationships occurred for total hip BMD, including sex differences in the 416 
association with femoral head BMFF; an inverse association with legs fat %; and a 417 
positive association with BMI (Supplemental Table 3). Unlike for femoral neck BMD, 418 
total hip BMD also showed a positive association with VAT mass.  419 
 420 
As for these other sites, femoral shaft BMD was inversely associated with BMFF at 421 
the femoral diaphysis while being positively associated with BMI. Weaker negative and 422 
positive associations were noted for legs fat % and VAT mass, respectively, and none 423 
of these relationships differed between the sexes (Supplemental Table 4). 424 
 425 
3.5. Univariable associations between BMFF and age, BMI or adiposity traits. 426 
In addition to BMD, factors including age, BMI and peripheral adiposity have been 427 
associated with altered BMFF. Thus, an important question is whether such other 428 
factors confound the relationships between BMFF and BMD. To address this, we first 429 
used univariable linear regression to identify other variables significantly associated 430 
with BMFF at each site, thereby identifying factors associated with BMFF and/or BMD. 431 
The results are presented in Supplemental Table 5. 432 
 433 
We found that spinal BMFF was positively associated with age, VAT mass, total fat %, 434 
android fat %, gynoid fat % and trunk fat % in males and females, with no sex 435 
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differences in these relationships. In contrast, spinal BMFF showed a positive 436 
association with legs fat % in males only (Supplemental Table 5).  437 
 438 
Fewer variables were associated with BMFF at the femoral head or total hip. The 439 
former showed a positive relationship only with age, and in females only, while the 440 
latter was negatively associated only with BMI across both sexes. However, no other 441 
variables were associated with BMFF at these two sites (Supplemental Table 5). In 442 
contrast, diaphyseal BMFF was associated with several of the variables assessed, 443 
often in a sexually dimorphic manner. Thus, across both sexes, diaphyseal BMFF was 444 
inversely associated with VAT mass, while inverse associations with total fat %, 445 
android fat % and trunk fat % showed significant sex differences, occurring in females 446 
but not in males. In contrast, in males, but not females, diaphyseal BMFF was 447 
positively associated with legs fat % (Supplemental Table 5).  448 
 449 
3.6. The inverse association between BMFF and BMD at each site persists after 450 

