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Abstract 
 
Structural magnetic resonance imaging (MRI) quality is known to impact and bias 
neuroanatomical estimates and downstream analysis, including case-control comparisons. 
However, despite this, limited work has systematically evaluated the impact of image and image-
processing quality on these measures, or compared different quality control (QC) methods and 
metrics. The growing size of typical neuroimaging datasets presents an additional challenge to 
QC, which is typically extremely time and labour intensive. Two of the most important aspects of 
MRI quality are motion, which is known to have a substantial impact on cortical measures in 
particular, and the accuracy of processed outputs, which have been shown to impact 
neurodevelopmental trajectories. Here, we present a tool, FSQC, that enables quick and efficient 
yet thorough assessment of both of these aspects in outputs of the FreeSurfer processing 
pipeline. We validate our method against other existing QC metrics, including the automated 
FreeSurfer Euler number, and two other manual ratings of raw image quality. We show strikingly 
similar spatial patterns in the relationship between each QC measure and cortical thickness; 
relationships for cortical volume and surface area are largely consistent across metrics, though 
with some notable differences. We next demonstrate that thresholding by QC score attenuates 
but does eliminate the impact of quality on cortical estimates. Finally, we explore different ways 
of controlling for quality when examining differences between autistic individuals and neurotypical 
controls in the ABIDE dataset, demonstrating that inadequate control for quality can alter results 
of case-control comparisons. 
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Introduction 
 
It is well established that magnetic resonance imaging (MRI) quality affects neuroimaging-derived 
neuroanatomical measures 1. Of particular concern is in-scanner head motion, which has been 
consistently shown to affect estimates of brain structure 1–7, function 8–11 and connectivity 12,13. 
While functional magnetic resonance imaging (fMRI) studies were initially the primary focus of 
such research 8–10,  more attention has recently been brought to the impact of motion on structural 
MRI studies. For example, estimates of cortical thickness, surface area, and volume have 
consistent, regionally dependent relationships with motion 1,2,4–6. In addition to motion, other 
factors such as scanning artefacts, intensity inhomogeneities, and geometric and susceptibility-
related distortions also impact image quality 6. Critically, image quality, and head motion in 
particular, is highly correlated with demographic characteristics such as age, sex, as well as 
variables of interest such diagnostic status in clinical cohorts 4–6. Errors in image processing 
outputs and overall image quality also significantly impact and distort estimates of 
neurodevelopmental trajectories especially 6,14,15, and there is evidence that these biases also 
permeate case-control comparisons 16,17. Although these issues are becoming more widely 
acknowledged, there is currently no “gold standard” of quality control (QC) methods. Detailed QC 
procedures are also rarely reported, making quantitative evaluations across studies difficult. Here 
we sought to quantitatively evaluate several QC procedures and their association with resulting 
morphometric measures, as well as quantitatively assess the impact of QC procedures on case-
control differences in the context of autism. 
 
One barrier to implementing thorough and rigorous QC is the increasing sample sizes typically 
used in neuroimaging studies 18–24, in particular when using publicly available datasets. Manual 
QC is both time and labour intensive, and requires expert raters and/or extensive training of 
individuals to examine and assess both raw scans and post-processed outputs, as well as 
assessment of inter-rater reliability 15,16,25. With samples routinely in the thousands or even tens 
of thousands, this is often impractical or infeasible. In recent years, various alternative, automated 
QC methods have been proposed. For example, FreeSurfer’s Euler number is a good proxy for 
image quality, correlating highly with manual quality ratings, as well as regional measures of 
cortical thickness 15. Other recently developed approaches, such as MRIQC 26 and Qoala-T 27 
provide automated reports of image quality, and prediction of manual quality ratings, based on 
various image quality metrics, which include measures of noise, entropy (indicative of motion), 
statistical properties, cortical features and extreme values, and specific artefacts. Another 
approach is to use “citizen science”, combined with manual expert ratings and machine learning, 
to generate thousands of QC ratings, lessening the burden on researchers. This approach has 
resulted in the Swipes for Science initiative (swipesforscience.org), which crowd-sources QC 
ratings (binary pass/fail classification) of raw images, and also accounts for variations in quality 
of ratings by different raters 28. 
 
Few extensive and detailed manual quality control protocols have been explicitly published 29. 
While authors sometimes summarise QC procedures in methods sections or supplementary 
results 4,16, more commonly little detail is given. Some papers have provided and assessed 
detailed protocols for QC of post-processing outputs. For example, Visual QC 30 and a QC 
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protocol provided by the ENIGMA consortium 31 provide detailed guidelines and a framework in 
which to view and rate images and their FreeSurfer outputs. While these protocols offer  a 
comprehensive and useful tool for evaluating scans and surface reconstructions, they are time 
consuming, hence may be impractical for very large datasets. It also remains an open question 
whether manual QC procedures outperform automated methods and thus warrant the extensive 
time and effort required. The lack of consensus or standardised methods is particularly 
problematic for large publicly available datasets, as it makes comparisons between different 
studies using the same datasets challenging and it is unclear to what extent inconsistencies in 
results are due to inconsistent QC methods or standards.  
 
