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Abstract 

Resolving chromatin remodeling-linked gene expression changes at cell type resolution 

is important for understanding disease states. We describe MAGICAL, a hierarchical 

Bayesian approach that leverages paired scRNA-seq and scATAC-seq data from 

different conditions to map disease-associated transcription factors, chromatin sites, 

and genes as regulatory circuits. By simultaneously modeling signal variation across 

cells and conditions in both omics data types, MAGICAL achieved high accuracy on 

circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from 

peripheral blood mononuclear single-cell data that we generated from infected subjects 

with bloodstream infection and from uninfected controls. MAGICAL identified sepsis-

associated regulatory circuits predominantly in CD14 monocytes, known to be activated 

by bacterial sepsis. We addressed the challenging problem of distinguishing host 

regulatory circuit responses to methicillin-resistant- (MRSA) and methicillin-susceptible 

Staphylococcus aureus (MSSA) infections. While differential expression analysis failed 

to show predictive value, MAGICAL identified epigenetic circuit biomarkers that 

distinguished MRSA from MSSA.   

 

Introduction 

Gene expression can be modulated through the interplay of proximal and distal 

regulatory domains brought together in 3D space1. Chromatin regulatory domains, 

transcription factors, and downstream target genes form regulatory circuits2. In disease, 

these circuits could be dysregulated in specific cell types3. Identifying the impact of 

disease on regulatory circuits requires a framework for mapping regulatory domains 

with chromatin accessibility changes to altered gene expression in the context of 

genomic looping and at cell-type resolution4. Single-cell data (scRNA-seq and scATAC-

seq) characterizing disease states have improved the identification of differential 

chromatin sites and/or differentially expressed genes within individual cell types3,5,6. Yet, 

advances in single-cell assay technology have outpaced the development of methods to 

maximize the value of multiomics datasets for studying disease-associated regulation. 
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Recent approaches7-10 to support integrated analysis of multiomics data demonstrate 

the promise of this area but lack the capacity to resolve high-resolution regulation 

changes within individual cell types, which precludes elucidating regulatory circuits 

affected by the disease or different disease states.  

To address these, we developed MAGICAL (Multiome Accessibility Gene Integration 

Calling And Looping), a method that models coordinated chromatin accessibility and 

gene expression variation to identify circuits that differ between conditions. MAGICAL 

analyzes scRNA-seq and scATAC-seq data using a hierarchical Bayesian framework 

that improves model robustness by leveraging information on transcription factor motifs 

and 3D topologically associated domains. To accurately detect differences in regulatory 

circuit activity between conditions, MAGICAL introduces hidden variables for explicit 

modeling of signal and noise in both the scRNA-seq and scATAC-seq data. Because 

regulatory circuits are cell-type specific11, MAGICAL reconstructs them at cell-type 

resolution. Systematic benchmarking against multiple public datasets supported the 

accuracy of MAGICAL-identified regulatory circuits.  

 

Staphylococcus aureus, a bacterium often resistant to common antibiotics, is a major 

cause of severe infection and mortality12,13. We applied MAGICAL to identify host 

response regulatory circuits modulated during S. aureus bloodstream infection, and 

circuits that discriminate the responses to methicillin-resistant (MRSA) and methicillin-

susceptible S. aureus (MSSA). Using single-cell multiomics data generated for this 

study, MAGICAL identified host circuits that accurately predicted S. aureus infection in 

multiple validation datasets. Moreover, in contrast to conventional differential analysis 

that failed to identify robust antibiotic-sensitivity specific signals, MAGICAL identified 

circuit genes that can differentiate MRSA from MSSA. MAGICAL is a general framework 

and can accurately identify regulatory circuits modulated by any disease, condition, or 

perturbation.  
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Results 

MAGICAL framework 

MAGICAL identifies disease-associated regulatory circuits by comparing single-cell 

multiomics data (scRNA-seq and scATAC-seq) from disease and control samples 

(Fig.1a). The framework incorporates transcription factor (TF) motifs and chromatin 

topologically associated domains (TAD) as prior information to infer regulatory circuits 

comprising chromatin regulatory sites, modulatory TFs, and downstream target genes 

for each cell type (see Methods for details). In brief, to build candidate disease-

modulated circuits, differentially accessible sites (DAS) within each cell type are first 

associated with TFs by motif sequence matching and then linked to differentially 

expressed genes (DEG) in that cell type by genomic localization within the same TAD. 

Next, MAGICAL uses a Bayesian framework to iteratively model chromatin accessibility 

and gene expression variation across cells and samples in each cell type and to 

estimate the confidence of TF-peak and peak-gene linkages for each candidate circuit 

(Fig.1b).  

 

To accurately identify varying circuits between different conditions, the MAGICAL 

framework introduces variables to explicitly model signal and noise in chromatin 

accessibility and gene expression data in each cell type (Fig.1b; see Methods for 

details). The circuit TF-peak binding variable and a hidden TF activity variable are jointly 

estimated to fit to the chromatin accessibility variation across cells from the conditions 

being compared. These two variables are then used together with the circuit peak-gene 

looping variable to fit the gene expression variation. Using Gibbs sampling, MAGICAL 

iteratively optimizes the states of TF-peak-gene linkages by controlling the variances of 

fitting residuals (data noise) in both modalities. Finally, high-confidence circuits fitting 

the signal variation in both data types are selected. 

 

MAGICAL makes the assumption that, in each cell type, the activities of a TF have the 

same distribution in cells from both modalities if these cells are sequenced from the 
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same sample. MAGICAL learns the distribution for each TF, infers the TF activity for 

every cell, and fits the chromatin accessibility and gene expression data, respectively 

(Fig. S1). This procedure eliminates the limitation of existing correlation-based 

approaches that require a one-to-one, cell-level pairing of RNA-seq and ATAC-seq 

data. It makes MAGICAL a general tool that can analyze single-cell true multiome or 

sample-paired multiomics datasets.  

 

We validated MAGICAL in multiple ways, demonstrating that it infers regulatory circuits 

accurately. The MAGICAL-inferred linkages between chromatin sites and genes show 

high correspondence to experimental 3D chromatin interactions. The resulting genes 

and peaks are more robust than the ones obtained through conventional differential 

analysis using one modality alone. And finally, the circuit genes can accurately classify 

disease states, providing a rapid solution to challenging diagnostic problems (Fig. 1c).  

 

 

Figure 1: Overview of MAGICAL for mapping disease-associated regulatory circuits from 

scRNA-seq and scATAC-seq data. (a) Altered gene expression between disease and control 

conditions can be attributed to chromatin accessibility changes of proximal and distal chromatin 
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sites regulated by TFs. (b) To identify disease-associated regulatory circuits in a selected cell 

type (including ATAC assay cells and RNA assay cells from samples being compared), 

MAGICAL selects DAS as candidate regions and DEG as candidate genes. Then, the filtered 

ATAC data (A) and RNA data (R) of candidate regions and genes, together with the prior 

information of TF motifs and genomic domains provided by TADs, are integrated into a 

hierarchical Bayesian framework for circuit inference. MAGICAL estimates TF-peak binding 

confidence (B) and the hidden TF activity (T) to fit ATAC data and then use them to estimate the 

peak-gene looping (L) by fitting RNA data. Variables B, T, and L are iteratively estimated in a 

Bayesian framework to minimize fitting residuals (NA and NR). Finally, regulatory circuits with 

high-confidence linkage (e.g., TF1 - Peak2 - Gene1) are selected. (c) Benchmarking circuits 

against independent validation datasets demonstrates that MAGICAL results are accurate, and 

the circuit genes can be used as signatures to predict the diagnosis of disease states.  