controlling for relevant covariables. 451 
Based on the univariable associations identified in Supplemental Tables 1-5, we next 452 
constructed multivariable models to estimate the true relationship between BMFF and 453 
BMD at each site. Table 4 shows the results for BMD spine as the dependent variable. 454 
Here, the best predictive model was obtained when including BMFF Spine, sex, BMI, 455 
Legs fat %, VAT mass and Android fat % as covariables (Model 4.6). Notably, the 456 
inverse association between spinal BMFF and spinal BMD persisted even when 457 
accounting for these other covariables. Moreover, inclusion of leg fat, VAT mass and 458 
android fat weakened the size of the sex effect, suggesting that increased spinal BMD 459 
in males is explained, at least in part, by their lower amount of leg fat and greater VAT 460 
mass and android fat. 461 
 462 
Table 5 shows the results for femoral neck BMD as the dependent variable. Here, 463 
separate models were tested for BMFF at the femoral head, total hip or spine as the 464 
main explanatory variables; the former was assessed in females only because of the 465 
lack of relationship between femoral head BMFF and femoral neck BMD in males 466 
(Supplemental Table 2). We found that, in females, the significant inverse association 467 
between BMFF femoral head and femoral neck BMD persisted when accounting for 468 
BMI and legs fat % (Model 5.3). Similarly, across both sexes, total hip or spine BMFF 469 
retained their inverse relationships with femoral neck BMD even after accounting for 470 
sex, BMI and legs fat % (Models 5.6 and 5.11). The best model for BMFF total hip also 471 
included Android fat % and Trunk fat % (Model 5.8). Notably, male sex was no longer 472 
associated with increased femoral neck BMD when controlling for BMFF spine, BMI 473 
and legs fat % (Model 5.11), suggesting that males have greater BMD at the femoral 474 
neck because they tend to have lower spinal BMFF, lower % leg fat and higher BMI 475 
than females.  476 
 477 
Given that spine BMFF is positively associated with total hip BMFF (Table 3), we 478 
postulated that the inverse relationship between spine BMFF and femoral neck BMD 479 
may occur because spine BMFF is a surrogate for total hip BMFF. However, the 480 
inverse relationship between spine BMFF and femoral neck BMD persisted even when 481 
accounting for BMFF at the total hip (Model 5.12), demonstrating that these 482 
explanatory variables are acting at least partly independently of each other. 483 
 484 
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Multivariable regression for total hip BMD is presented in Table 6. The best predictive 485 
model included BMFF total hip, sex, BMI and legs fat % as the covariables (Model 486 
6.3); inclusion of VAT mass (Model 6.4) did not further improve the model, despite 487 
VAT mass showing a significant univariable association with total hip BMD 488 
(Supplemental Table 3). Notably, the inverse relationship between total hip BMD and 489 
BMFF persisted even when accounting for sex, BMI and legs fat %, confirming total 490 
hip BMFF as an independent predictor of BMD at this site. 491 
 492 
Finally, Table 7 shows the results of multivariable regression for femoral shaft BMD. 493 
Here, the best predictive model included diaphyseal BMFF, sex, BMI, legs fat % and 494 
android fat % (Model 7.5), although a similarly accurate model was obtained when   495 
VAT mass and trunk fat % were also included (Model 7.7). As for the other BMFF-496 
BMD relationships, BMFF at the diaphysis retained its significant inverse association 497 
with femoral shaft BMD even when these other covariables were accounted for. 498 
Moreover, males no longer had significant increases in femoral shaft BMD when 499 
controlling for BMFF diaphysis, BMI and legs fat % (Model 7.3-7.7). This suggests that 500 
males may have greater femoral shaft BMD because they have a higher BMI and lower 501 
% leg fat than females.  502 
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4. DISCUSSION 503 
Herein, we have developed a new deep learning method for analysis of BM adiposity 504 
using Dixon MRI data from the UKBB. This is the first study to establish deep learning 505 
for BM segmentation at multiple sites, and the first do so, for any skeletal site, in the 506 
UKBB imaging study. Our models yield BMFF measurements that are consistent with 507 
