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ABSTRACT 

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) outcomes due to 
immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular 
disorder, diabetes, chronic respiratory disease). However, despite the well-known influence of 
age on autoantibody biology in health & disease, its impact on the risk of developing severe 
COVID-19 remains poorly explored. Here, we performed a cross-sectional study of 
autoantibodies directed against 58 targets associated with autoimmune diseases in 159 
individuals with different COVID-19 outcomes (with 71 mild, 61 moderate, and 27 severe 
patients) and 73 healthy controls. We found that the natural production of autoantibodies 
increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 
patients. Multivariate regression analysis showed that severe COVID-19 patients have a 
significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid β 
peptide, β catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet 
glycoprotein). Principal component analysis with spectrum decomposition based on these 
autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random 
forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as 
the three most crucial autoantibodies for the stratification of severe elderly COVID-19 patients. 
Follow-up analysis using binomial regression found that anti-cardiolipin and anti-platelet 
glycoprotein autoantibodies indicated a significantly increased likelihood of developing a severe 
COVID-19 phenotype, presenting a synergistic effect on worsening COVID-19 outcomes. These 
findings provide new key insights to explain why elderly patients less favorable outcomes have 
than young individuals, suggesting new associations of distinct autoantibody levels with disease 
severity.  
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INTRODUCTION 

There is increasing evidence connecting coronavirus disease 2019 (COVID-19), caused 

by the severe acute respiratory syndrome virus 2 (SARS-CoV-2), with underlying autoimmune 

pathology1,2. The triggers of this intersection between COVID-19 and autoimmunity have been 

ascribed to both exacerbated and chronic inflammation3, e.g., by promoting the exposure to self-

antigens and activation of bystander T cells caused by systemic high cytokine levels4, and due to 

the molecular mimicry between SARS-CoV-2 spike and human proteins5–8. Patients with severe 

COVID-19 develop profound organ damage due to a combination of several autoinflammatory 

and autoimmune responses, causing, among others, myopathy9, vasculitis, arthritis, 

antiphospholipid syndrome (APS)10 associated with deep vein thrombosis, pulmonary embolism, 

and stroke, as well as other organ damage to lungs, kidneys, and those forming the neurological 

system11,12. Furthermore, immune dysregulation is a hallmark of post-COVID syndrome13 

causing heterogeneous symptoms such as fatigue, vascular dysfunction, pain syndromes, 

neurological manifestations, and neuropsychiatric syndromes14–17. 

Following the initial discovery of autoantibodies against type I interferons (IFNs) in 

patients with life-threatening COVID-1918, several reports documented elevated levels of 

autoantibodies targeting various additional cytokines and chemokines and their receptors19, but 

also cardiac antigens20, G protein-coupled receptors (GPCR), renin-angiotensin system (RAS)-

related molecules, and those against anti-cardiolipin21–27, ribosomal P proteins, chromatin 

proteins, thyroid antigens28, anti-nuclear antigen (ANA)28,29, and anti-neutrophil cytoplasmic 

proteins (ANCA)30 in patients with severe SARS-CoV-2 infections. We recently reported a large 

spectrum of autoantibodies linked to autoimmune diseases that associate with COVID-19 
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severity31. Autoantibody levels often accompany anti-SARS-CoV-2 antibody concentrations as 

essential predictors of COVID-19 outcome, together with age31.  

Notably, aging has been strongly associated with increased morbidity and mortality of 

elderly patients with SARS-CoV-2 infections32–34. Elderly individuals present an increased risk 

of developing autoimmune diseases for several reasons, including immunosenescence and its 

associated immune dysregulation35–37, increased amounts of free DNA in the blood circulation38, 

and enhanced serum levels of autoantibodies39,40. Despite the well-known effect of age on 

autoantibody biology and immune pathophysiology in health & disease1,3,11,41–43, the particular 

influence of age in COVID-19 patients remains poorly explored. To address this issue, we 

performed a follow-up systems immunology analysis of our recent cross-sectional study of 159 

individuals with different COVID-19 outcomes (mild, moderate, and severe) compared to 73 

healthy controls31,44. We found that the natural production of autoantibodies increases with age 

and is exacerbated mainly in elderly patients with severe SARS-CoV-2 infections. 