 

 

Comparative analysis of performance 

MAGICAL is a scalable framework. It can infer regulatory circuits of TFs, chromatin 

regions and genes with differential activities between multiple conditions or infer 

regulatory circuits with active chromatin regions and genes in a single condition. 

Existing integrative methods9,10,14 use single-condition data only and correlate chromatin 

site accessibility and gene expression primarily for peak-gene looping inference. To 

provide a comparative assessment of the performance of MAGICAL, we restricted 

MAGICAL to the single-condition data analysis possible with existing methods.  

 

For peak-gene looping inference, we compared MAGICAL to the TRIPOD9 and FigR14 

methods, using the same benchmark single-cell multiome datasets as used by the 

authors reporting these methods. In the comparison of MAGICAL with TRIPOD using a 

10X multiome single-cell dataset [https://support.10xgenomics.com/single-cell-

multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k], MAGICAL-inferred 

peak-gene loops showed significantly higher enrichment of experimentally observed 

chromatin interactions in blood cells in the 4DGenome database15 (Fisher exact test 

P<0.0001, Fig. S2a), the same validation data used by TRIPOD developers. MAGICAL 

also significantly outperformed FigR on the application to a GM12878 SHARE-seq 

dataset8. In that case, the peak-gene loops in MAGICAL-selected circuits had 
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significantly higher enrichment of H3K27ac HiChIP chromatin interactions16 than did 

FigR (Fisher exact test P<0.0001, Fig. S2b). 

 

Because the MAGICAL framework, unlike TRIPOD and FigR, used chromatin TAD as 

prior information, we evaluated whether the improvement in performance resulted solely 

from this additional information. To investigate this, we eliminated the use of TAD and 

modified MAGICAL for this test by assigning candidate linkages between peaks and 

genes within 500kb. As shown in Fig.S2c and S2d, even without the TAD prior 

information, MAGICAL still outperformed the competing methods (Fisher exact test 

p<0.001). Overall, these results suggest that in addition to the benefit of priors, explicit 

modeling of signal and noise in both chromatin accessibility and gene expression data 

increased the accuracy of peak-gene looping identification.  

 

Validation of disease modulated circuits 

To demonstrate the accuracy of the main application of MAGICAL, inferring disease-

modulated circuits, we applied MAGICAL to sample-paired peripheral blood 

mononuclear cell (PBMC) scRNA-seq and scATAC-seq data from SARS-CoV-2 

infected individuals and healthy controls3. Because immune responses in COVID-19 

patients differ according to disease severity17,18, MAGICAL inferred the regulatory 

circuits for mild and severe clinical groups separately. The chromatin sites and genes in 

the identified circuits were validated using newly generated and publicly available 

independent COVID-19 single-cell datasets (Fig.2a). We primarily focused on three cell 

types that have been found to show widespread gene expression and chromatin 

accessibility changes in response to SARS-CoV-2 infection19,20, including CD8 effector 

memory T (TEM) cells, CD14 monocytes (Mono), and natural killer (NK) cells. The 

identified circuits in each cell type for mild and severe clinical groups can be found in 

Table S1.  

 

To confirm the circuit chromatin sites selected by MAGICAL for mild COVID-19, we 

generated an independent PBMC scATAC-seq dataset from six SARS-CoV-2-infected 
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subjects with mild symptoms and three uninfected (PCR-negative) controls (Fig. 2b; 

Table S2; see Methods). This dataset produced three mild COVID-19 validation peak 

sets, one for each cell type. For severe COVID-19, an existing study focused on T cells 

identified specific chromatin activity changes with severe COVID-19 in CD8 T cells21. 

We used their reported chromatin sites for validating the circuit chromatin sites identified 

in CD8 T cells. In all four validation sets, significantly higher proportions of the 

MAGICAL-selected chromatin sites than DAS were found (Fisher exact test P<0.001, 

Fig. 2c and 2d).  

 

When multiple potential chromatin regulatory loci are identified in the vicinity of a 

specific gene, it is commonly assumed that the locus closest to the TSS is likely to be 

the most important regulatory site. Challenging this assumption, however, are the 

results of experimental studies showing that genes may not be regulated by the nearest 

region22,23. Supporting the importance of more distal regulatory loci, MAGICAL-selected 

chromatin sites significantly outperformed the closest DAS on the independent COVID-

19 datasets (Fisher exact test p<0.05, Fig. 2c and 2d).  

 

To validate the circuit genes modulated by mild and severe COVID-19, we used genes 

reported by external COVID-19 single-cell studies17,24,25. In total, we collected six 

validation gene sets (three cell types for mild COVID-19 and three cell types for severe 

COVID-19). The MAGICAL-selected circuit genes significantly outperformed DEG in all 

validations (Fisher's exact test p<0.05, Fig. 2e and 2f). These results confirmed the 

increased accuracy of disease association for both chromatin sites and genes in 

MAGICAL-identified circuits.   
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a.                      b.           

    
c.    d.      e.                f. 

 
 
Figure 2. Validation of COVID-19-associated circuit chromatin sites and genes.  

(a) We applied MAGICAL to a COVID-19 PBMC single-cell multiomics dataset and identified 

circuits for the clinical mild and severe groups, respectively. We validated the circuit-associated 

chromatin sites and genes using newly generated and independent COVID-19 single-cell 

datasets. (b) UMAPs of a newly generated scATAC-seq dataset including 16K cells from six 

COVID-19 subjects and 9K cells from three showed chromatin accessibility changes in CD8 

TEM, CD14 Mono, and NK cell types. (c-f) Using validation datasets, within each cell type we 

showed that a significantly higher proportion of MAGICAL-selected chromatin sites and genes 

are validated to be differentially accessible and differentially expressed in the same cell type 

between infection and control conditions (Fisher exact test, *P < 0.05, **P < 0.01, ***P < 0.001, 

****P < 0.0001). (c)(e) for mild COVID-19 and (d)(f) for severe COVID-19. The error bars 

represent the standard error. 

 

MAGICAL analysis of S. aureus sepsis single-cell multiomics data  

We applied MAGICAL to the clinically important challenge of distinguishing methicillin-

resistant (MRSA) and methicillin-susceptible S. aureus (MSSA) infections26-28. We 

profiled paired scRNA-seq and scATAC-seq data using human PBMCs from adults who 
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were blood culture positive for S. aureus, including 10 MRSA and 11 MSSA, and from 

23 uninfected control subjects (Fig. 3a; Table S3). To integrate scRNA-seq data from 

all samples, we implemented a Seurat29-based batch correction and cell type annotation 

pipeline. In total, 276,200 cells were selected and labeled (Fig. 3b and Fig. S3). We 

integrated scATAC-seq data from all samples using ArchR30 and selected and 

annotated 70,174 high-quality cells (Fig. 3c and Fig. S3). Data integration was 

described in detail in the Methods section. 13 common cell types that surpassed the 

200 cell threshold in each modality were selected for subsequent analysis.  