previous observations, including sex differences in spinal BMFF and inverse 508 
associations with BMD. This demonstrates the ability of our models to generate 509 
accurate, reliable BMFF measurements from the UKBB MRI data. We further reveal 510 
new site- and sex-specific associations that have not been reported previously, 511 
highlighting the potential of our methods to uncover new pathophysiological functions 512 
of BMAT. 513 
 514 
4.1. Deep learning for large-scale BM analysis 515 
Several other recent studies have developed deep learning for automated BM 516 
segmentation from MRI data. For example, von Brandis et al assessed the feasibility 517 
of deep learning for segmenting BM from T2-weighted Dixon water-only images, 518 
focusing on the knee region (20); however, the best median dice score of their model 519 
was only 0.68, far below that obtained by our models (Table 2). Better accuracy was 520 
achieved by Zhou et al, who established a deep learning model for segmenting lumbar 521 
vertebrae from Dixon MRI data (18). They trained their model using manual 522 
segmentations of 165 vertebrae from 31 subjects, with the model then tested on a 523 
validation set of 24 subjects. They achieved an average dice score of 0.849, below the 524 
accuracy of our vertebral ROI-Attention-U-Net (Table 2). More recently, Zhao et al 525 
used deep learning for segmenting lumbar vertebrae from modified Dixon MRI data, 526 
using a training set of 142 subjects and a validation set of 64 subjects (19). Their model 527 
achieved a mean dice score of 0.912, the same as that obtained by our vertebral ROI-528 
Attention-U-Net (Table 2). Thus, among deep learning models for segmenting 529 
vertebral BM, our model achieves an accuracy that is similar or greater than that 530 
obtained by others.  531 
 532 
Notably, our study is the first to develop deep learning for BM segmentation at the 533 
femoral head, total hip and femoral diaphysis. This is important because the properties 534 
of BMAT vary according to skeletal location (1, 7, 8). Thus, to fully understand the 535 
health implications of BMAT and its potential utility as a clinical biomarker, it is critical 536 
to assess BMFF at other sites. Indeed, as discussed below, we found that the 537 
associations between BMFF, age, BMD, BMI and peripheral adiposity differ according 538 
to the BM region assessed, underscoring the importance of assessing BMFF across 539 
multiple sites. Finally, our model includes dedicated error-checking steps to remove 540 
inaccurate segmentation outputs, which is essential for reliable analysis of large-scale 541 
MRI data. 542 
 543 
4.2. New ROI attention U-Net model  544 
Another advance of the present study is our development of a new ROI attention U-545 
Net model that allows accurate segmentation of small VOIs from large volumetric data. 546 
The traditional 3D U-Net has a fixed receptive field that is dependent on the size of 547 
convolutional kernels and network depth. To achieve state-of-the-art performance, the 548 
network architecture needs to be carefully designed to fit the sizes of the segmented 549 
objects and image resolution. As a result, in this study the traditional 3D U-Net 550 
generates highly accurate results for vertebrae and femoral head (Table 2), regions in 551 
which the segmented objects are relatively large. However, this traditional U-Net 552 
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shows limited discriminative power when dealing with smaller structures such as the 553 
femoral diaphysis, where only a few pixels on each axial slice are annotated as 554 
foreground. On the contrary, our new ROI attention U-Net model can adaptively 555 
encode the local and global contextual information with its adjustive-attention 556 
mechanism. As shown in Table 2, it increased segmentation accuracy of the femoral 557 
diaphysis by over 25% and also slightly improved accuracy for the total hip region. 558 
Alongside these improvements, for the femoral head and vertebrae the ROI attention 559 
U-Net performs similarly to the carefully designed traditional 3D U-Net (Table 2). Thus, 560 
our new ROI attention model advances the state of the art by achieving accurate 561 
segmentation of both larger and smaller objects. 562 
 563 
4.3. Association between BMFF and pathophysiological characteristics – 564 