This is a particularly salient issue in neurodevelopmental imaging, as inadequate image quality 
has been shown to impact findings 6,14, and participants with neurodevelopmental conditions such 
as autism are more susceptible to image quality issues (often due to motion) than neurotypical 
individuals 4,5,16. Without adequate QC, there is a high risk of spurious correlations or group 
differences, as well as true effects being obscured by motion or quality issues. Numerous studies 
have used the Autism Brain Imaging Data Exchange (ABIDE) 21,32 to examine case-control 
differences related to autism, using both structural and functional measures 16,33–44. Although there 
is some convergence of these findings, there are also conflicting and inconsistent findings 
between studies, which may in part be due to differences in QC procedures and thus differences 
in the final sample. The issue of how extensively variations in quality impact neuroanatomical 
estimates urgently warrants further investigation, in particular in relation to neurodevelopmental 
and psychiatric conditions.  
 
Given the need for systematic, rigorous, and reproducible QC methods, we aimed to develop an 
efficient yet thorough tool for QC of FreeSurfer surface reconstructions that also captures aspects 
of raw image quality, specifically motion. We also aimed to validate our QC metric against other 
manual and automated QC methods in the ABIDE dataset. Finally, we assessed the impact of 
image quality on regional estimates of cortical morphometry, and examined the interaction 
between image quality and diagnostic status in the context of autism. 
 

Methods 

Sample 
The ABIDE dataset consists of neuroimaging, demographic, and clinical data from 2226 
individuals (1060 autistic individuals and 1166 neurotypical controls), aged 5-64 years (1804 
assigned-males-at-birth, 422 assigned-females-at-birth). The ABIDE repository includes two 
waves of data aggregation (ABIDE I and II), from a total of 24 international sites. Participant 
demographics and acquisition information have been previously described in detail 21,32. 
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FreeSurfer QC method and generation of images 

Processing with FreeSurfer 
All T1-weighted structural scans were processed with FreeSurfer 6.0.1 (see 21,32 for details on 
ABIDE acquisition). Cortical parcellations were derived using both the Glasser 45 and Desikan-
Killianey 46 atlases.  
 

Generation of FSQC images 
QC images were generated by overlaying the FreeSurfer-derived cortical surface boundaries on 
the participant’s T1 scan in FreeSurfer’s FreeView visualisation tool, and using the FreeView 
Screenshot function to generate screen captures at different views and slices of the brain (3 axial; 
3 coronal; 4 sagittal, for a total of 10 images per subject; see Figure 1). This process was 
automated in a virtual server window, with consistent coordinates specified for each participant 
for the 10 screenshots (code shared below).  
 
Prior to rating, each image was renamed using the MD5 message digest algorithm and images 
were randomly shuffled so ratings were not biased by other images from the same participant 
appearing in sequence. Images were then viewed in the Image-Rating QC application 
(https://github.com/sbedford0/FSQC/imageratingQCApp), and assessed for accuracy of the 
cortical reconstruction (grey-white matter and grey matter-pial surface boundaries), as well as 
presence of motion in the raw T1 image on which the surfaces were overlaid. Each image (10 per 
participant) was rated individually on a scale of 1 - 4 (good - bad), corresponding to the following 
categories: good (1), minor error (2; i.e., often involving misestimation of boundaries restricted to 
one or two specific regions), visible motion (3; e.g., ringing, blurring of scan), and bad (4). See 
https://dx.doi.org/10.17504/protocols.io.kxygx9m6wg8j/v1 for images, detailed criteria and 
examples of each score. Outputs from the Image-Rating app were recorded and downloaded in 
a csv file. Categorical ratings were then converted to the corresponding numerical rating (i.e., 1-
4), and averaged across all 10 images for each participant, to give a final continuous score 
between 1 and 4 per participant. Thus, these scores provide a quality rating reflecting the 
accuracy of the FreeSurfer surface reconstructions as well as motion in the raw T1 image. 
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Figure 1. FSQC image generation workflow. From left to right: T1 images were processed with 
FreeSurfer 6.0.1 and displayed in FreeView with pial and white matter surfaces overlaid on the 
T1 image (both hemispheres). Screenshots were automated and taken at predefined, consistent 
coordinates, for a total of 10 images per participant. Images were then displayed and rated in the 
Image-Rating app, and scores were averaged across all 10 images for each participant.  
 
 

Statistical analysis 

FSQC inter-rater reliability  
Two raters (SB and RB) rated the entire dataset, and an average of the two scores was taken for 
each participant. To ensure reasonable inter-rater reliability, raters first rated a subset of ~200 
images, which were compared, and any major discrepancies or issues resolved, before moving 
on to the rest of the dataset. This consensus rating was also used to clarify any discrepancies in 
the image rating protocol. To assess inter-rater reliability of the method and protocol across 
multiple raters, 6 raters (SB, RB, AOR, JS, AAB, JMS) assessed a subset of 50 participants (500 
images); Spearman’s correlations and two-way ICC for agreement were calculated across all 
raters, on the average score for each participant.  
 