 

METHODS 

Study cohort 

We investigated 232 unvaccinated adults44, 159 COVID-19 patients with SARS-CoV-2 positive 

test by nasopharyngeal swab and polymerase chain reaction (PCR), and 73 randomly selected 

age- and sex-matched healthy controls who were SARS-CoV-2 negative and did not present any 

COVID-19 symptoms. COVID-19 patients were classified based on the World Health 

Organization (WHO) severity classification45 as mild COVID-19 (n=71; fever duration ≤ 1 day; 

peak temperature of 37.8 C), moderate COVID-19 (n=61; fever duration ≥ seven days; peak 
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temperature of ≥ 38.8 C), and severe COVID-19 groups (n=27; severe symptoms and requiring 

supplemental oxygen therapy) (Supplementary Table S1). All healthy controls and patients 

provided informed written consent to participate in the study following the Declaration of 

Helsinki. The study was approved by the IntegReview institutional review board (Coronavirus 

Antibody Prevalence Study, CAPS-613) and followed the reporting guidelines of Strengthening 

the Reporting of Observational Studies in Epidemiology (STROBE). 

 

Measurements of anti-SARS-CoV-2 antibodies and autoantibodies linked to autoimmune 

diseases 

Sera were assessed for the levels/titers of IgG anti-SARS-CoV-2 antibodies to spike and 

nucleocapsid proteins using the ZEUS SARS-CoV-2 ELISA Test System according to the 

manufacturer’s instructions (ZEUS Scientific, New Jersey, USA), as previously described46. We 

evaluated serum IgG autoantibodies against the nuclear antigen (ANA), extractable nuclear 

antigen (ENA), double-stranded DNA (dsDNA), actin, mitochondrial M2, and rheumatoid factor 

(RF) using commercial ELISA kits obtained from INOVA Diagnostics (San Diego, CA, USA). 

Furthermore, in a blinded fashion, we quantified IgG autoantibodies against 52 target molecules 

using an in-house ELISA procedure (Immunosciences Lab., Inc; Los Angeles, CA USA). One 

hundred mL of each autoantigen at the optimal concentration were prepared in 0.01 M PBS pH 

7.4 and aliquoted into microtiter plates. We used a set of plates and coated each well with 2% 

bovine serum albumin (BSA) or human serum albumin (HSA) as controls. The ELISA plates 

were incubated overnight at 4°C and washed five times with 250 ml of 0.01 M PBS containing 

0.05% Tween 20 pH 7.4. We avoided the non-specific binding of immunoglobins by adding 2% 

BSA in PBS and incubating the plates overnight at 4°C. The plates were washed, and the serum 
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samples from healthy controls and SARS-CoV-2 patients were diluted 1:100 in serum diluent 

buffer or 1% BSA in PBS containing 0.05% Tween 20 and incubated for one hour at room 

temperature. The plates were rewashed, followed by the addition of alkaline phosphatase-

conjugated goat anti-human IgG F(ab,)2 fragments (KPI, Gaithersburg, MD, USA) at an optimal 

dilution of 1:600 in 1% BSA PBS. The plates were incubated for an hour at room temperature 

and washed five times with PBS-Tween buffer. The enzyme reaction was started by adding 100 

mL of para-nitrophenyl phosphate in 0.1 mL diethanolamine buffer 1 mg/mL plus 1 mM MgCl2 

and sodium azide pH 9.8. Forty-five minutes later, the reaction was stopped with 50 mL of 1 N 

NaOH. The optical density (OD) was read at 405 nm using a microtiter plate reader. To exclude 

non-specific binding, the ODs of the control wells containing only HSA or BSA, always less 

than 0.15, were subtracted from those wells containing patient or control serum. The ELISA 

index for each autoantibody was calculated. 

 

Spearman’s correlation analysis  

To evaluate the relationship between autoantibody levels, disease severity, and age, we used 

Spearman’s correlation analysis for the variables age and natural log of the sum of all 

autoantibodies and anti-SARS-CoV-2 antibody from healthy controls and each disease group 

(mild, moderate and severe COVID-19). All analyses were performed using R programming 

language version 4.2.1 (https://www.r-project.org/)47, and RStudio Version 2022.07.1+55448 

with R package ggplot249 for plots. 

 

Multivariable linear regression 
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To further explore the relationship between the variables age and specific autoantibody levels in 

each study group, we applied multivariable linear regression analysis50. This method evaluates 

the influence of age and study group on distinct antibody levels, thus, allowing to assess of the 

relationship between the levels of autoantibodies or the levels of anti-SARS-CoV-2 with age as a 

continuous variable of the study group (healthy control; mild, moderate, and severe COVID-19). 

Furthermore, patients’ sex was considered a covariable in the regression model since it 

represents a confounder that may influence the dependent variables. The formula used to 

calculate the crossing results is described below. We used the lm function from the R package 

stats for the linear regression analysis, and forest plots and scatter plots were generated using the 

R package ggplot251. Autoantibodies as dependent variable (y); independent variables sex (a), 

age (b), and study group (c): y ~ a+b*c. 