confirmation of previous studies and new findings  565 
The key aim of our study was to develop and validate deep learning models for 566 
automated BM segmentation of UKBB Dixon MRI data. Our group of 729 subjects is 567 
the largest cohort yet to undergo measurement of spinal BMFF, and by far the largest 568 
to include assessment of BMFF at any femoral site (12). Consistent with previous 569 
reports, we find that spinal BMFF is lower than femoral BMFF (Fig. 4) (1, 12, 31); is 570 
greater in females than in males (Fig. 4) (29, 30); increases with age (Supplemental 571 
Table 5) (12, 29, 30, 32); is elevated in osteopaenia or osteoporosis, at least in females 572 
(Fig. 5) (1, 6, 12); exhibits a robust, inverse association with spinal BMD (Table 4) (1, 573 
6, 12); and is positively associated with visceral adiposity (Supplemental Table 5) (32, 574 
33). 575 
 576 
Our results for femoral BMFF are also consistent with previous studies. For example, 577 
in a cohort of aged females, Griffith et al found that BMFF in the femoral head, neck 578 
and diaphysis is increased in osteoporosis and inversely associated with BMD at each 579 
site (34). We confirm these findings (Fig. 5, Tables 5-7) and further reveal that femoral 580 
head BMFF is not associated with BMD at the femoral neck or total hip in males 581 
(Supplemental Tables 2-3). We also show that diaphyseal BMFF is typically inversely 582 
associated with peripheral adiposity in females but not in males, while BMFF at the 583 
femoral head or total hip is not associated with these peripheral adiposity traits 584 
(Supplemental Table 5); these observations confirm and extend those of a previous 585 
smaller-scale study (35). The reasons for these variable site- and sex-dependent 586 
relationships between BMFF and peripheral adiposity remain to be determined; 587 
however, one possibility is that they reflect preferences for the partitioning of lipid 588 
storage between different adipose depots.   589 
 590 
Many of our new findings relate to the fact that most previous MR-based studies of 591 
BM adiposity have focussed on vertebrae, with femoral sites being relatively 592 
overlooked (12). For example, we show that, across both sexes, BMFF is highest in 593 
the femoral head and decreases progressively in the total hip and diaphysis, while 594 
BMFF at each femoral site is greater in males than in females (Fig. 4). Unlike in the 595 
spine, age is associated with increased femoral head BMFF only in females, and 596 
across both sexes shows no relationship with total hip or diaphyseal BMFF 597 
(Supplemental Table 5). This could reflect the fact that, compared to the spine, these 598 
femoral sites contain a greater proportion of constitutive BMAT, which is less age 599 
responsive than the regulated BMAT that predominates in the axial skeleton (7, 8). 600 
However, it may be that age-related increases in femoral BMAT occur over a longer 601 
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timeframe that would only be apparent when BMFF is assessed over a greater age 602 
range.  603 
 604 
Regarding constitutive vs regulated subtypes, we also find robust positive associations 605 
between BMFF at the four different sites analysed (Table 3), similar to the findings of 606 
Slade et al (31). However, we further reveal that these relationships exhibit sex 607 
differences and are strongest between the three femoral regions, with spinal BMFF 608 
showing no association with diaphyseal BMFF (Table 3). This may reflect differences 609 
in the development and function of regulated vs constitutive BMAT (7, 8).  610 
 611 
Together, our present findings confirm those of previous studies while also revealing 612 
new knowledge about BMAT’s site- and sex-dependent characteristics. This 613 
underscores the ability of our deep learning models to yield reliable BMFF 614 
measurements and to identify new insights into the pathophysiology of BMAT. 615 
 616 
4.4. Limitations 617 
One specific limitation is that our cohort included relatively few osteoporotic males. 618 
This restricted our ability, in males, to detect significant effects of osteoporosis on 619 
BMFF at each site. Our univariable and multivariable regression analyses were still 620 
able to detect significant inverse associations between BMFF and BMD at each site; 621 
however, once we have measured BMFF across the full available UKBB cohort it will 622 
be informative to reassess the relationship between BMFF and osteoporosis. 623 
 624 
A more-general limitation relates to the UKBB MRI protocol. Participants in the UKBB 625 
imaging study visited several different imaging centres for acquisition of the MRI 626 
scans. Therefore, across these different imaging centres the MRI protocol parameters 627 
had to be standardised and harmonised, resulting in both advantages and drawbacks. 628 
For example, to simplify the procedure the Dixon sequences were based on only two 629 
echo times; however, with only dual-echo sequences, no accurate T2*-correction 630 
could be applied and the complexity of the fat spectrum could not be considered in the 631 
BMFF mapping (10, 14). As a result, reported BMFF measurements can be affected 632 
by T2* decay effects caused by the presence of trabecular bone, which in turn may 633 
differ in the water and fat components (9, 10). However, the moderately low flip angle 634 
(10°) is acceptable to limit T1-bias, and protocol standardisation compelled all 635 
examinations to be performed in similar conditions, with the exact same parameters 636 
(9, 36). Consequently, even if the true proton-density fat fraction (PDFF) could not be 637 
quantified, a comparable estimate could be obtained through the reported BMFF, 638 
which permits group comparison and method cross-validation. Furthermore, dual-639 
echo Dixon-derived BMFF allows the derivation of consistent 3D BMFF measurements 640 
across all UKBB MR imaging centres. This is very important for our BMFF validation 641 
study, as it allowed us to assess and automate extraction of BMFF maps from multiple 642 
skeletal sites, on a 3D mode. 643 
 644 
4.5. Conclusions 645 
Our new deep learning models allow accurate segmentation of small VOIs from large 646 
volumetric MRI data. While we have used these models to analyse small BM regions, 647 
they could also be applied for precise, automated, large-scale analysis of other small 648 
anatomical structures of interest. The development and validation of our models using 649 
UKBB MRI data is hugely significant because, unlike most other MRI datasets, the 650 
UKBB also provides extensive genetic and phenotypic data for each subject, including 651 
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whole-genome sequencing and health records. This linked data allows comprehensive 652 
association studies to identify the genetic and pathophysiological factors associated 653 
with FF and other MRI-derived measurements. Indeed, Liu et al recently demonstrated 654 
the power of this approach using deep learning for segmentation of abdominal organs 655 
from UKBB MRI data (16). They identified genetic variants and clinical conditions 656 
associated with FF and other imaging-derived characteristics for each organ, as well 657 
as combinations of characteristics across multiple organs. The deep learning models 658 
established in the present study unlock similar possibilities: using these new models, 659 
we will next measure BMFF across the full UKBB imaging cohort, which will eventually 660 
include 100,000 subjects. This will allow us to identify the genetic, physiological and 661 
clinical conditions associated with altered BMFF at each site. Such knowledge will help 662 
to elucidate the mechanisms that influence BM adiposity and reveal, to an 663 
unprecedented extent, how BMAT impacts human health and disease.664 
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TABLES  789 
 790 