 

MAGICAL selected high-confidence regulatory circuits in each cell type for three 

contrasts (MRSA vs Control, MSSA vs Control, and MRSA vs MSSA) (Table S4; see 

Methods). It has been reported that activation of CD14 monocytes plays a principal role 

in response to S. aureus infection31,32. In MAGICAL analysis, CD14 monocytes showed 

the highest number of regulatory circuits (Fig.3d). Circuits identified in each cell type 

were further validated using physical chromatin interactions reported in a reference 

promoter capture (pc) Hi-C dataset11. In all the cell types for which cell type-specific 

pcHi-C data was available (B cells, CD4 T cells, CD8 T cells, CD14 monocytes), the 

circuit peak-gene interactions showed significant enrichment of pcHi-C interactions in 

the same cell type (Fig.3e; hypergeometric P < 0.01). For comparison, we also 

performed the peak-gene interaction enrichment analysis between different cell types, 

finding significantly lower enrichment levels (Wilcoxon rank-sum test P = 3e-5; see 

Methods). These results indicate cell-type specificity of MAGICAL-identified circuits.  

 

In CD14 monocytes, MAGICAL identified AP-1 complex proteins as the most important 

regulators, especially at chromatin sites showing increased activity in infection cells 

(Fig.3f). This finding is consistent with the importance of these complexes in gene 

regulation in response to a variety of infections3,33,34. Supporting the accuracy of the 

identified TFs, we compared circuit chromatin sites with ChIP-seq peaks from the 

Cistrome database35. The most similar TF ChIP-seq profiles were from AP-1 complex 

JUN/FOS proteins in blood or bone marrow samples (Fig.S4). Moreover, functional 

enrichment analysis36 of the circuit genes showed that cytokine signaling, a known 
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pathway mediated by AP-1 factors and associated with the inflammatory responses in 

macrophages37,38, was the most enriched.  

 

MAGICAL modeled regulatory effects of both proximal and distal regions on genes. We 

examined the chromatin site location relative to the target gene TSS, for circuits 

chromatin sites and genes identified for CD14 monocytes. Compared to all ATAC peaks 

called around the circuit genes, an increased proportion of circuit chromatin sites were 

located 10kb to 30kb away from the TSS (Fig.3g). This pattern is consistent with the 

24.1 kb median enhancer distance found by CRISPR-based perturbation in a blood cell 

line39. In addition, nearly 50% of circuit chromatin sites were overlapping with enhancer-

like regions in the ENCODE database40, further emphasizing that MAGICAL circuits are 

enriched in distal regulatory loci. We also found that these circuit chromatin sites were 

significantly enriched in inflammatory-associated GWAS loci reported in the GWAS 

catalog database41, suggesting active host epigenetic responses to infectious diseases 

(Fig.S5; Wilcoxon test P < 0.005; see Methods). Notably, one distal chromatin site 

(hg38 chr6: 32,484,007-32,484,507) looping to HLA-DRB1 is within the most significant 

GWAS region (hg38 chr6: 32,431,410-32,576,834) associated with S. aureus 

infection42.  

 

We finally compared circuit genes to existing epi-genes whose transcriptions were 

significantly driven by epigenetic perturbations in CD14 monocytes43. MAGICAL-

identified circuit genes were significantly enriched with epi-genes (hypergeometric P < 

0.005, Fig.3h) while the remaining DEG not selected by MAGICAL, or those mappable 

with DAS either within the same topological domains or closest to each other showed 

no evidence of being epigenetically driven. These results suggest that MAGICAL 

accurately identified regulatory circuits activated in response to S. aureus infection.  
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a.   b.                       c. 

 
d.                e.     

 
f.      g.     h. 

 

 

Figure 3: MAGICAL accurately identified distal regulatory chromatin sites and epi-driven 

genes associated with S. aureus infection. (a) We collected PBMC samples from 10 MRSA-

infected, 11 MSSA-infected, and 23 healthy control subjects and generated same-sample 

scRNA-seq and scATAC-seq data using separate assays. (b) UMAP of integrated scRNA-seq 

data with 18 PBMC cell subtypes. (c) UMAP of integrated scATAC-seq data with 13 PBMC cell 

subtypes. Under-represented subtypes including cDC1, CD4 TEM, CD8 CTL, pDC, and 

Plasmablast, altogether representing less than 5% of cells in the scRNA-seq data, were not 

recovered from the scATAC-seq data. (d) Number of MAGICAL-identified regulatory circuits for 

each cell type and in contrast analysis. (e) Circuit peak-gene interactions were significantly 

enriched with pcHi-C interactions in the same cell types (adjusted hypergeometric **P < 0.01, 
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***P < 0.001, ****P< 0.0001). (f-h)Analyzing TFs, chromatin sites, and genes in the MAGICAL-

identified regulatory circuits for CD14 monocytes, we found that: (f) AP-1 proteins are mostly 

significantly enriched at chromatin regions with increased accessibility in the infection condition; 

(g) in comparison to all accessible chromatin sites, an increased proportion of MAGICAL circuit 

chromatin sites were located in the range of 10kb to 30kb relative to gene TSS; and (h) the 

circuit genes were significantly enriched with experimentally confirmed epi-genes. The gray area 

in (g) represents the 95% confidence interval. 

 

S. aureus infection prediction 

Early diagnosis of S. aureus infection and the strain antibiotic sensitivity is critical to 

appropriate treatment for this life-threatening condition. We first evaluated whether the 

MAGIC-identified circuit genes that are in common to MRSA and MSSA could provide a 

robust signature for predicting the diagnosis of S. aureus infection in general. Within 

each cell type, we selected circuit genes common to both the MRSA and MSSA 

analyses, resulting in 152 genes (Fig.4a; Table S5). To evaluate this S. aureus 

infection, we collected external, public expression data of S. aureus infection from the 

GEO database (https://www.ncbi.nlm.nih.gov/geo/). In total, we found one adult whole-

blood44 and two pediatric PBMC bulk microarray datasets45,46 that comprised a total of 

126 S. aureus infected subjects and 68 uninfected controls. The use of pediatric 

validation data has the advantage of providing a much more rigorous test of the 

robustness of MAGICAL-identified circuit genes for classifying disease samples in this 

very different cohort.  

 

To allow validation using public bulk transcriptome datasets, we refined the 152 circuit 

genes set by selecting those with robust performance in our dataset at pseudobulk 

level. We calculated an AUROC for each circuit gene by classifying S. aureus infection 

and control subjects using pseudobulk gene expression (aggregated from the discovery 

scRNA-seq data). 71 circuit genes with AUROCs greater than 0.8 were selected (Table 

S5). Functional gene enrichment analysis showed that IL-17 signaling was most 

enriched in this set (P = 5e-8), including genes from AP-1, Hsp90, and S100 families. 

IL-17 had been found to be essential for the host defense against cutaneous S. aureus 

infection in mouse models47. We trained an SVM model using the 71 circuit genes as 
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features and their discovery pseudobulk gene expression as input. We then applied the 

trained SVM model to each of the three validation datasets. The model achieved high 

prediction performance on all datasets, showing AUROCs from 0.93 to 0.98 (Fig.4a).  