 

Differences in autoantibody levels and hierarchical clustering 

We used box plots to show the distribution levels of autoantibodies in healthy controls and each 

COVID-19 group (mild, moderate, and severe), classifying individuals < 50 years of age as 

young and individuals ≥ 50 years of age as elderly (Supplementary Table S1). Statistical 

differences in autoantibody levels were calculated using a two-sided Wilcoxon rank-sum test 

with a p-value < 0.05 as the significance cut-off. Box plots were generated using the R packages 

rstatix52, and ggplot251. Additional visualization of autoantibody levels in the different study 

groups was performed using the R package ComplexHeatmap53 and Circlize54. The clustering of 

autoantibody levels in each study group was based on Euclidian distance.  
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Principal Component Analysis  

Based on the multivariable regression results, we identified significantly increased titers of age-

associated autoantibodies against 16 targets, which underwent principal component analysis 

(PCA) with spectral decomposition55,56, as previously described44,57. This approach allowed us to 

measure the stratification power of the autoantibodies in distinguishing between severe COVID-

19 patients and healthy controls while considering young and elderly groups. We calculated the 

eigenvalues based on the contributions of autoantibody levels to demonstrate their direction in 

the principal component analysis. The eigenvalues exceeding one intercept were considered 

essential to show the segregation of groups. For this, we used the R functions get_eig and 

get_pca_var from factoextra package58. PCA was performed using the function prcomp from the 

same package. 

 

Random forest modeling 

We employed the random forest model to rank the most relevant autoantibodies (the 

autoantibodies that were significant in the multivariable regression analysis)  to best classify 

COVID-19 disease severity for each age category (young and elderly) using the R package 

randomForest (version 4.7.1.1)59 as previously described31,44,60. Briefly, five thousand trees were 

used, and three variables were resampled (mtry parameter). As criteria to determine variable 

importance in the classification, we considered the mean minimum depth, Gini decrease, and the 

number of appearances in nodes. The dataset was split into training and testing sets using a 3 to 1 

ratio for cross-validation, while quality was assessed for each, respectively, through out-of-bags 

error rate and the ROC curve. 
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Support Vector Machine (SVM) classification  

We used support vector machine61,62 (SVM), a robust computer algorithm, to build classifiers63. 

SVM employs four basic concepts: separating hyperplane, the maximum-margin hyperplane, the 

soft margin, and the kernel function64. We performed the radial kernel function applied between 

healthy controls and the severe COVID-19 group to classify the scaled values of the anti-

cardiolipin and anti-platelet glycoprotein autoantibodies with age. Groups were defined as the 

dependent variable, while antibodies and age were considered independent variables. The 

analysis was performed using the svm function of the e107165 R package. We used the kernel (C-

classification) with 50% of our data sorted randomly by the R base sample function for training 

and predicting, considering the radial basis parameter: exp(-gamma*|u-v|^2), which was the best 

model applied to our data. Accuracy was defined as the percentage of correctly classified 

samples resulting in 77% for cardiolipin and 81% for platelet glycoprotein, correctly classified as 

healthy controls and severe COVID-19 patients in our model. Furthermore, we used the tune 

function of the R package e107165 to adjust the hyperparameters for cost and gamma in the svm 

function. We used a cost of 10 and a gamma of 0.5 for our data. All graphs resulting from svm 

prediction results were generated using the R package ggplot251.  

 

Binomial logistic regression  

We used the binomial logistic regression analysis to understand whether the severity of COVID-

19 (dichotomous dependent variable) can be predicted based on age and autoantibody levels 

(independent variables). The binomial logistic regression analysis indicates the probability that 
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an observation falls in one of two defined dichotomous categories (dependent variable) based on 

one or more independent variables (either continuous or categorical)66. This analysis was 

performed using the R package stats47 with the glm function. The categories of the dichotomous 

dependent variable were defined as “belonging to severe COVID-19: group 1” and “not 

belonging to severe COVID-19: group 0”, using the binomial logistic family to predict the 

probability of falling into the severe COVID-19 group in relation to the healthy controls.  The 

age categories, young and elderly, and the levels of autoantibodies targeting cardiolipin, platelet 

glycoprotein, and claudin-5 were the independent variables for this analysis. This approach 

resulted in a regression coefficient and p-value for the probability of severe COVID-19 based on 

the autoantibody level and the likelihood of severe COVID-19 based on the age category. 