 Males (n = 277) F (n = 452) 
  Control 

(n=138) 
Osteopaenic 
(n=146) 

Osteoporotic 
(n=17) 

Control 
(n=134) 

Osteopaenic 
(n=262) 

Osteoporotic 
(n=70) 

Age (years) 65 [63, 67] 65 [63, 67] 64.47 ± 0.7 65 [62, 67] 65 [62, 67] 65 [63, 67] 

BMI (kg/m2) 23.6 [22.8, 
24.3] 

23.3 [22.3, 
24.1] 22.04 ± 0.20 *** 22.9 [21.7, 

23.9] ## 
22.6 [21.3, 

23.7] 21.67 ± 0.40 * 

BMD T-score 
(L1-L4) 

0.65 [-0.2, 
1.775] 

-1 [-1.575, -0.1] 
*** 

-3 [-3.25, -1.55] 
*** 

0.15 [-0.4, 
0.9] 

-1.5 [-1.9, -0.8] 
*** 

-2.8 [-3.1, -2.6] 
*** 

BMD T-score 
(total femur, 

left) 
0.2 [-0.3, 

0.7] -1.12± 0.05 *** -2.2± 0.14 *** 0 [-0.4, 
0.475] 

-1.4 [-1.8, -1] 
*** -2.22± 0.09 *** 

BMD T-score 
(femoral neck, 

left) 

-0.3 [-0.7, 
0.275] 

-1.5 [-1.8, -1.2] 
*** -2.45± 0.13 *** -0.15 [-0.7, 

0.4] 
-1.45 [-1.8, -

1.1] *** -2.11± 0.07 *** 

Android tissue 
fat % by DXA 

30.6 [24, 
34.6] 

30.0 [22.8, 
35.7] 24.4± 2.0 34.8 [27.8, 

40.7] ### 32.5± 0.6 31.0 ± 1.1 

Gynoid tissue 
fat % by DXA 24.3 ± 0.4 24.4 ± 0.4 23.5 ± 1.0 37.6 ± 0.4 

### 38.5 ± 0.3 38.7 ± 0.6 

Legs tissue fat 
% by DXA 20.9 ± 0.3 21.2 ± 0.3 21.3± 1.0 35.2 ± 0.5 

### 36.9 ± 0.3 37.1 ± 0.6 

Trunk tissue 
fat % by DXA 

29.1 [23.7, 
32.0] 

28.6 [23.0, 
33.4] 24.3 ± 1.5 35.4 [29.9, 

39.5] ### 33.3 ± 0.4 32.3 ± 0.9 

Total tissue fat 
% by DXA 24.6 ± 0.4 25.6 [21.6, 

28.5] 22.9 ± 1.8 34.7 [30.9, 
37.38 ### 34.3 ± 0.3 33.9 ± 0.6 

VAT mass (g) 949.4± 
35.25 

783.5 [465.5, 
1131] 586± 79.6 ** 407 [225.5, 

717] ### 
346.5 [217, 

563.5] 
296 [193.3, 

526.5] 

 791 
Table 1 – Characteristics of subjects in training and validation cohort. Normally 792 
distributed data are reported as mean ± SEM while non-normally distributed data are 793 
reported as median [interquartile range]. BMI, body mass index; DXA, dual-energy X-794 
ray absorptiometry; VAT, visceral adipose tissue. Within each sex, significant 795 
differences between control subjects and osteopaenic or osteoporotic subjects are 796 
indicated by * (P <0.05), ** (P <0.01) or *** (P<0.001). Within control subjects, 797 
significant differences between males and females are indicated by ## (P <0.01) or ### 798 
(P <0.001).  799 
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 Vertebrae Femoral 
head Total Hip Femoral 

Diaphysis 
U-Net 0.925 0.951 0.904 0.69 

ROI-Attention-U-Net 0.912 0.945 0.912 0.866 
 800 
Table 2 – Segmentation Accuracy (dice scores) of the traditional U-Net and our 801 
CBAM-ROI-attention U-Net.  802 
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Explanatory Dependent Sex b (CIs) Adj. R2 P (Exp) P (Exp*Sex) 

BMFF Spine 

BMFF 
Femoral 

Head 

Both 0.037 (0.015, 0.059) 0.015 1.25E-03 2.6E-04 
Female 0.109 (0.08, 0.138) 0.118 8.69E-13 - 
Male 0.028 (0, 0.057) 0.013 0.049 - 

BMFF Total 
Hip 

Both 0.091 (0.063, 0.12) 0.055 4.48E-10 0.026 
Female 0.171 (0.132, 0.21) 0.145 2.16E-16 - 
Male 0.106 (0.069, 0.144) 0.107 7.22E-08 - 

BMFF 
Diaphysis Both 0.054 (0.01, 0.099) 0.007 0.017 0.801 

BMFF 
Femoral 

Head 

BMFF Total 
Hip Both 1.011 (0.939, 1.082) 0.552 1.18E-

111 0.474 

BMFF 
Diaphysis Both 0.818 (0.674, 0.962) 0.169 1.69E-26 0.534 

BMFF Total 
Hip 

BMFF 
Diaphysis 

Both 0.764 (0.669, 0.858) 0.281 2.48E-48 0.001 
Female 0.65 (0.534, 0.766) 0.228 8.76E-25 - 
Male 1.046 (0.857, 1.234) 0.331 1.03E-22 - 