 

This generalizability of circuit genes for predicting infection in different cohorts 

suggested that MAGICAL identifies regulatory processes that are fundamental to the 

host response to S. aureus sepsis. We further evaluated this by comparing the 71 circuit 

genes to 274 filtered DEG (per gene AUROC >0.8 in the discovery pseudobulk gene 

expression data). We examined the differential expression π-value48 (a statistic score 

that combines both fold change and p-values) of genes in the validation datasets and 

found significantly higher π-values for the circuit genes (Fig. S6, Wilcoxon rank-sum 

test P < 9.0e-3).  

S. aureus antibiotic sensitivity prediction 

We then addressed the challenging problem of predicting strain antibiotic sensitivity in 

S. aureus infection. Reflecting the difficulty of this problem, we first trained a model 

using expression based DEGs (226 genes having AUROC >0.7 in the discovery 

dataset) for distinguishing MRSA and MSSA. When we applied this model to three 

pediatric PBMC microarray datasets45,46,49 comprising a total of 66 methicillin-resistant 

and 45 methicillin-susceptible samples, the model showed no predictive value for any of 

the validation datasets (Fig.S7a; see Methods). We also tested the prediction 

performance of the top DEG (as the same number of circuit genes selected by 

MAGICAL for this problem) but found little performance improvement (Fig.S7b). These 

results suggest that using host gene expression alone is not sufficient to predict the 

antibiotic sensitivity of the infected strain.  

 

With MAGICAL we identified 53 circuit genes from the comparative multiomics data 

analysis between MRSA and MSSA (Fig.4b; Table S6). A new model trained using 32 

circuit genes that were robustly differential in the discovery pseudobulk data (per gene  

AUROC >0.7) finally distinguished antibiotic-resistant and antibiotic-sensitive samples in 

all three validation datasets, with AUROCs from 0.67 to 0.75 (Fig.4b). The performance 
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of the circuit gene-based model and the failure of the DEG-based model demonstrated 

that MAGICAL captured generalizable regulatory differences in the host immune 

response to these closely related bacterial infections. 

 

 

Figure 4: MAGICAL-identified circuit genes robustly predict S. aureus infection and 

bacteria antibody sensitivity. (a) Circuit genes in common to MRSA and MSSA infections 

achieved a near-perfect classification of S. aureus infected and uninfected samples in multiple 

independent datasets (one adult dataset and two pediatric datasets). (b) Circuit genes that 

differed between MRSA and MSSA showed predictive value of antibiotic sensitivity in 

independent patient samples (three pediatric datasets), while expression DEG showed no 

predictive value (Fig. S7).  
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Discussion 

MAGICAL addressed the previously unmet need of identifying differential regulatory 

circuits based on single-cell multiomics data from different conditions. Critically, it 

identifies regulatory circuits involving distal chromatin sites. The previously difficult-to-

predict distal regulatory regions are increasingly recognized as key for understanding 

gene regulatory mechanisms. MAGICAL provides a robust framework to infer regulatory 

circuits contributing to disease states. 

 

Using newly generated PBMC single-cell multiomics data, MAGICAL identified the 

regulatory circuits characteristic of the human immune response to S. aureus infection. 

Our thorough analysis of MAGICAL circuits and independent data validation 

demonstrate the ability of MAGICAL to use epigenetic context to identify robust immune 

cell responses specific to these infections. Despite profound differences between the 

discovery and the validation cohorts (adult vs. pediatric) and technologies and data 

resolution (single-cell sequencing vs. bulk microarray), MAGICAL-identified circuit 

genes achieved high prediction performance on the latter.  

 

MAGICAL is a general tool for single-cell multiomics data analysis. It performs both 

single-condition or contrast-condition analysis and can also be applied to data from 

more conditions. Circuits with varying linkages across conditions reflect condition-

specific regulation. MAGICAL provides a high-resolution lens to systematically study the 

regulatory control mechanism.  
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Methods 

S. aureus patient and control samples selection 

Patients with culture-confirmed S. aureus bloodstream infection transferred to DUMC 

are eligible if pathogen speciation and antibiotic susceptibilities are confirmed by the 

Duke Clinical Microbiology Laboratory. Patient or patient’s legally authorized 

representative provides signed informed consent allowing participation unless patient 

expires prior to notification of blood culture results. DNA and RNA samples, PBMCs, 

clinical data, and the bacterial isolate from the subject are cataloged using an IRB-

approved Notification of Decedent Research. We excluded samples if prior enrollment 

of the patient in this investigation (to ensure statistical independence of observations) or 

they are polymicrobial (i.e., more than one organism in blood or urine culture). In total, 

21 adult patients were selected with 10 MRSAs and 11 MSSAs. None of them received 

any antibiotics in the 24 h before the bloodstream infection. Control samples were 

obtained from uninfected healthy adults matching the sample number and age range of 

the patient group. In total, 23 samples were collected from two cohorts: 14 controls 

provided by from the Weill Cornell Medicine, New York, NY, and 9 controls (provided by 

the Battelle Memorial Institute, Columbus, OH. Meta information of the selected 

subjects were provided in Table S3. 

PBMC thawing 

Frozen PBMC vials were thawed in a 37°C-waterbath for 1 to 2 minutes and placed on 

ice. 500μl of RPMI/20% FBS was added dropwise to the thawed vial, the content was 

aspirated and added dropwise to 9ml of RPMI/20% FBS. The tube was gently inverted 

to mix, before being centrifuged at 300xg for 5 min. After removal of the supernatant, 

the pellet was resuspended in 1-5ml of RPMI/10% FBS depending on the size of the 

pellet. Cell count and viability were assessed with Trypan Blue on a Countess II cell 

counter (Invitrogen). 
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Nuclei isolation 

Thawed PBMCs were washed with PBS/0.04% BSA. Cells were counted and 100,000-

1,000,000 cells were added to a 2mL-microcentrifuge tube. Cells were centrifuged at 

300xg for 5min at 4°C. The supernatant carefully completely removed, and 0.1X lysis 

buffer (1x: 10mM Tris-HCl pH 7.5, 10mM NaCl, 3mM MgCl2, nuclease-free H2O, 0.1% 

v/v NP-40, 0.1% v/v Tween-20, 0.01% v/v digitonin) was added. After 3min incubation 

on ice, 1ml of chilled wash buffer was added. The nuclei were pelted at 500xg for 5min 

at 4°C and resuspended in a chilled diluted nuclei buffer (10X Genomics) for scATAC-

seq. Nuclei were counted and the concentration was adjusted to run the assay. 

S. aureus scATAC-seq data generation  

ScATAC-seq was performed immediately after nuclei isolation and following the 

Chromium Single Cell ATAC Reagent Kits V1.1 User Guide (10x Genomics, 

Pleasanton, CA). Transposition was performed in 10l at 37°C for 60min on at least 

1,000 nuclei, before loading of the Chromium Chip H (PN-2000180). Barcoding was 

performed in the emulsion (12 cycles) following the Chromium protocol. After post GEM 

cleanup, libraries were prepared following the protocol and were indexed for 

multiplexing (Chromium i7 Sample Index N, Set A kit PN-3000427). Each library was 

assessed on a Bioanalyzer (High-Sensitivity DNA Bioanalyzer kit). 