 

Linear discriminant analysis 

We applied linear discriminant analysis (LDA), a method to find a linear combination of 

variables that characterize or separate two or more classes of objects or events67, to classify in 

which group (elderly healthy controls: group 0; elderly severe COVID-19: group 1) the sample 

elements (significant age-associated autoantibodies targeting 16 molecules ) belong to. 

Autoantibodies with a specificity and sensitivity value greater than 70% (anti-cardiolipin and 

anti-platelet glycoprotein) were considered to be related to the elderly severe COVID-19 group. 

The analysis was performed using the R package MASS68 with the lda function. To plot the 

specificity and sensitivity of the class prediction for each autoantibody, we used the R package 

plotROC69 and ggplot251.  In addition, we performed the binomial logistic regression for odds 

ratio (OR)66 as described above using autoantibodies with specificity and sensitivity greater than 

70%. The calculation of the chance to predict COVID-19 severity was performed using the 
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function logistic.display of the R package epiDisplay70. Here we demonstrate the odds ratio 

when there is an increase in cardiolipin or platelet glycoprotein levels alone or combined. Plots 

resulting from this analysis were generated using the R package forestploter71 and the forest and 

forest_theme functions. 

 

RESULTS 

Autoantibody levels increase with age,  particularly in severe COVID-19 patients  

We observed that, in general, the autoantibody levels increased by age across all groups included 

in this study. However, autoantibody levels in severe COVID-19 patients presented the strongest 

correlation with age (ρ = 0,62 and p = 0,00019; Figure 1A) and the higher mean levels (>1 

Units/mL; Figure 1C) when compared to healthy individuals, as well as mild and moderate 

COVID-19 groups. Interestingly, these results contrast with the levels of anti-SARS-CoV-2 

antibodies, which showed no correlation with age at all for all tested groups (ρ < 0.0 and p = 0.3 

to 0.7; Figures 1B) but generally increased with disease severity (from 1-5 to 2 Units/mL; 

Figure 1D). Details are available in the supplementary Table S2. 

To characterize which autoantibodies significantly contributed to the age-associated 

enhancement in the autoantibody levels, we performed a linear regression analysis for each 

autoantibody. In this context, autoantibodies were considered the dependent variable, while 

group and age were evaluated as independent variables. In agreement with the descriptive 

statistical analysis shown in Figure 1, this inferential approach revealed autoantibodies targeting 

sixteen molecules, which were strongly significantly associated with age in the severe COVID-

19 group compared with the healthy controls (Figure 2A). In contrast, except for the 

considerable significant enhancement in the levels of autoantibodies targeting claudin 5 and 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.04.22282902doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.04.22282902
http://creativecommons.org/licenses/by-nd/4.0/


12 

 

transglutaminase 6 in the mild COVID-19 group, there was only a general non-significant trend 

for increasing autoantibody levels for the mild and moderate COVID-19 groups (Figures 2A and 

2B; Supplementary Table S3; see Supplementary Figure 1 for the comparison of all groups). 

This indicates that many autoantibody levels robustly increase with age, particularly in severe 

COVID-19 patients, but lesser in the mild and moderate COVID-19 patients  

 

Hierarchical clustering of autoantibodies by age indicates the segregation of young from 

elderly severe COVID-19 patients 

To further investigate the impact of age on the levels of autoantibodies, we divided the 

healthy controls and the COVID-19 patients by age, i.e., individuals <50 years old as the young 

subgroup and those ≥50 years old as the elderly subgroup for each category (healthy controls as 

well as mild, moderate, and severe COVID-19 patients). In agreement with the continuous 

autoantibody values analyzed by the linear regression analysis (Figure 2), this approach revealed 

that elderly healthy controls and all elderly COVID-19 groups tended to have higher 

autoantibody levels compared to their young counterparts. However, only the severe elderly 

COVID-19 patients showed many significantly higher levels of autoantibodies targeting various 

autoantigens (e.g., platelet glycoprotein, amyloid β peptide, and β catenin) when compared to the 

severe young COVID-19 (Figure 3a; Supplementary Table S4). Likewise, hierarchical 

clustering analysis of the autoantibody levels based on the aging groups (young versus elderly 

individuals) uncovered a segregation of young from elderly severe COVID-19 patients but not 

the other groups investigated (Figure 3b). This suggests a synergistic effect of patient age and 

COVID-19 severity influencing the positive association among the autoantibodies.  
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Autoantibodies associated with age stratify COVID-19 patients   

Next, we performed random forest analysis to rank the most critical autoantibodies linked 

to severe COVID-19 and aging among the sixteen age-associated autoantibodies. This approach 

identified autoantibodies targeting claudin 5, cardiolipin, and platelet glycoprotein as the three 

most essential autoantibodies classifying young severe COVID-19 versus young, healthy 

controls and elderly severe COVID-19 versus elderly healthy controls (Figure 4a). The receiver 

operating characteristic (ROC) curves of these comparisons demonstrate the high accuracy of the 

random forest analysis based on the age-associated autoantibodies as classifiers of severe 

COVID-19 patients (Figures 4b-4c and Supplementary Table S5).  