Table 3 – Univariable and sex-stratified associations between BMFF for each 803 
region. To test if the explanatory-dependent relationship differs between males and 804 
F, a linear model was first analysed across both sexes, with sex included as an 805 
interacting variable. Beta coefficients are shown (with lower and upper 95% Cis in 806 
brackets), followed by the adjusted R2 (Adj. R2) and unadjusted P value for each 807 
explanatory variable (P Exp). P values were also calculated for the Explanatory*Sex 808 
interaction (P Exp*Sex); if significant, additional linear models were analysed in 809 
females and males separately. Because 12 correlations were assessed, the 810 
Bonferroni-adjusted alpha level for P (Exp) is 0.05/12 = 0.0042. Significant 811 
explanatory-dependent relationships are highlighted in bold.  812 
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   Covariable 

 Adj. 
R2 AIC BMFF 

Spine Sex (M) BMI Legs fat 
% 

VAT mass 
(kg) 

Android 
fat % 

Model 
4.1 0.39 -893.1 

-0.004 (-
0.006 to -
0.003)*** 

0.177 
(0.156 to 
0.198)*** 

- - - - 

Model 
4.2 0.43 -941.9 

-0.005 (-
0.006, -

0.003)*** 

0.158 
(0.137, 

0.179)*** 

0.023 
(0.017, 

0.030)*** 
- - - 

Model 
4.3 0.46 -975.3 

-0.004 (-
0.006, -

0.003)*** 

0.061 
(0.023, 
0.098)** 

0.029 
(0.023, 

0.036)*** 

-0.006 (-
0.008, -

0.004)*** 
- - 

Model 
4.4 0.47 -990.7 

-0.005 (-
0.006, -

0.004)*** 

0.037 (-
0.002, 
0.075) 

0.022 
(0.015, 

0.029)*** 

-0.006 (-
0.008, -

0.004)*** 

0.064 
(0.033, 

0.095)*** 
- 

Model 
4.5 0.47 -990.1 

-0.005 (-
0.006, -

0.004)*** 

0.058 
(0.020, 
0.095)** 

0.021 
(0.014, 

0.029)*** 

-0.007 (-
0.009, -

0.005)*** 
- 

0.003 
(0.001, 

0.004)*** 

Model 
4.6 0.47 -990.9 

-0.005 (-
0.007, -

0.004)*** 

0.043 
(0.004, 
0.083)* 

0.021 
(0.013, 

0.028)*** 

-0.007 (-
0.009, -

0.004)*** 

0.041 (-
0.003, 
0.085) 

0.001 (-
0.000, 
0.003) 

Table 4 – Multivariable regression analyses for spine BMD. Multivariable 813 
regression was done using BMD spine as the dependent variable; explanatory 814 
variables were selected based on those showing significant univariable association 815 
with BMD spine and/or BMFF at the relevant sites, as shown in Supplemental Tables 816 
1-5. For each model the adjusted R2 (Adj. R2) and Akaike Information Criterion (AIC) 817 
are shown, along with multivariable beta coefficients (with lower and upper 95% Cis) 818 
for each variable. P values are indicated by * (P<0.05), ** (P<0.01) or *** (P<0.001), 819 
with significant associations highlighted in bold 820 
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   Covariable 

 Adj. 
R2 AIC 

BMFF 
Femoral 

Head 
BMFF Total 

Hip BMFF Spine Sex (M) BMI Legs fat % Android fat % Trunk fat % 

Model 
5.1 0.11 -658.8 -0.011 (-0.015, 

-0.008)*** - - - - - - - 

Model 
5.2 0.12 -662.2 -0.011 (-0.014, 

-0.008)*** - - - 0.008 (0.001, 
0.015)* - - - 

Model 
5.3 0.13 -669.9 -0.011 (-0.014, 

-0.007)*** - - - 0.012 (0.005, 
0.019)** 

-0.003 (-0.006, 
-0.001)** - - 

Model 
5.4 0.24 -1083.6 - -0.015 (-0.018, 

-0.012)*** - 0.122 (0.104, 
0.140)*** - - - - 

Model 
5.5 0.25 -1093.3 - -0.014 (-0.017, 

-0.011)*** - 0.114 (0.096, 
0.132)*** 

0.010 (0.004, 
0.016)** - - - 

Model 
5.6 0.27 -1104.8 - -0.013 (-0.016, 

-0.010)*** - 0.057 (0.022, 
0.092)** 

0.014 (0.008, 
0.020)** 

-0.003 (-0.005, 
-0.002)*** - - 

Model 
5.7 0.28 -1107.1 - -0.013 (-0.016, 

-0.010)*** - 0.057 (0.022, 
0.092)** 

0.017 (0.010, 
0.024)*** 

-0.003 (-0.005, 
-0.001)** 

-0.001 (-0.002, 
-0.000)* - 

Model 
5.8 0.27 -1108.1 - -0.013 (-0.016, 

-0.010)*** - 0.066 (0.030, 
0.102)*** 

0.017 (0.010, 
0.024)*** 

-0.004 (-0.006, 
-0.002)*** 

-0.007 (-0.014, 
-0.000)* 

0.008 (-
0.001, 0.017) 