S. aureus scATAC-seq data integration and cell type annotation 

Reads of scATAC-seq experiments were aligned to human reference genome (hg38) 

using 10x Genomics Cell Ranger software (version 1.2). The resulting fragment files 

were processed using ArchR30. Quality cells were selected based on per cell TSS 

enrichment > 12, the number of fragments >3000 and <30000, and nucleosome ratio 

<2. The likelihood of doublet cells was computationally assessed using ArchR’s 

addDoubletScores function and cells were filtered using the ArchR’s filterDoublets 

function with default settings. Cells passing quality and doublet filters from each sample 

were combined into a linear dimensionality reduction using ArchR’s addIterativeLSI 

function with the input of the tile matrix (read counts in binned 500bps across the whole 

genome) with iterations = 2 and varFeatures = 20000. This dimensionality reduction 
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was then corrected for batch effect using the Harmony method50, via ArchR’s 

addHarmony function. The cells were then clustered based on the batch-corrected 

dimensions using ArchR’s addClusters function. We annotated scATAC-seq cells using 

ArchR’s addGeneIntegrationMatrix function, referring to a labeled multimodal PBMC 

single cell dataset (https://atlas.fredhutch.org/nygc/multimodal-pbmc/). Doublet clusters 

containing a mixture of many cell types were manually identified and removed. In total, 

70,174 high-quality cells and 13 cell types with at least 200 cells in each were selected 

for the subsequent analysis.  

S. aureus scRNA-seq data generation 

ScRNA-seq was performed as described (10x Genomics, Pleasanton, CA), following 

the Single Cell 3’ Reagents Kits V3.1 User Guidelines. Cells were filtered, counted on a 

Countess instrument, and resuspended at a concentration of 1,000 cells/μl. The number 

of cells loaded on the chip was determined based on the 10X Genomics protocol. The 

10X chip (Chromium Single Cell 3’ Chip kit G PN-200177) was loaded to target 5,000-

10,000 cells final. Reverse transcription was performed in the emulsion and cDNA was 

amplified following the Chromium protocol. Quality control and quantification of the 

amplified cDNA were assessed on a Bioanalyzer (High-Sensitivity DNA Bioanalyzer kit) 

and the library was constructed. Each library was tagged with a different index for 

multiplexing (Chromium i7 Multiplex Single Index Plate T Set A, PN-2000240) and 

quality controlled by Bioanalyzer prior to sequencing. 

S. aureus scRNA-seq data integration and cell type annotation 

Reads of scRNA-seq experiments were aligned to human reference genome (hg38) 

using Cell Ranger v3.1.0 and. The filtered feature-by-barcode count matrices were then 

processed using Seurat29. Low-quality cells with less than 400 mRNA reads (suggesting 

potential empty droplets), with more than 5,000 mRNA reads (potential doublets or 

multiplets), or with more than 10% of mitochondrial content (dying cells) were excluded. 

Cell cycle phase scores were calculated using the canonical markers for G2M and S 

phases embedded in the Seurat package. Finally, the effects of mitochondrial reads and 

cell cycle heterogeneity were regressed out using SCTransform. To integrate cells from 
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heterogeneous disease samples, we first built a reference by integrating and annotating 

cells from the uninfected control samples using a Seurat-based pipeline. For batch 

correction, we identified the intrinsic batch variants and used Seurat to integrate cells 

together with the inferred batch labels. All control samples were integrated into one 

harmonized query matrix. Each cell was assigned a cell type label by referring to the 

same reference PBMC single cell dataset used above. The cell type label of each cell 

cluster was determined by most cell labels in each. Canonical markers were used to 

refine the cell type label assignment. This integrated control object was used as 

reference to map the infected samples. To avoid artificially removing the biological 

variance between each infected sample during batch correction, we computationally 

predicted and manually refined cell types for each sample. All infection samples were 

projected onto the UMAP of the control object for visualization purpose. In total, 276,200 

high-quality cells and 19 cell types with at least 200 cells in each were selected for the 

subsequent analysis.  

Differentially accessible chromatin sites and differentially expressed 

genes 

Within each cell type, differentially accessible chromatin sites (DAS) between contrast 

conditions (MRSA vs Control, MSSA vs Control or MRSA vs MSSA) were selected from 

the single cell chromatin accessibility data (Wilcoxon test FDR < 0.05 and 

|log2FC|>0.1). Notably, due to the high false positive rate in single cell-based differential 

analysis51, we further refined the DAS by fitting a linear model to the aggregated 

pseudobulk chromatin accessibility (regression P <0.05 and |log2FC|>0.3). Similarly, 

differentially expressed genes (DEG) between contrast conditions were first selected 

using single cell expression data (Wilcoxon test FDR < 0.05 and |log2FC|>0.1) and then 

refined using the aggregated pseudobulk gene expression data (regression P <0.05 and 

|log2FC|>0.3). 

MAGICAL 

To build candidate regulatory circuits, TFs were mapped to the selected DAS by 

searching for 870 human motifs from the chromVARmotifs library 
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(https://github.com/GreenleafLab/chromVARmotifs) using ArchR’s addMotifAnnotations 

function. The binding DAS were then linked with DEG by requiring them in the same 

topological domains. Prior topological domains in blood context were obtained from a 

GM12878 cell line Hi-C dataset52 using TopDom53. About 6000 topological domains 

were used. A candidate circuit includes a chromatin region and a gene in the same 

domain, with at least one TF motif match in the region.  

 

For each cell type (i.e. 𝑖-th cell type), MAGICAL inferred the confidence of TF-peak 

binding and peak-gene looping in each candidate circuit using a hierarchical Bayesian 

framework with two models: a model of TF-peak binding confidence (𝑩) and hidden TF 

activity (𝑻) to fit chromatin accessibility (𝑨); a second model of peak-gene interaction (𝑳) 

and the refined (noise removed) regulatory region activity (𝑩𝑻) to fit gene expression 

(𝑹).  

 

𝑨𝑃×𝐾𝐴,𝑆,𝑖 = 𝑩𝑃×𝑀,𝑖𝑻𝑀×𝐾𝐴,𝑆,𝑖 + 𝑵𝑃×𝐾𝐴,𝑆,𝑖,    (1) 

𝑹𝐺×𝐾𝑅,𝑆,𝑖 = 𝑳𝐺×𝑃,𝑖𝑩𝑃×𝑀,𝑖𝑻𝑀×𝐾𝑅,𝑆,𝑖 + 𝑵𝐺×𝐾𝑅,𝑆,𝑖,   (2) 

 

𝑨𝑃×𝐾𝐴,𝑆,𝑖: a 𝑃 by 𝐾𝐴,𝑆 matrix with each element 𝑎𝑝,𝑘𝐴,𝑠,𝑖 representing the ATAC read count 

of 𝑝-th chromatin site (ATAC peak) in 𝑘𝐴,𝑠-th cell in 𝑠-th sample. 

 

𝑹𝐺×𝐾𝑅,𝑆,𝑖: a 𝐺 by 𝐾𝑅,𝑆 matrix with each element 𝑟𝑔,𝑘𝑅,𝑠,𝑖 representing the RNA read count 

of 𝑔-th gene in 𝑘𝑅,𝑠-th cell of 𝑠-th sample. 

 

𝑵𝑃×𝐾𝐴,𝑆,𝑖 and 𝑵𝐺×𝐾𝑅,𝑆,𝑖 represented data noise in corresponding to 𝑨𝑃×𝐾𝐴,𝑆,𝑖 and 𝑹𝐺×𝐾𝑅,𝑆,𝑖. 