To further investigate potentially age-related autoantibodies that stratify young from 

elderly severe COVID-19 patients and healthy controls, we carried out PCA based spectral 

decomposition72. The PCA showed that while young and elderly healthy controls presented a 

similar autoantibody pattern, there is a stratification of elderly and young severe COVID-19 

patients from elderly and young healthy controls (Figure 5A). According to eigenvalue criteria, 

this may be viewed for just two dimensions (Intercept > 1; Figure 5B). Although not at the same 

stratification magnitude when comparing healthy controls with severe COVID-19 patients, the 

PCA suggested segregation between elderly and young severe COVID-19 patients, shown by 

dimension 2 in the y-axis (Figure 5A). In agreement with the random forest results, 

autoantibodies targeting claudin 5, cardiolipin, and platelet glycoprotein mainly contributed to 

dimension 2, which was responsible for the stratification of the control and severe groups 

(Figures 5A and 5C; Supplementary Tables S6 and S7).  

 

Age-associated autoantibodies increase the probability of disease severity  
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The results above have suggested the importance of the autoantibodies targeting claudin 

5, cardiolipin, and platelet glycoprotein in the classification of COVID-19 patients. We 

conducted a multivariate logistic regression analysis to understand better their contribution to 

developing severe COVID-19 disease. This approach was used to understand the relationship 

between the groups (healthy controls versus COVID-19 groups) as the dependent variable and 

the autoantibody levels as the independent variable to predict the likelihood of COVID-19 

severity. This approach indicated a significant probability of developing severe COVID-19 

directly proportional to the levels of anti-cardiolipin (p=8,92e-06) and anti-platelet glycoprotein 

(p= 0.001) autoantibodies (Figure 6A). In particular, the severe elderly COVID-19 patients 

exhibited a higher probability curve of disease severity when compared to severe young COVID-

19 patients (Figure 6A) and increased levels of anti-cardiolipin and anti-platelet glycoprotein (p 

= 0.01 to p = 0.001; Figure 6B; Supplementary Table S8). Conversely, the levels of 

autoantibodies targeting claudin 5 presented a significant inversely proportional relationship with 

the probability of developing severe COVID-19 in young (p<0.01; Figure 6B) but not in elderly 

patients.  

Of note, the support vector machine classification, which is a powerful machine learning 

approach with maximization (support) of separating margin (vector)63,64, based on the levels of 

anti-cardiolipin (Figure 7a) or anti-platelet glycoprotein (Figure 7b) in relation to age, showed 

the importance of these autoantibodies as suitable classifiers of severe COVID-19 when 

compared to healthy controls. i.e., SVM showed the separation of severe COVID-19 from 

healthy controls based on these most critical age-associated autoantibodies as the random forest 

analysis predicted.  The input data and table results are shown in Supplementary Figure 2 and 

Supplementary Tables S9 and S10. We next used an LDA model considering the groups 
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(elderly healthy controls versus elderly severe COVID-19 patients) as the dependent variables 

and the autoantibody levels as the independent variable to calculate the OR of disease severity 

(Supplementary Tables S11 and S12). However, the binominal logistic regression analysis 

indicated only anti-cardiolipin and anti-platelet glycoprotein (when considering the sixteen aged-

associated autoantibodies) with specificity, sensitivity, and accuracy above 70% chance of 

correct group classification (Figure 7c and Supplementary Figure 3). The OR of disease 

severity indicated that autoantibodies targeting cardiolipin or platelet glycoprotein highly 

increase the chance of developing severe COVID-19. Notably, the odds of developing severe 

COVID-19 at least double when the levels of these two autoantibodies increase (Figure 7d), thus 

indicating their possible relevance in the pathophysiology of severe COVID-19 

 

DISCUSSION 

Here we show the distinct impact of patient aging on the level of serum autoantibodies and 