The first main analysis (examining the effect of FSQC on cortical thickness, see below) compared 
both individual rater’s scores, as well as the average score across all raters to ensure consistency 
(supplementary methods 1.1). For all subsequent analyses using FSQC, the average scores 
between the two raters was used. 
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Relationship between different QC metrics 
First, we sought to validate our FSQC method by examining the relationship between FSQC 
scores (averaged across 10 images per participant, and two raters), and other QC metrics. These 
included the FreeSurfer-derived Euler number 15; a manual score assessing the presence and 
amount of motion in each image (“Motion QC”; raters SB, MMC, ST 16, see 
https://github.com/CoBrALab/documentation/wiki/Motion-Quality-Control-%28QC%29-Manual); 
and another manual rating of overall image quality which was derived from and built upon “Motion 
QC” (“PondrAI QC”; raters MC, GAD). Spearman correlations were run to assess the relationship 
between FSQC and each other metric. 

Demographic correlations 
Since demographic factors are related to image quality 4,5,16, we next investigated these 
relationships in our dataset. Of particular interest were age, sex-assigned-at-birth (hereafter 
“sex”), and diagnosis, as these variables are especially relevant to neuroimaging studies of autism 
and have been shown by previous work to correlate with image quality, and motion specifically 
2,4,5. Linear mixed effects models were used to examine the impact of age, a quadratic term for 
age (age2), sex and diagnosis (with site as a random effect) on all four quality metrics separately 
(FSQC, Euler, Motion QC, PondrAI QC). 

Impact of QC on cortical morphometry 
To examine and quantify the impact of image quality, as measured by all QC metrics, on different 
neuroanatomical measurements, we assessed the relationship between each QC measures and 
global neuroanatomical measures, including total cortical and subcortical grey matter volumes 
(cGMV and sGMV), total brain volume (TBV), total white matter volume (WMV), total ventricular 
volume, and mean cortical thickness.  
 
As previous work has demonstrated spatially dependent relationships with quality 2,4,5, we next 
examined regional effects on cortical thickness (CT), surface area (SA) and cortical volume (CV), 
using Glasser parcellations. Relationships with subcortical phenotypes were not assessed as the 
surface reconstructions being rated in the FSQC tool include only the cortical surface boundaries. 
Analyses were initially run on all participants (i.e., no exclusions), to examine the relationship 
between different types of quality and cortical morphometry across the whole spectrum of quality. 
For these analyses, linear mixed effects models were run for each parcellation across the brain, 
separately for CT, SA and CV. All regression models included QC metric, age, age2, and sex as 
fixed effects, and site as a random effect, with CT/SA/CV as the dependent variable, for each 
region. Partial correlations were calculated to quantify the strength of the association between 
QC metric and neuroanatomical measure (e.g., FSQC and CT; motion QC and CV, etc). Results 
were corrected for multiple comparisons using the false discovery rate (FDR) across parcellations 
in all analyses. For subsequent analyses, we focus on FSQC, our newly developed quality metric, 
and Euler, a commonly used automated method.  
 
Supplementary analyses were also run using Desikan-Killianey parcellations, for comparison with 
previous work (supplementary methods 2.1). The main analyses were repeated using a random 
effects meta-analysis for comparison, and to assess heterogeneity of results across sites 
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(supplementary methods 2.2). We also attempted to replicate these analyses in a larger, more 
representative dataset of 74,647 individuals (that has been previously used18; supplementary 
methods 2.3). Finally, we conducted a variance partitioning analysis to evaluate the relative 
contribution of image quality to the total variance explained, compared to factors such as 
diagnosis, age, sex and site (supplementary methods 2.4).  

Exclusion/thresholding analyses 
Quality control scores are often used as a way to exclude data of poor quality; for example, 
previous studies using the Euler number as a QC metric recommend a study-specific threshold 
15. To evaluate the impact of different quality thresholds on the relationship with cortical 
morphology and existence of group-level differences, and to assess the extent to which results 
were driven by participants with the worst or more extreme image quality, we conducted a 
thresholding analysis, examining the impact of quality (FSQC and Euler number) at cut-offs of 
varying stringency.  
 
First, for FSQC, we chose score thresholds in increments of 0.5 points (3, 2.5, 2, 1.5). The same 
models and analyses described above were re-run after excluding participants at each of these 
thresholds, for each cortical phenotype. For Euler number, as there were less obvious cut-off 
points than for FSQC, we used median absolute deviations (MAD) to determine various 
thresholds for these analyses. The relationship between Euler and each cortical phenotype were 
assessed after thresholding at 1, 2 and 3 MADs, and half points in between (corresponding to 
Euler numbers of 139, 174, 210, 245, 281 and 317). Due to the significant differences and 
variability between sites, supplementary analyses were also conducted applying MAD-based cut-
off points calculated and applied individually per site, rather than across the whole sample 
(supplementary methods 3.1). 
 