 

𝑩𝑃×𝑀,𝑖: a 𝑃 by 𝑀 matrix with each element 𝑏𝑝,𝑚,𝑖 representing the binding confidence of 

𝑚-th TF on 𝑝-th candidate chromatin site. 

 

𝑳𝐺×𝑃,𝑖: a 𝐺 by 𝑃 matrix with each element 𝑙𝑝,𝑔,𝑖 representing the interaction between 𝑝-th 

chromatin site and 𝑔-th gene.  
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𝑻𝑀×𝐾𝐴,𝑆,𝑖: a 𝑀 by 𝐾𝐴,𝑆 matrix with each element 𝑡𝑚,𝑘𝐴,𝑠,𝑖 representing the hidden TF 

activity of 𝑚-th TF in 𝑘𝐴,𝑠-th ATAC cell of 𝑠-th sample. 

 

𝑻𝑀×𝐾𝑅,𝑆,𝑖: a 𝑀 by 𝐾𝑅,𝑆 matrix with each element 𝑡𝑚,𝑘𝐴,𝑠,𝑖 representing the hidden TF 

activity of 𝑚-th TF in 𝑘𝑅,𝑠-th RNA cell of 𝑠-th sample.  

 

𝑻𝑀×𝐾𝐴,𝑆,𝑖 and 𝑻𝑀×𝐾𝑅,𝑆,𝑖 were both extended from the same 𝑻𝑀×𝑆,𝑖 (with elements 𝑡𝑚,𝑠,𝑖) by 

assuming that in 𝑖-th cell type and 𝑠-th sample, 𝑚-th TF’s regulatory activities in all 

ATAC cells and all RNA cells followed an identical distribution of a single variable 𝑡𝑚,𝑠,𝑖. 

Therefore, 𝐾𝐴,𝑆,𝑖 and 𝐾𝑅,𝑆,𝑖 can be different numbers and MAGICAL will only estimate the 

matrix 𝑻𝑀×𝑆,𝑖. 

 

To select high-confidence regulatory circuits, MAGICAL estimated the confidence 

(probability) of TF-peak binding 𝑩𝑃×𝑀,𝑖  and peak-gene interaction 𝑳𝐺×𝑃,𝑖 together with 

the hidden variable 𝑻𝑀×𝑆,𝑖 in a Bayesian framework. 

 

𝑃(𝑩, 𝑻, 𝑳|𝑨, 𝑹) ∝ 𝑃(𝑹|𝑳, 𝑩, 𝑻)𝑃(𝑨|𝑩, 𝑻)𝑃(𝑳)𝑃(𝑩)𝑃(𝑇).   (3) 

 

Based on the regulatory relationship among chromatin sites, upstream TFs, and 

downstream genes (as illustrated in Fig. 1), the posterior probability of each variable 

can be approximated as: 

 

𝑃(𝑻|𝑨, 𝑩) ∝ 𝑃(𝑨|𝑩, 𝑻)𝑃(𝑻),     (4) 

𝑃(𝑩|𝑨, 𝑻) ∝ 𝑃(𝑨|𝑩, 𝑻)𝑃(𝑩),    (5) 

𝑃(𝑳|𝑹, 𝑩, 𝑻) ∝ 𝑃(𝑹|𝑳, 𝑩, 𝑻)𝑃(𝑳).    (6) 

 

Although the prior states of 𝑏𝑝,𝑚,𝑖 and 𝑙𝑝,𝑔,𝑖 were obtained from the prior information of 

TF motif-peak mapping and topological domain-based peak-gene pairing, their values 

were unknown. We assumed zero-mean Gaussian priors for 𝑩, 𝑳 and the hidden 
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variable 𝑻 by assuming that positive regulation and negative regulation would have the 

same priors, which is likely to be true given the fact that there were usually similar 

numbers of up-regulated and down-regulated peaks and genes after the differential 

analysis. We set a high variance (non-informative) in each prior distribution to allow the 

algorithm to learn the distributions from the input data.  

 

𝑏𝑝,𝑚,𝑖 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝐵, 𝜎𝐵
2),     (7) 

𝑡𝑚,𝑠,𝑖 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑇 , 𝜎𝑇
2),     (8) 

𝑙𝑝,𝑔,𝑖 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝐿 , 𝜎𝐿
2).      (9) 

 

The likelihood functions 𝑃(𝑨|𝑩, 𝑻) and 𝑃(𝑹|𝑳, 𝑩, 𝑻) represent the fitting performance of 

the estimated variables to the input data. These two conditional probabilities are equal 

to the probabilities of the fitting residues 𝑵𝑃×𝐾𝐴,𝑆,𝑖 and 𝑵𝐺×𝐾𝑅,𝑆,𝑖, for which we assumed 

zero-mean Gaussian distributions and used an Inverse Gamma distribution with 

hyperparameters 𝛼 and 𝛽 to control the variance of fitting residues (very low 

probabilities on large variances).  

 

𝑨|𝑩, 𝑻 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑁𝐴
, 𝜎𝑁𝐴

2 ), 𝜎𝑁𝐴

2  ~ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑔𝑎𝑚𝑚𝑎 (𝛼𝑁𝐴
, 𝛽𝑁𝐴

),  (10) 

𝑹|𝑳, 𝑩, 𝑻 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑁𝑅
, 𝜎𝑁𝑅

2 ), 𝜎𝑁𝑅

2  ~ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑔𝑎𝑚𝑚𝑎 (𝛼𝑁𝑅
, 𝛽𝑁𝑅

), (11) 

 

Then, the posterior probability of each variable defined in Eq. (4-6) was still a Gaussian 

distribution with poster mean 𝜇̂ and variance 𝜎̂ as shown below: 

 

𝑏̂𝑝,𝑚,𝑖 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇̂𝐵,𝑚,𝑖 , 𝜎̂ 𝐵,𝑚,𝑖
2 ),     (12) 

𝑡̂𝑚,𝑠,𝑖  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇̂𝑇,𝑚,𝑠,𝑖 , 𝜎̂𝑇,𝑚,𝑠,𝑖
2 ),     (13) 

𝑙𝑝,𝑔,𝑖 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇̂𝐿,𝑖 , 𝜎̂𝐿,𝑖
2 ).     (14) 

 

Gibbs sampling was used to iteratively learn the posterior distribution mean and 

variance of each set of variables and draw samples of their values accordingly.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.06.22282077doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.06.22282077
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

For the TF-peak binding events, the posterior mean 𝜇̂𝐵,𝑚,𝑖 and variance 𝜎̂ 𝐵,𝑚,𝑖
2  were 

estimated specifically for 𝑚-th TF since the number of binding sites and the positive or 

negative regulatory effects between TFs could be very different.  