COVID-19 severity, which we previously found to be associated with autoimmune diseases in 

patients with COVID-1944,73,74. Increasing evidence has indicated that SARS-CoV-2 infection 

triggers a life-threatening immune dysregulation, with the recent demonstration of autoantibody 

production targeting an array of self-antigens19,28,75,76. However, the effect of patient aging in the 

context of autoimmune homeostasis was not considered in these recent studies investigating the 

phenomenon of autoreactivity in COVID-19 patients77.In line with the already well-known 

impact of patient aging, which is one of the most decisive risk factors for the development of 

severe COVID-1978 (in addition to other strong risk factors, such as obesity and prehistory of 

cardiovascular complications), our new data suggest that the production of natural autoantibodies 
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(but not anti-SARS-CoV-2 antibodies) is significantly increased in an age-dependent manner, 

being most pronounced in individuals with severe COVID-19.  

 

 Hierarchical clustering analysis of autoantibody levels indicated a segregation of young from 

elderly patients with severe COVID-19. Notably, the combination of different machine learning 

approaches revealed that, among the significantly age-associated autoantibodies, particularly 

those directed against cardiolipin and platelet glycoprotein, are the most critical autoantibodies 

for predicting severe elderly COVID-19 patients when compared to elderly healthy controls. 

Of note, linear multivariable and binominal logistic regression analyses indicated that 

autoantibodies targeting cardiolipin and platelet glycoprotein synergistically increase the 

probability of developing severe disease. Thus, in addition to the impaired immune response 

(affecting IFN-mediated immunity) and the generation of anti-type I IFN autoantibodies that 

drive the age-dependent severity of COVID-1979,80, patients with life-threatening SARS-CoV-2 

infections also present with an age-dependent increase of multiple autoantibodies associated with 

classic autoimmune diseases that correlate with disease severity.  

The well-documented observation that anti-cardiolipin81 and anti-platelet antibodies82 

increase the risk of thrombosis-related events such as pulmonary thromboembolism and deep 

vein thrombosis83,84 is also true for COVID-19 patients11,21,24,85–87. Thus, our findings could 

provide new insights into the complex pathophysiology of COVID-19, such as the thrombosis-

related pathological events occurring with increased frequency in elderly individuals with SARS-

CoV-2 infection. However, this represents a limitation of our study since we have no 

longitudinal data of our patients to evaluate if the individuals with high levels of anti-cardiolipin 

and anti-platelet antibodies developed thrombosis-related events. 
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The elevated autoantibody levels associated with severe COVID-19 may be exacerbated 

by the evolutionarily conserved tendency to produce more autoantibodies with increasing age42. 

This phenomenon can aggravate the age-associated deficit in cardiovascular structure and 

function88 as well as the age-related decline of normal lung function89, which represent two 

central physiological systems (circulatory and respiratory) that are predominantly harmed in 

COVID-19 patients90. Together, these age-associated conditions create a fertile milieu for the 

poor outcomes of elderly individuals suffering from severe SARS-CoV-2 infection.  

Our results raise the important question, considering the sequence of the underlying 

events: does the severity of COVID-19 increase the autoantibody levels? Or do the increased 

autoantibody levels affect the disease severity? We here hypothesize that both possibilities are 

reasonable and may be complementary. The severe COVID-19 infection promotes a body 

environment, i.e., the SARS-CoV-2 induced immune dysregulation, which is favorable for the 

production of autoantibodies, which could act synergistically with multiple metabolites91, 

cytokines, and chemokines, which are naturally dysregulated in elderly patients as part of 

immunosenescence35–37, worsening the COVID-19 outcomes through several well-known 

mechanisms of autoantibody-induced pathology92
. In this context, autoantibodies - in concert 

with other immune molecules (e.g., cytokines and chemokines) - could interact in a highly 

complex network underlying immunopathological processes93 in severe COVID-19 patients, 

potentiated by aging-associated health conditions and lead to the development of severe disease.  

Another age-dependent phenomenon that possibly explains the increased autoimmune 

responses we observed in the elderly patients with severe COVID-19 relies on the accumulation 

of epigenetic alterations (e.g., DNA methylation and histone acetylation)94, known to contribute 

to the autoimmunity risk of elderly individuals. Accordingly, accelerated epigenetic aging has 
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been associated with the increased risk of SARS-CoV-2 infection and the development of severe 

COVID-1995. Lastly, a state of hyper-stimulation of the immune system by the SARS-COV-2 

infection has been observed in elderly patients, for instance, by promoting the activation of 

overlapping B cell pathways between severe COVID-19 and patients with systemic autoimmune 

diseases96. Hence, several age-associated immunopathological events support the existence of 

age-associated autoantibodies, increasing the likelihood of severe COVID-19 disease in elderly 

patients. 