Additional sensitivity analyses were performed, including comparing high and low quality based 
on a median FSQC split, and thresholding based on the top percentage of scores (applied to the 
whole sample and per site) (supplementary methods 3.2-3.3). 

Interaction between image quality and diagnosis 
As image quality differs by diagnostic status and impacts neuroanatomical estimates 2,4,5, it is 
likely that inadequate accounting for quality will lead to inaccurate conclusions relating to 
diagnostic differences. To this end, we examined differences in cortical morphometry between 
autistic individuals and controls with different methods of accounting for quality, and at different 
quality thresholds. First, we examined group differences in CT, SA and CV without accounting for 
quality, using linear mixed effects models with diagnosis, age, age2 and sex in the model, and site 
as a random factor. Next, the same models were run with the addition of FSQC or Euler number 
as a covariate to assess the impact of controlling for quality, as well as thresholding by both FSQC 
(at 2.5) and Euler (at 2 MAD).  
 
Supplementary analyses for CT examined diagnostic effects after thresholding by FSQC or Euler 
at various cut-off points (FSQC: 3, 2.5, 2, 1.5; Euler: 1, 2 and 3 MADs; supplementary methods 
4.1), as well as the effect of diagnosis on CT after thresholding by FSQC and also controlling for 
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Euler (supplementary methods 4.2). Finally, we examined the interaction between diagnosis and 
FSQC or Euler on CT (supplementary methods 4.3). 

Data and code availability 
The imaging rating tool, code to generate QC png images and analysis scripts are available at:  
https://github.com/sbedford0/FSQC. The full protocol can be found at: 
https://dx.doi.org/10.17504/protocols.io.kxygx9m6wg8j/v1. 

Results 

Inter-rater reliability 
For the subset of 50 participants, the ICC was moderate, at 0.68 for all 6 raters. Spearman 
correlations calculated between each pair of raters ranged from 0.68-0.86 (see Figure 2A). For 
the whole dataset the inter-rater Spearman correlation was 0.63 between raters SB and RB. 
 
Results of the impact of FSQC on CT were nearly identical when using each rater’s scores 
separately (SB and RB), and the average of the two scores (see supplementary figure S1.1). 

Relationship between different QC metrics 
FSQC was significantly and positively correlated with all other measures (Euler number 
(rho=0.62, p<0.0001); Motion QC (rho=0.64, p<0.0001); PondrAI QC (rho=0.65, p<0.0001) 
(Figure 2B).  

Demographic correlations 
We assessed the relationship between each metric and demographic variables previously 
reported to be highly correlated with image quality (Figure 2C-F). For all quality measures, autistic 
participants had significantly lower image quality relative to controls (all p<0.01; Cohen’s d = -0.14 
- -0.29). For all metrics, there was also a significant effect of age and age2 (p<0.0001). However, 
when we examined the relationship between age and quality in young and old groups after 
performing a median split, both groups showed a negative relationship, reflecting lower image 
quality in younger participants. For motion QC only, there was a significant effect of sex, where 
males had significantly worse quality scans than females (p=0.004, Cohen’s d = 0.16). Image 
quality, across all metrics, also differed significantly by site (p<0.0001).  
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Figure 2. A. Inter-rater correlation matrix for FSQC ratings for a subset of 50 participants (500 
images). All pairs of raters were significantly correlated with each other between 0.7-0.8 rho. B. 
Correlations between different QC metrics. All measures were significantly positively correlated 
with each other between 0.5-0.65 rho. C. Relationship between FSQC and age. A significant 
effect of age was observed in which younger participants had lower quality ratings. D. FSQC 
score distributions by site. There was significant variability in quality across sites. E. FSQC 
distributions for males and females. There was no significant sex difference in FSQC.  F. FSQC 
distributions by diagnosis. Autistic participants had significantly higher FSQC scores (i.e. lower 
image quality) relative to controls (p<0.0001, d = -0.27). 

Impact of QC on cortical morphometry 
FSQC was significantly but weakly correlated with global brain measures of total cortical GMV, 
WMV, subcortical GMV and TBV at a Bonferroni-corrected threshold of p<0.008 for six 
comparisons (rho = -0.07 - -0.16), but not with mean CT or ventricular volume (see supplementary 
table S1 for all correlations). Regional analyses revealed significant associations across much of 
the cortex for all cortical phenotypes and QC metrics, passing 5% FDR (partial r = -0.46-0.40). 
Associations were largely negative, denoting apparent decreases in cortical measures with lower 
quality (higher scores), though strong positive relationships (increased measures with lower 
quality) were observed in some regions. Each phenotype showed distinct spatial relationships 
with quality; however spatial patterning across the cortex was strikingly similar between all metrics 
within each phenotype, with slight differences observed only in the case of Euler number for SA 
and CV. Results of regional analyses are shown in Figure 3, showing partial r values thresholded 
for significant regions (surviving 5% FDR). For maps of all (including non-significant) partial r 
values across the cortex, see supplementary figure S2. 
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Figure 3. Associations between QC metrics and regional cortical morphometry. There was a 
significant relationship between image quality and neuroanatomical estimates across much of the 
cortex for all metrics and phenotypes. Relationships were largely negative, and were strongest 
for cortical thickness. Spatial patterning of results was highly similar across metrics, with the 
exception of Euler number of SA and CV, which showed more positive associations, but less 
significant relationships overall, than the other three measures.  