 

𝜇̂𝐵,𝑚,𝑖 =
∑ ∑ 𝑡𝑚,𝑠,𝑖(𝑎𝑝,𝑘𝑠,𝑖−∑ 𝑏𝑝,𝑚′,𝑖𝑡𝑚′,𝑠,𝑖𝑚′ )𝜎𝐵

2
𝑘𝑠 +𝜇𝐵,𝑡𝜎𝑁𝐴

2

∑ 𝐾𝐴,𝑠𝑡𝑚,𝑠,𝑖
2 𝜎𝐵

2
𝑠 +𝜎𝑁𝐴

2   and 𝜎̂𝐵,𝑚,𝑖
2 =

𝜎𝑁𝐴
2 𝜎𝐵

2

∑ 𝐾𝐴,𝑠𝑡𝑚,𝑠,𝑖
2 𝜎𝐵

2
𝑠 +𝜎𝑁𝐴

2 . (15) 

 

For TF activities, the posterior mean 𝜇̂𝑇,𝑚,𝑠,𝑖 and variance 𝜎̂𝑇,𝑚,𝑠,𝑖
2  were estimated 

specifically for 𝑚-th TF and 𝑠-th sample using chromatin accessibility data as follows:  

 

𝜇̂𝑇,𝑚,𝑠,𝑖 =
∑ ∑ 𝑏𝑝,𝑚(𝑎𝑝,𝑘,𝑠,𝑖−∑ 𝑏𝑝,𝑚′𝑡𝑚′,𝑠𝑚′ )𝜎𝑇

2
𝑘𝑝 +𝜇𝑇𝜎𝑁𝐴

2

∑ 𝐾𝐴,𝑠𝑏𝑝,𝑚,𝑖
2 𝜎𝑇

2
𝑝 +𝜎𝑁𝐴

2   and 𝜎̂𝑇,𝑚,𝑠,𝑖
2 =

𝜎𝑁𝐴
2 𝜎𝑇

2

∑ 𝐾𝐴,𝑠𝑏𝑝,𝑚,𝑖
2 𝜎𝑇

2
𝑝 +𝜎𝑁𝐴

2 . (16) 

 

Then, based on the estimated distribution parameters of 𝜇̂𝑇,𝑚,𝑠,𝑖 and 𝜎̂𝑇,𝑚,𝑠,𝑖
2  of 𝑡̂𝑚,𝑠,𝑖, for 

𝑘𝑅,𝑠-th RNA cell in the same s-th sample we draw a TF regulatory activity sample as 

𝑡̂𝑚,𝑘𝑅,𝑠,𝑖. For p-th peak, we were able to reconstruct its chromatin activity in the RNA cell 

as 𝑎̂𝑝,𝑘𝑅,𝑠,𝑖 = ∑ 𝑏̂𝑝,𝑚,𝑖 𝑡̂𝑚,𝑘𝑅,𝑠,𝑖𝑚 , and for g-th gene, we further estimated the interaction 

confidence 𝑙𝑝,𝑔,𝑖  between p-th peak and g-th gene. The peak-gene interaction 

distribution parameters 𝜇̂𝐿,𝑖  and 𝜎̂𝐿,𝑖
2  were estimated as follows: 

 

𝜇̂𝐿,𝑖 =
∑ ∑ 𝑎̂𝑝,𝑘𝑅,𝑠,𝑖(𝑟𝑔,𝑘,𝑠,𝑖−∑ 𝑙𝑔,𝑝′𝑎̂𝑝′,𝑘𝑅,𝑠,𝑖𝑝′ )𝜎𝐿

2
𝑘𝑠 +𝜇𝐿𝜎𝑁𝑅

2

∑ ∑ (𝑎̂𝑝,𝑘𝑅,𝑠,𝑖)2𝜎𝐿
2

𝑘𝑅,𝑠𝑠 +𝜎𝑁𝑅
2   and  𝜎̂𝐿

2 =
𝜎𝑁𝑅

2 𝜎𝐿
2

∑ ∑ (𝑎̂𝑝,𝑘𝑅,𝑠,𝑖)2𝜎𝐿
2

𝑘𝑅,𝑠𝑠 +𝜎𝑁𝑅
2  . (17) 

 

In n-th round of Gibbs estimation, after learning all distributions, we estimated the 

confidence of each linkage by linearly mapping the sampled values of 𝑏̂𝑝,𝑚,𝑖 and 𝑙𝑝,𝑔,𝑖 in 

the range of (-∞, ∞) to probabilities in (0,1) as follows: 

 

𝑃(𝑠𝑡𝑎𝑡𝑒(𝑏𝑝,𝑚,𝑖|𝑛) = 1) =
exp {(𝑏̂𝑝,𝑚,𝑖−𝜇̂𝐵,𝑚,𝑖)/2𝜎̂ 𝐵,𝑚,𝑖

2 }

exp {(𝑏̂𝑝,𝑚,𝑖−𝜇̂𝐵,𝑚,𝑖)/2𝜎̂ 𝐵,𝑚,𝑖
2 }+exp {(0−𝜇̂𝐵,𝑚,𝑖)/2𝜎̂ 𝐵,𝑚,𝑖

2 }
.  (18) 

𝑃(𝑠𝑡𝑎𝑡𝑒(𝑙𝑝,𝑔,𝑖|𝑛) = 1) =
exp {(𝑙𝑝,𝑔,𝑖−𝜇̂𝐿,𝑖)/2𝜎̂𝐿,𝑖

2 }

exp {(𝑙𝑝,𝑔,𝑖−𝜇̂𝐿,𝑖)/2𝜎̂𝐿,𝑖
2 }+exp {(0−𝜇̂𝐿,𝑖)/2𝜎̂𝐿,𝑖

2 }
.   (19) 
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Binary state samples were then drawn based on the confidence of each linkage and 

were then used to initiate the next round of estimations. After running a long sampling 

process (in total N rounds) and accumulating enough samples on the binary states of 

TF-peak bindings and peak-gene interactions, we calculated the sampling frequency of 

each linkage as a posterior probability and selected high-confidence regulatory circuits 

as those with probabilities >0.8 on both TF-peak bindings and peak-gene interactions. 

 

{
𝑃(𝑠𝑡𝑎𝑡𝑒(𝑏𝑝,𝑚,𝑖) = 1) =

∑ 𝑠𝑡𝑎𝑡𝑒(𝑏𝑝,𝑚,𝑖|𝑛)𝑛

𝑁

𝑃(𝑠𝑡𝑎𝑡𝑒(𝑙𝑝,𝑔,𝑖) = 1) =
∑ 𝑠𝑡𝑎𝑡𝑒(𝑙𝑝,𝑔,𝑖|𝑛)𝑛

𝑁

     (20) 

MAGICAL analysis of 10X PBMC single-cell true multiome data 

For benchmarking, MAGICAL was applied to a 10X PBMC single cell multiome dataset 

(https://support.10xgenomics.com/single-cell-multiome-atac-

gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k), including 108377 ATAC peaks, 

36601 genes, and 11909 cells from 14 cell types. MAGICAL used the same candidate 

peaks and genes as selected by TRIPOD9 for fair performance comparison. Two 

different ways were used to pair candidate peaks and genes: (1) the peaks and genes 

were within the same prior TAD from the GM12878 cell line; (2) the centers of peaks 

and the TSS of genes were within 500k bps. MAGICAL inferred regulatory circuits under 

each setting. TRIPOD identified peak-gene interactions were directly downloaded from 

the supplementary tables of their publication.  

MAGICAL analysis of GM12878 cell line SHARE-seq data 

For benchmarking, MAGICAL was applied to a GM12878 cell line SHARE-seq dataset8. 