Importantly, our data indicate a distinct separation/stratification of the young from the 

elderly COVID-19 patients and an increased odds ratio of disease severity due to high levels of 

autoantibodies known to be associated with classic autoimmune diseases, in particular those 

targeting cardiolipin or platelet glycoprotein. Indeed, the prothrombotic anti-cardiolipin 

autoantibodies that may potentially exacerbate the thrombo-inflammatory state related to severe 

COVID-1921,97, and other autoantibodies linked to classic autoimmune diseases31, have long 

been known to be highly prevalent in the healthy elderly population98,99.  

Since we were unable to measure the autoantibody levels of our patient cohort before the 

SARS-CoV-2 infection (which is one of the fundamental constraints of many studies), we cannot 

reject the possibility that at least some of our patients already had elevated levels of age-

associated autoantibodies before the development of severe COVID-19. Thus, our findings could 

be influenced by a predisposition factor for the association between age, autoantibody levels, and 

severe COVID-19. Therefore, our results require future mechanistic investigations through in 

vivo approaches, as recently suggested19,79. 

In conclusion, our data provide new crucial insights into the critical relationship between 

severe COVID-19 and the increased dysregulation/production of distinct autoantibodies with 
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increasing age that may be an essential component associated with the development of severe 

COVID-19. As demonstrated by the stratification of young from elderly COVID-19 patients and 

the increased odds ratio of disease severity due to the high levels of autoantibodies linked to 

autoimmune diseases,  in particular, those targeting cardiolipin or platelet glycoprotein, our data 

indicate an age-dependent effect of autoantibodies in the development of severe COVID-19, that 

may also be of future value for disease prognosis. This work expands the link between 

senescence and aging with severe SARS-CoV-2 infection100–105. 
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MAIN FIGURES 
 
Figure 1. Increased autoantibody levels by age. a-b) Scatter plot indicating the relationship 
and correlation between age and (a) the natural log of the sum of autoantibodies targeting 52 
different molecules and (b) anti-SARS-CoV-2 levels in healthy controls and each COVID-19 
disease group. Spearman's rank correlation coefficient (�) and significance level (p-value) for 
the correlations are shown within each graph. Healthy controls n=73; COVID-19 groups: mild 
n=71, moderate n=61, and severe n=27. c-d) Graphics showing the relationship between the 
mean of c) autoantibodies and d) anti-SARS-CoV-2 levels in different age categories for healthy 
controls and COVID-19 disease groups. The size of the dots corresponds to the number of 
individuals in the age category according to the figure legend (see Supplementary Tables S1 
and S2). 
 
Figure 2. Regression analysis demonstrating the relationship between autoantibodies and 
age in severe COVID-19 patients. a) Forest plots showing linear regression coefficients (dots) 
and their 95% confidence interval (whiskers) for different autoantibodies across the COVID-19 
groups (mild, moderate, and severe) compared to healthy controls (vertical dotted line at the 
intercept of 0). Red dots and lines correspond to significantly increased autoantibody levels 
associated with disease group and age compared to healthy controls. b) Scatter plot of regression 
analysis, indicating the relationship between the autoantibodies and age for severe COVID-19 
and control groups. The p-values and linear regression coefficient are indicated for each graph. 
Scatter plots for mild and moderate patient groups are shown in Supplementary Figure 1. 
Supplementary Table S3 shows the results of all regression coefficients. 

Figure 3. Autoantibody levels are increased in elderly severe COVID-19 patients. a) 
Boxplots showing the autoantibody levels in young (< 50 years old) and elderly (≥ 50 years old) 
groups for healthy controls as well as mild, moderate, and severe COVID-19 patients. The 
difference in autoantibody levels comparing young with elderly individuals of each group was 
calculated using the nonparametric Wilcoxon test considering a p-value < 0.05 as significant 
(denoted by * in the plot). See Supplementary Table S4 for the exact numbers of p-values. b) 
Heatmaps showing autoantibody levels ranging from 0 to 2 Units/ml according to the color scale 
bar at the side of the graph clustered by Euclidian Distance for each disease and control group. 
The age and age categories (light grey and brown dots above the heatmap for the young and 
elderly categories, respectively) for all individuals are shown above the heatmap.  