 
Of the three cortical phenotypes, the strongest associations were observed for CT, and as such 
were the main focus of subsequent analyses (with CV and SA results reported in supplementary 
materials). The strongest negative correlations between CT and image quality (across metrics) 
were observed in lateral superior frontal (including precentral gyrus), parietal, and inferior 
temporal regions, with widespread weaker, but still significant, negative correlations across much 
of the frontal, parietal and temporal cortices. Significant positive correlations were observed in the 
medial occipital and ventromedial prefrontal cortices for all metrics, as well as in the postcentral 
gyrus (Figure 3).  
 
The strongest significant negative correlations for surface area were observed in inferior (medial 
and lateral) frontal and temporal cortices, as well as the medial occipital cortex. Correlations and 
spatial patterning were again mostly consistent across QC metric, with the exception of a larger 
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number of positive correlations, and slightly fewer significant correlations overall, observed for 
Euler number. For Motion QC and PondrAI QC, almost no positive correlations reached 
significance, and in FSQC, only two or three disparate regions (including the postcentral gyrus) 
showed positive significant correlations. For Euler number, by contrast, significant positive 
correlations were observed in regions including the pre- and postcentral gyrus, medially and 
laterally, as well as the superior temporal gyrus (Figure 3).  
 
Spatial patterning for cortical volume was again very similar across metrics with the exception of 
Euler. The medial occipital cortex was significantly positively correlated with QC in FSQC and 
Euler, but did not reach significance in the other two metrics, though subthreshold correlations 
were also positive. For all metrics except Euler, significant but weak negative correlations were 
observed across much of the cortex, and most strongly in inferior temporal and frontal regions, 
and the precentral gyrus. For Euler, less regions met significance, including large areas of the 
frontal and parietal cortices. Most significant correlations were still negative for Euler, though 
positive correlations were observed in the postcentral gyrus, medial prefrontal cortex, and left 
hippocampus (Figure 3).  
 
Desikan-Killiany parcellations and results of the meta-analytic technique both displayed 
consistent spatial patterning. Our replication analysis in over 100,000 individuals also yielded 
largely consistent results (supplementary results S2.1-2.3). The variance partitioning analysis 
indicated FSQC and Euler contributed a relatively small portion of the variance, but larger than 
diagnosis (supplementary results S2.4).  
 
Almost all analyses showed the strongest effects for cortical thickness, consistent with previous 
work suggesting that CT is more susceptible than other cortical estimates to impacts of image 
quality and motion 4. Consequently and for clarity, subsequent analyses will focus primarily on the 
relationship between CT and image quality. For cortical surface area and volume results, see 
supplementary results.  

Exclusion/thresholding analyses 
We next examined the impact of different levels of QC thresholding stringency on the relationship 
between quality and cortical morphometry, based on FSQC and Euler number. For CT, after 
excluding only scans with the worst FSQC scores (3 and above), effect sizes for the association 
with FSQC were attenuated, but significant associations were still observed across much of the 
cortex, following the same spatial patterns as the non-thresholded analysis. Effect sizes were 
further attenuated, but with similar patterning (strongest results retained) after excluding those 
with scores higher than 2.5. After excluding at scores of 2 and 1.5, few regions maintained 
significant associations with FSQC (inferior frontal and temporal regions, and superior frontal 
cortex and precentral gyrus; Figure 4).  
 
In the Euler MAD-based thresholding analysis, we observed similar but slightly less stark 
differences between cut-off points than with FSQC. For CT, an attenuation of effect size was still 
observed, but was somewhat more gradual and to a lesser extent than when using FSQC. The 
maps for cut-off points of between 2-3 MAD looked similar, with more of a substantial drop off in 
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significant regions after a cut-off of 1 MAD (Figure 4). Additional sensitivity analyses all yielded 
similar results (Supplementary figures 3.1-3.3). 
 
SA and CV showed a more stark and immediate drop off in significant effects in the FSQC 
thresholding analyses (supplementary Figure S3.4). Interestingly, in the Euler thresholding 
analyses for SA and CV, rather than an attenuation of significant effects, we observed a change 
in direction, such that associations with Euler number went from mostly negative to mostly positive 
after thresholding (Supplementary figure 3.5).  
 

 
Figure 4. Relationship between cortical thickness and FSQC (left) and Euler number (right) after 
thresholding at different levels of stringency. Accompanying graphs show the attenuation of both 
number of significant regions observed (top) and partial correlation effect size (bottom two panels) 
as stringency increases.  