Processed data files were downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/, under accession number GSE140203). For fair 

comparison, MAGICAL used the same candidate peaks and genes as selected by 

FigR14. MAGICAL was initialized with two different ways to pair candidate peaks and 

genes: (1) the peaks and genes were within the same prior TAD from the GM12878 cell 

line; (2) the centers of peaks and the TSS of genes were within 500k bps. MAGICAL 
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inferred regulatory circuits under each setting. FigR peak-gene interaction results were 

downloaded from the supplementary files of their publication.  

MAGICAL analysis of COVID-19 PBMC single-cell multiomics data  

To validated disease-associated circuit chromatin sites and genes, MAGICAL was 

applied to a public PBMC COVID-19 single-cell multiomics dataset3. Processed scRNA-

seq data was downloaded from the COVID-19 Cell Atlas 

(https://www.covid19cellatlas.org/). For each of the three selected cell subtypes CD8 

TEM, CD14 Mono, and NK, we downloaded the identified DEG for mild or severe 

infections from the supplementary files of their publication. As no processed scATAC-

seq files were provided, the raw fragment files were downloaded from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/, under accession number GSE174072) 

and processed by following all steps as introduced in the paper. For each of the 

selected cell types, DAS were called specifically for mild and severe clinical groups, 

respectively. MAGICAL was initialized by mapping prior TF motifs from the 

‘chromVARmotifs’ library to DAS using ArchR’s addMotifAnnotations and pairing DAS 

and DEG using the prior blood topological domains. Respectively for mild and severe 

COVID-19, chromatin sites and genes in regulatory circuits with TF-peak binding 

probability > 0.8 and peak-gene interaction probability > 0.95 in each cell type were 

selected as disease associated and further validated on newly generated and external 

single cell datasets.  

PBMC scATAC-seq data for mild COVID-19 validation study 

To validate chromatin sites associated with mild COVID-19, PBMC samples were 

obtained from the COVID-19 Health Action Response for Marines (CHARM) cohort 

study, which has been previously described54. The cohort is composed of Marine 

recruits that arrived at Marine Corps Recruit Depot—Parris Island (MCRDPI) for basic 

training between May and November 2020, after undergoing two quarantine periods 

(first a home-quarantine, and next a supervised quarantine starting at enrolment in the 

CHARM study) to reduce the possibility of SARS-CoV-2 infection at arrival. Participants 

were regularly screened for SARS-CoV-2 infection during basic training by PCR, serum 
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samples were obtained using serum separator tubes (SST) at all visits, and a follow-up 

symptom questionnaire was administered. At selected visits, blood was collected in BD 

Vacutainer CPT Tube with Sodium Heparin and PBMC were isolated following the 

manufacturer’s recommendations.  

 

We used PBMC samples from six participants (five males and one female) who had a 

COVID-19 PCR positive test and had mild symptoms (sampled 3-11 days after the first 

PCR positive test), and from three control participants (three males) that had a PCR 

negative test at the time of sample collection and were seronegative for SARS-CoV-2 

IgG. New scATAC-seq data were generated, processed, and labelled by following the 

same protocol as described above. A total of 15,836 cells in the infection group and 

9,125 cells in the control group were identified after data processing. For each of the 

three selected cell types (CD8 TEM, CD14 Mono and NK), differentially accessible 

ATAC peaks between COVID-19 and control samples were called and used as a 

validation set.  

Promoter-capture HiC and HiCHIP interactions  

Promoter-capture Hi-C interactions11 detected in CD14 monocytes, CD4 T cells, CD8 T 

cells and B cells were downloaded from https://osf.io/u8tzp/files/osfstorage. GM12878 

H3K27ac HiChIP data16 were downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/, under accession number GSM2705041). An inferred 

peak-gene loop is physical if the chromatin sites and gene TSS are connected by a Hi-C 

interaction. Each circuit chromatin site is extended to 2kb long and then checked for 

overlapping with one end of a Hi-C interaction. While for circuit genes, in the promoter-

capture Hi-C validation, we checked if the gene symbol matches the annotated 

promoter; in the Hi-C validation, we checked if the circuit gene promoter (-2kb to 500b 

of TSS) overlaps with the other end of the Hi-C interaction. Fisher exact test was used 

to assess the proportion of validation interactions among circuit peak-gene interactions 

in comparison to the proportion of validated interactions detected by other methods. 
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GWAS enrichment analysis  

To assess the enrichment of GWAS loci of inflammatory diseases in circuit chromatin 

sites in each cell type, significant GWAS loci were downloaded from GWAS catalog 

(https://www.ebi.ac.uk/gwas/) for inflammatory diseases including celiac disease, 

Crohn’s disease, inflammatory bowel disease, type 1 diabetes, multiple sclerosis, 

primary biliary cirrhosis, rheumatoid arthritis, systemic lupus erythematosus, ulcerative 

colitis and psoriasis and control diseases including Alzheimer’s, ADHD, bipolar 

depression, Schizophrenia, Parkinson’s, type 2 diabetes. GREGOR55 was used to 

assess the enrichment of GWAS loci at which either the index SNP or at least one of its 

LD proxies overlaps with a circuit chromatin site, using pre-calculated LD data from 

1000G EUR samples. The enrichment p-value of each disease GWAS was converted to 

a z-score for group comparison between inflammatory diseases and control diseases. 

Note, as all reference data used by GREGOR is hg19 based, genome coordinates of 

testing regions were mapped from hg38 to hg19.  

Circuit gene selection for predicting S. aureus infection 

To refine circuit genes lately used for predicting infection diagnosis in microarray gene 

expression data, the capability of each circuit gene on distinguishing infection and 

control samples was assessed using sample level pseudobulk gene expression data, 

aggregated from the discovery scRNA-seq datasets. The total number of reads of each 

sample was normalized to 1e7. For each circuit gene in common to MRSA and MSSA, 

AUROC (area under the ROC curve) was calculated by sorting the S. aureus samples 

(labeled to ‘1’) and control samples (labeled to ‘0’) based on the normalized pseudobulk 

gene expression and comparing sample ranks against sample labels. Genes with 

AUROC > 0.8 were selected. To distinguish S. aureus infected samples from healthy 

controls, an SVM model was trained using the filtered circuit genes as features and their 

normalized pseudobulk expression data of 21 infection samples and 23 control samples 

as input. 
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Circuit genes selection for predicting S. aureus antibiotic sensitivity  

For each gene identified in the comparative analysis of MRSA and MSSA, AUROC was 

calculated by sorting the MRSA samples (labeled to ‘1’) and MSSA samples (labeled to 

‘0’) based on the normalized pseudobulk gene expression and comparing sample ranks 

against sample labels. As these two sample groups are closer conditions, we selected 

genes with AUROC > 0.7. To distinguish MRSA and MSSA strain infections (predicting 

antibiotic sensitivity based on host responses), an SVM model was trained using the 

filtered circuit genes as features and their normalized pseudobulk expression data of 10 

MRSA samples and 11 MSSA samples as input. 
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Data availability 

Data from scRNA-seq and scATAC-seq have been deposited with the Gene Expression 

Omnibus under accession no. GSE220190. All the other data used in this study are 

publicly available and the URLs are provided in the corresponding sections in Methods. 

 

Code availability  

A Github repository for source code of MAGICAL and processed single cell datasets is 

available at https://github.com/xichensf/magical.  
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