Figure 4. Ranking of autoantibodies as predictors for severe COVID-19 in young and 
elderly groups. a) Random Forest model used to rank the 16 most significant autoantibodies as 
predictors for severe COVID-19 in young and elderly severe COVID-19 patient groups 
compared to healthy controls. Multi-way importance plots show four nodes (IgG antibodies), the 
most significant predictors of severe COVID-19 in the young and the elderly. The size of the 
dots corresponds to the mean min depth in decreasing order (2.5 to 1.0) b) ROC curve of the 
random forest model showing over 70% accuracy in specificity and sensitivity for healthy 
controls and severe COVID-19 groups of each age category (young and elderly). c) Stable curve 
showing the number of trees and out-of-bag (OOB) error rate of 20% for young healthy controls 
and 9% for the young severe COVID-19 group (left side graph of the figure), as well as an error 
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rate of 15% for elderly healthy controls and 41% for the elderly severe COVID-19 group (right 
side graph of the figure). Supplementary Table S5 shows the confusion matrix for the random 
forest model.  

Figure 5. A subset of autoantibodies differentiates between severe COVID-19 and healthy 
controls in young and elderly age categories. a) Principal component analysis (PCA) with 
spectral decomposition shows the stratification power of the sixteen most significant 
autoantibodies to distinguish between severe COVID-19 and healthy controls, considering the 
age categories of each group according to the first and second dimensions. b) red dots show 
eigenvalues above one, and eigenvalues below 1 are shown by black dots demonstrating the 
importance of the dimensions (principal component). The horizontal black line shows the 
intercept of 1. Eigenvalues are available in Supplementary table S6. c) Barplots for two 
dimensions based on variable contribution. Each barplot shows the contribution (in %) of the 
sixteen autoantibodies to each dimension. The red colored bars represent contribution values ≥ 
5% (black dashed intercept line), while black colored bars indicate contribution values < 5%. 
The contribution values of all autoantibodies to the different dimension is listed in 
Supplementary Table S7. 

Figure 6. The probability of disease severity associated with autoantibody levels a) Scatter 
plot of three autoantibodies (anti-Cardiolipin, anti-Platelet Glycoprotein, and anti-Claudin 5) 
show that increased autoantibody levels can be explained by a higher probability of being severe 
in each group (healthy controls = 0, and severe COVID-19 = 1). The age category for each group 
(healthy controls and severe COVID-19) is indicated by a light grey (young) and brown (elderly) 
line in the center of the graph.  The regression coefficients to autoantibody levels and 
comparisons between young and elderly age categories are shown above each graph. b) Boxplots 
indicate the autoantibody levels of the three autoantibodies (Cardiolipin, Platelet Glycoprotein, 
and Claudin 5) in healthy controls and severe COVID-19 patients for young and elderly 
categories. Significant differences were defined using the nonparametric Wilcoxon test and p-
value < 0.05 (denoted by * in the plot). See Supplementary Table S8 for the exact number of p-
values.  

Figure 7. Increased levels of anti-cardiolipin and anti-platelet glycoprotein autoantibodies 
indicate a higher chance of severity in the elderly. a-b) Support Vector Machine (SVM) 
showing the non-linearly C-classification based on radial kernel with over 70% (Supplementary 
Figure 2 and Supplementary Table S10)  accuracy between healthy controls and the severe 
COVID-19 group of the elderly age category. The scaled values for age (x-axis) and anti-
cardiolipin, and (a) anti-platelet glycoprotein (b) autoantibody levels (y-axis) are shown. The 
colors indicate each study group according to the figure legend. c) ROC curve and threshold 
values for the two autoantibodies based on linear discriminant analysis (LDA)  representing the 
specificity and sensitivity of each autoantibody for severe COVID-19 in the elderly category 
(Supplementary Figure 3 shows the ROC curve of all sixteen autoantibodies). d) Forest plot 
with Odds radial (OR) from binomial logistic regression analysis showing the regression 
coefficient (dots) with confidence intervals (whiskers) and the significance level (≠ 0 intercept). 
The exact values of OR and 95% confidence intervals are shown on the side of the regression 
coefficients. 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Scatter plot of regression analysis, indicating the relationship between 
the autoantibodies and age for healthy controls and each disease severity group according to 
color legend as indicated at the bottom of the graphs. The p-values and linear regression 
coefficient (RC) are shown for each group in every plot. 

Supplementary Figure 2. a-b) Scatter plots showing the distribution of elderly individuals in 
the healthy control (blue dots) and severe COVID-19 group (red dots) for (a) anti-cardiolipin 
antibody levels and (b) anti-platelet glycoprotein levels. This distribution was used as input for 
the SVM analysis. 

Supplementary Figure 3. ROC curves demonstrate the specificity and sensitivity of each of the 
sixteen autoantibodies for severe COVID-19 in the elderly category. All plots were generated 
using binomial logistic regression.  
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