 

Interaction between image quality and diagnosis 
There were minimal differences in cortical morphometry between autistic and neurotypical 
controls when not accounting for image quality. Autistic individuals had greater CT in the medial 
primary visual cortex (V1), and a small region in the medial parietal lobe relative to controls, and 
thinner cortex in a few small regions in the left superior frontal and inferior prefrontal cortex. The 
effect of controlling for FSQC and Euler number were similar. In these analyses, right V1 was no 
longer significant; nor were any of the regions which had shown thinner cortex in autism, with the 
exception of the inferior prefrontal cortical region. Additionally, after controlling for either QC 
metric, additional significant effects (greater CT in autism relative to controls) were observed in 
the superior temporal gyrus. Though not many regions survived FDR in any analysis, when 
examining subthreshold results, we noted that most of the effects that were diminished or 
disappeared after controlling for quality were those in which apparent thinner cortex in autistic 
individuals was observed in the original analysis, suggesting that these results may have been an 
artefact of poor image quality (in the autistic group in particular).  
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Results were similar, although not identical, after applying QC thresholding (for Euler or FSQC) 
instead of simply controlling for quality. Results were essentially the same whether applying a cut-
off based on FSQC or Euler at a similar stringency (FSQC cut off of 2.5 [N = 1727]; Euler threshold 
of 2 MAD or 245 [N = 1689]): only regions in the bilateral medial occipital cortices, and right medial 
parietal cortex remained significant, all of which were thicker in autism than controls. Again, all 
regions with thinner cortex in autism were no longer significant after thresholding (Figure 5). 
Results did not change substantially when applying thresholds of different levels of stringency 
based on FSQC or Euler, though were slightly further attenuated at each cut-off point 
(supplementary results S4.1).  
 
Combining the two approaches by applying a threshold based on FSQC while also controlling for 
Euler did not drastically change the results, though some additional regions showed significant 
associations (supplementary figure S4.2). The interaction between quality and diagnosis 
suggested a stronger relationship between quality and cortical thickness in the autistic group than 
controls (supplementary figure S4.3). Only very minimal group differences in SA and CV were 
observed, both with and without accounting for image quality (supplementary results S4.4).  

 
Figure 5. Impact of autism diagnosis on cortical thickness (Cohen’s d) without accounting for 
image quality (A), when controlling for FSQC (B) or Euler (C), and thresholding by FSQC (D) 
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and Euler (E). Significant regions passing 5% FDR are shown with a black border; other regions 
are subthreshold (i.e., not surviving FDR) differences. Most results indicate thicker cortex in 
autism relative to controls; results do not change drastically with quality control, but most 
negative associations between diagnosis and CT (autism < controls) disappear. Significantly 
thicker cortex in the superior temporal gyrus, which has previously been reported in autism, is 
observed only when controlling for quality (FSQC or Euler).  
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Discussion 
 
Our results demonstrate significant, widespread associations between image quality and cortical 
morphometry across the brain, which are largely consistent across multiple QC metrics. These 
QC-morphometry interactions persist even after excluding participants with lower image quality, 
and have profound effects on case-control evaluations. We have outlined several ways to 
evaluate and correct for the issue of image quality and empirically show that these can improve 
the consistency and robustness of clinical neuroimaging findings. 

The FSQC tool enables fast and robust evaluation of image quality in a scalable manner 
Our FSQC tool is easy and quick to implement even for large datasets, while still being rigorous 
and thorough. The generation of multiple images per participant, at multiple orientations and slices 
across the cortex, allows for a thorough examination of different views without the time consuming 
process of individually opening and scrolling through each scan slice by slice. Importantly, it takes 
into account both raw image quality (e.g., motion), and quality of FreeSurfer post-processing 
outputs and surface reconstructions, simplifying the QC process. Finally, we have shared both 
our FSQC tool and protocol, and completed image ratings for ABIDE, with the neuroscience 
community. This could help to save other researchers unnecessary time and effort, and help to 
improve consistency and reproducibility across studies. 
 

Image quality has largely consistent spatial relationships with cortical morphometry 
We demonstrated high correlations and similarity of spatial maps between metrics. This was 
particularly true for cortical thickness, which also showed the strongest associations. Notably, 
associations for the automatically generated Euler number were almost identical to the three 
manual ratings for cortical thickness, but had small but significant divergences for cortical surface 
area and volume. The striking spatial similarity of FSQC effects with those of motion (both here 
and in previous work 2,4,5) confirm that motion is one of the principal sources to impact image 
quality. With our evaluation we provide a more direct and comprehensive evaluation of image 
quality than motion alone, also accounting for the quality of the cortical reconstruction, another 
important source of bias 14.  
 