Model 
5.9 0.20 -1039.1 - - -0.004 (-0.006, 

-0.003)*** 
0.077 (0.059, 

0.096)*** - - - - 

Model 
5.10 0.22 -1058.1 - - -0.005 (-0.006, 

-0.003)*** 
0.066 (0.047, 

0.085)*** 
0.014 (0.008, 

0.019)*** - - - 

Model 
5.11 0.24 -1071.5 - - -0.004 (-0.006, 

-0.003)*** 
0.007 (-

0.028, 0.042) 
0.017 (0.011, 

0.023)*** 
-0.004 (-0.006, 

-0.002)*** - - 

Model 
5.12 0.29 -1089.6 - -0.011 (-0.014, 

-0.008)*** 
-0.003 (-0.004, 

-0.001)*** 
0.053 (0.016, 

0.090)** 
0.015 (0.008, 

0.022)*** 
-0.004 (-0.006, 

-0.002)*** 
-0.007 (-0.014, 

-0.001)* 
0.009 (0.000, 

0.018)* 
 821 
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Table 5 – Multivariable regression analyses for femoral neck BMD. Multivariable regression was done using femoral neck BMD 822 
as the dependent variable, with BMFF at the femoral head, total hip and spine chosen as the primary explanatory variables. Other 823 
explanatory covariables were selected, models constructed, and data presented as described for Table 4. Models with femoral head 824 
BMFF (5.1, 5.2 and 5.3) were tested in females only because univariable analysis showed that this is not associated total hip BMD 825 
in males (Supplemental Table 2). 826 
 827 
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   Covariable 

 Adj. 
R2 AIC BMFF 

Total Hip Sex (M) BMI Legs fat 
% 

VAT 
mass (kg) 

Model 
6.1 0.34 -997.9 

-0.017 (-
0.020, -

0.014)*** 

0.170 
(0.152, 

0.189)*** 
- - - 

Model 
6.2 0.37 -1029.2 

-0.016 (-
0.019, -

0.013)*** 

0.156 
(0.137, 

0.175)*** 

0.018 
(0.012, 

0.023)*** 
- - 

Model 
6.3 0.39 -1056.6 

-0.015 (-
0.018, -

0.012)*** 

0.069 
(0.033, 

0.105)*** 

0.023 
(0.017, 

0.029)*** 

-0.005 (-
0.007, -

0.003)*** 
- 

Model 
6.4 0.39 -1051.3 

-0.015 (-
0.018, -

0.012)*** 

0.074 
(0.037, 

0.111)*** 

0.025 
(0.018, 

0.032)*** 

-0.005 (-
0.007, -

0.003)*** 

-0.016 (-
0.045, 
0.012) 

 828 
Table 6 – Multivariable regression analyses for total hip BMD. Multivariable 829 
regression was done using total hip BMD as the dependent variable, with BMFF at the 830 
total hip as the primary explanatory variable. Other explanatory covariables were 831 
selected, models constructed, and data presented as described for Table 4.  832 

 833 
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   Covariable 

 Adj. 
R2 AIC BMFF 

Diaphysis Sex (M) BMI Legs fat % VAT mass 
(kg) Android fat % Trunk fat % 

Model 
7.1 0.28 -693.2 -0.014 (-0.016, 

-0.011)*** 
0.164 (0.141, 

0.187)*** - - - - - 

Model 
7.2 0.30 -711.7 -0.013 (-0.016, 

-0.011)*** 
0.151 (0.127, 

0.174)*** 
0.017 (0.010, 

0.025)*** - - - - 

Model 
7.3 0.33 -743.1 -0.013 (-0.016, 

-0.011)*** 
0.035 (-0.010, 

0.080) 
0.025 (0.017, 

0.032)*** 
-0.007 (-0.010, 

-0.005)*** - - - 

Model 
7.4 0.33 -739.5 -0.013 (-0.016, 

-0.011)*** 
0.045 (-0.002, 

0.091) 
0.028 (0.019, 

0.037)*** 
-0.007 (-0.010, 

-0.005)*** 
-0.029 (-0.065, 

0.007) - - 

Model 
7.5 0.34 -747.1 -0.014 (-0.016, 

-0.011)*** 
0.038 (-0.007, 

0.083) 
0.030 (0.021, 

0.039)*** 
-0.006 (-0.009, 

-0.004)*** - -0.002 (-0.004, 
-0.000)* - 

Model 
7.6 0.34 -745.3 -0.013 (-0.016, 

-0.011)*** 
0.035 (-0.010, 

0.080) 
0.030 (0.021, 

0.039)*** 
-0.006 (-0.009, 

-0.004)*** - - -0.002 (-0.004, 
-0.000)* 

Model 
7.7 0.34 -743.4 -0.014 (-0.016, 

-0.011)*** 
0.047 (-0.002, 

0.096) 
0.030 (0.020, 

0.039)*** 
-0.008 (-0.011, 

-0.005)*** 
0.007 (-0.044, 

0.059) 
-0.011 (-0.020, 

-0.002)* 
0.012 (0.000, 

0.024)* 

Table 7 – Multivariable regression analyses for femoral shaft BMD. Multivariable regression was done using femoral shaft BMD 834 
as the dependent variable; explanatory covariables were selected, models constructed, and data presented as described for Table 835 
4.  836 
 837 
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FIGURE LEGENDS 838 
 839 
Figure 1 – Workflow for data management, manual segmentation and 840 
application and validation of deep learning. The test dataset comprised the 841 
validation cohort of 729 subjects (described in Table 1), from which datasets from 75 842 
subjects were manually segmented (A) to generate four VOIs per subject (spine, 843 
femoral head, total hip, and femoral diaphysis). The manual segmentations from 61-844 
64 of these subjects were used to train the deep learning models for each VOI (B), 845 
while those from 10-12 subjects were kept as ‘unseen’ segmentations that had not 846 
been used to train the models (C). The models were then used to segment all datasets 847 
from the 729-subject cohort (D), with deep learning segmentations from the 10-848 
152validation datasets then compared to the corresponding manual segmentations to 849 
calculate dice coefficients for each model (E). Finally, FF maps were generated from 850 
each MRI dataset (F) and the deep learning segmentations applied to these to obtain 851 
the BMFF for each VOI (G). 852 
 853 
Figure 2 – Architecture of our CBAM Attention ROI U-Net for segmenting small 854 
structures from large 3D data. Each convolutional block in the U-Net encoding 855 
subnetwork (or contracting path) includes one or two CBAM (convolutional block 856 
attention module) layers. A fixed-size single channel spatial attention map is generated 857 
by each CBAM layer through 1X1X1 convolutions and trilinear interpolation. These 858 
attention maps are then combined to produce a probability map of object location with 859 
which a ROI is defined. The encoded features of all resolution-levels are then cropped 860 
to the ROI and input into the decoder which produces the segmentation results within 861 
the detected ROI. A non-local spatial attention layer is inserted in the final block to 862 
generate globally sensitive features. The final segmentation results are then generated 863 
by implanting the ROI back into the whole data volume. 864 
 865 
Figure 3 – Visual comparison of manual vs deep learning segmentations. Deep 866 
learning segmentation results (purple) are displayed on top of the ground-truth 867 
(manual) segmentations (yellow). Representative images from the axial, coronal and 868 
sagittal plane are shown, along with a 3D rendering. 869 
 870 
Figure 4 – Sex differences in BMFF vary according to skeletal region. BMFF for 871 
control subjects was assessed at each skeletal region. Data represent 134 females 872 
and 138 males and are shown as violin plots overlaid with individual data points. 873 
Significant effects of region, sex, and region*sex interaction were assessed using a 874 
mixed-effects model with Šídák’s multiple comparisons test. Overall P values for 875 
each variable, and their interaction, are shown in the box, while significant sex 876 
differences within each region are indicated above. 877 
 878 
Figure 5 – Osteopaenia or osteoporosis influence BMFF in a sex- and region-879 
specific manner. BMFF for control, osteopaenic and osteoporotic subjects was 880 
assessed at each skeletal region. Data are shown as violin plots overlaid with 881 
individual data points. Within each sex, significant differences between control and 882 
osteopaenic or osteoporotic subjects were assessed by one-way ANOVA (for normally 883 
distributed data: A) or the Kruskal-Wallis test (for non-normally distributed data: B-D). 884 
P values for each comparison are shown on each graph. 885 
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