Consistent with previous studies 1,2,4,5,14,15, we observed largely negative correlations between all 
three cortical phenotypes and image quality in most brain regions, with a few exceptions. In the 
case of motion, this is thought to be primarily due to reduced grey-white matter contrast and 
blurring of the cortical boundary, resulting in incorrect surface reconstruction and, typically, 
underestimation of cortical thickness 2,4. Inaccurate surface reconstruction seems to have a 
similar effect 14. Cortical volume and surface area estimates seem to be more robust to these 
types of errors, likely due to the fact that the GM-WM boundary is more impacted than the pial 
surface, and consequently SA (which relies on the GM-pial surface boundary) and volume (which 
is a product of SA and CT) show less of an effect of image quality 4. Indeed, spatial maps for 
cortical volume were similar to those for thickness, but with weaker relationships, and those for 
surface area were further attenuated still, with a few key spatial differences. 
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Importantly, these effects were not uniform across the cortex, with some regions being far more 
susceptible to image quality impacts than others, and some differing in directionality of effects, 
consistent with previous findings 1,2,4,5,15. Cortical volume and surface area largely showed similar 
spatial patterning, though with more positive relationships than CT, particularly for SA, and its 
relationship with Euler number. Some of the regions in which the strongest effects were observed, 
including the visual cortex, the temporal pole, and primary motor regions, are known to have 
unique morphometry which may render them more susceptible to issues with image quality and 
inaccurate surface reconstruction 47. The temporal and frontal poles are also regions known to 
have questionable signal quality 48. Other regional variations in the strength of relationship may 
in part be attributable to spatial differences in the magnitude of displacement caused by in-
scanner head movement, due to participant positioning and restraints or cushioning 5. Another 
factor appears to be the thickness of the region, with higher rates of surface reconstruction errors 
in areas with thinner cortex causing artificially inflated thickness values 4. Thus, particular care 
should be given to interpretation of results for regions which are demonstrably susceptible to 
image quality.  

Thresholding analyses 
Consistent with previous work 1,2,14, effects of quality were significantly attenuated, but not 
removed, when excluding participants above a certain cut-off and in a progressive thresholding 
manner. Excluding participants with the worst image quality may be necessary to limit the impact 
of bad image quality, though it may not remove its impact entirely. The progressive thresholding 
effects were quite similar for both FSQC and Euler. For Euler, the initial drop off in number of 
significant regions remaining after QC occurred more quickly but subsequently tapered off, 
whereas for FSQC the drop off began more gradually, but less significant regions remained after 
the most stringent threshold than for Euler. In the supplementary Euler percent thresholding 
analyses, an inflection point for the number of significant regions remaining occurs around 20%, 
tapering off thereafter. The decrease was more gradual with MAD thresholding. Notably, the 
speed of attenuation of effect size with increasing QC threshold also varied by region. 
Thresholding is a balancing act between decreasing the impact of noise and retaining meaningful 
sample representation and sufficient statistical power and thus may not be appropriate in all 
contexts. However, our analysis shows that even a minimal threshold can greatly improve the 
reliability of subsequent down-stream results. 

Image quality affects case-control differences 
Importantly, the effect sizes for quality are, on average, far greater than those of diagnosis, which 
is concerning in light of evidence that autistic individuals (and those with other clinical diagnoses) 
tend to move more and have worse image quality than neurotypical controls, in our dataset as 
well as others 4,5. Thus, there is a high risk of the effects of image quality overshadowing potential 
diagnostic or group differences, in particular given the finding that the relationship between CT 
and quality was stronger in the autistic group (likely due to the greater range in quality). In our 
case-control comparisons, we observed subtle but significant differences depending on the extent 
and manner in which we controlled for image quality. Notably, when not accounting for QC in any 
way, some significant negative differences were observed (i.e., lower CT in autistic compared to 
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neurotypical individuals), although not all of these survived FDR correction. After accounting for 
QC, these negative associations were diminished, while the positive associations (i.e., greater CT 
in autism than controls) were strengthened. Similar effects have been reported previously 16. This 
is unsurprising given that apparent cortical thinning is known to occur with decreased quality 
across much of the cortex, coupled with poorer image quality and more motion in autistic 
individuals. This further underscores the importance of appropriate quality control procedures for 
case-control analyses. 
 
The results of the diagnosis analyses were largely consistent when controlling for FSQC or Euler 
at thresholds equating to approximately the same level of stringency, with only very minor 
differences. Results were also largely consistent when thresholding by, compared to controlling 
for, QC score. However, a significant difference was the emergence of significant differences 
(greater thickness in the autistic group than controls) in the left superior temporal gyrus when 
including either measure as a covariate, but not when thresholding. In the absence of a gold-
standard ground truth, it is interesting to note that this is a region that has often been implicated 
in autism in previous work 16,49,50. It should also be noted that one region that is consistently 
significant in the case-control comparisons is the occipital cortex, which is also one of the regions 
in which we observe the strongest relationship with image quality. Although the effect size is 
attenuated once QC is accounted for, it remains significant in most of the analyses.  
 
Little work has previously examined the impact of QC on our ability to detect group differences or 
alterations related to specific diagnoses or conditions. However, several reports of the impact of 
QC on the effects of age and trajectories of neurodevelopment 6,14,15 have demonstrated the 
potential for quality to influence relationships between neuroanatomy and demographic variables 
of interest. More specifically, motion and other aspects of quality have been demonstrated to both 
inflate and obscure relationships between age and cortical thickness, and to influence the shape 
of developmental trajectories 5,6,14,15. The effect sizes for age are typically still larger than those 
for quality, and therefore unlikely to completely account for previously reported age effects 5; 
however, it may lead to the exaggeration of apparent developmental effects, or ageing-related 
cortical thinning or atrophy. Moreover, as we have demonstrated, when it comes to diagnostic 
differences, effect sizes are often subtle and small compared to the relatively strong effects of 
motion and quality; thus, extra care and attention to QC must be paid when studying 
neurodevelopmental and psychiatric conditions.  

Balancing options for accounting for quality in neuroimaging studies 
We have discussed and presented two main ways of accounting for quality in analyses: identifying 
a cut-off point and excluding all participants above or below a specific quality threshold, or 
controlling for quality scores by including them as a covariate in the statistical analysis. There are 
benefits and potential pitfalls for both options, and depending on the context one might be 
preferable to the other.  
 
Excluding participants with poor image quality is a common method for QC; however, while this 
can ensure that the effects of quality are minimised, there are downsides to removing data. First, 
this necessarily results in a reduction of sample size, and consequently power, which is 
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undesirable particularly considering the cost and effort required to collect neuroimaging data, 
especially in vulnerable populations. Second, and perhaps more importantly, excluding 
participants who are likely to have the lowest quality scans introduces unavoidable bias to the 
dataset: these individuals are likely to be younger and male, and to have a clinical diagnosis, 
more severe clinical symptoms, and lower IQ 4,5,16. In the context of clinical studies, this can result 
in samples skewed towards older participants with milder presentations and no intellectual 
disabilities, thereby potentially excluding participants who could benefit most from research that 
does not rely on verbal assessment or a minimum IQ 51. This bias needs to be balanced with the 
knowledge that poor quality data may have limited utility or lead to spurious results. Also of note 
is that image quality in our sample varied significantly by site, highlighting the importance of 
properly accounting for site effects in multi-site analyses. This also suggests that scanner 
hardware and sequences may contribute to quality; thus, there is unlikely to be a universal quality 
threshold that is applicable to all datasets, and this will need to be determined for each individual 
study. 
 
An alternative solution is to retain all participants, and instead to control for QC by including quality 
scores as a covariate in the analysis. This avoids some of the above-mentioned biases, but 
introduces alternate problems. First, retaining all scans regardless of quality risks skewing results, 
and simply including quality as a covariate is unlikely to account for extreme values in the case of 
very poor quality scans. Another issue is the potential for collider bias, occurring when an 
independent and dependent variable both influence a third variable which is controlled for in an 
analysis, leading to an apparent (but spurious, or inflated) association 52,53. In this case, controlling 
for quality could influence the association between diagnosis and cortical morphometry. However, 
selection bias can also be considered a form of collider bias, thus this is an issue that should be 
taken into account regardless of the QC mitigation method chosen. Finally, to balance pros and 
cons and harmonise approaches, a hybrid solution can be implemented, whereby only the worst 
scans which are considered unusable are excluded, and QC is included in the model to correct 
for any residual effects caused by other lower quality, but still potentially usable, scans.  

Limitations 
These results should be interpreted in light of certain limitations. First, no quality metric is perfect, 
and as mentioned above there is no gold standard. Without prospective motion trackers installed 
at the time of scanning, we cannot accurately quantify motion, and all visual inspections of scan 
and surface reconstruction quality will have some level of subjectivity. We attempt to mitigate this 
by comparing multiple QC metrics, both automated and manually rated, by multiple independent 
raters. Next, we rely on two metrics, FSQC and Euler number, which are specific to FreeSurfer, 
and thus may have limited generalisability. However, our FSQC tool could easily be applied to 
other processing and surface reconstruction tools. Other automated metrics of image quality exist 
(e.g., MRI-QC, Qoala-T), but were not evaluated in the current study. We also focused exclusively 
on cortical morphometry. Given recent evidence that subcortical structures are also influenced by 
quality (though potentially to a lesser degree) 1, extending the current work to subcortical 
structures, particularly in the context of clinical group differences, could be valuable. Finally, our 
sample, the ABIDE dataset, consists of a relatively limited demographic, including mostly children 
and young adults, a substantial proportion of whom have a diagnosis of autism. However, this 
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dataset allowed us to examine the impact of quality on case-control differences, and we 
successfully replicated at least some of our results in a much larger, more representative sample. 
 

Conclusion 
Our results highlight the importance of careful quality control of neuroimaging data, and some of 
the potential consequences of failing to do so. We explored the effect of various QC metrics and 
mitigation techniques, and demonstrated that these can have a significant impact on our ability to 
detect differences in neuroanatomy related to autism.  
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