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Abstract 

Background. Some months after the remission of acute COVID-19 infection, some people 

show depressive symptoms, which are predicted by increased peak body temperature (PBT) 

and lowered blood oxygen saturation (SpO2). Nevertheless, no data indicate whether Long 

COVID is associated with increased insulin resistance (IR) in association with depressive 

symptoms and immune, oxidative, and nitrosative (IO&NS) processes. 

Methods. We used the homeostasis Model Assessment 2 (HOMA2) calculator© to compute β-

cell function, insulin sensitivity and resistance (HOMA2-IR) and measured the Beck 

Depression Inventory (BDI) and the Hamilton Depression Rating Scale (HAMD) in 86 Long 

COVID patients and 39 controls. We examined the associations between the HOMA2 indices 

and PBT and SpO2 during acute infection, and depression, IO&NS biomarkers (C-reactive 

protein, NLRP3 activation, myeloperoxidase, and advanced oxidation protein products) 3-4 

months after the acute infection. 

Results. Long COVID is accompanied by increased HOMA2-IR, fasting blood glucose, and 

insulin levels. We found that 33.7% of the patients versus 0% of the controls had HOMA2-IR 

values >1.8, suggesting IR. PBT, but not SpO2, during acute infection significantly predicted 

IR, albeit with a small effect size. Increased IR was significantly associated with depressive 

symptoms as assessed with the BDI and HAMD above and beyond the effects of IO&NS 

pathways. There were no significant associations between increased IR and the activated 

IO&NS pathways during Long COVID. 

Conclusion. Long COVID is associated with new-onset IR in a subset of patients. Increased 

IR may contribute to the onset of depressive symptoms due to Long COVID by enhancing 

overall neurotoxicity. 
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Introduction 

The pathogenesis of acute COVID-19 includes SARS-CoV-2 entry into the host 

respiratory epithelial cells followed by viral translation and multiplication in the cytoplasm and 

infection of nearby host cells (1-4). These processes are accompanied by the activation of 

immune-inflammatory pathways and may result in pneumonia, lung injury, and excessive 

inflammatory reactions including a cytokine storm that may cause disseminated intravascular 

coagulation and multisystem failure (1-4). SARS-CoV-2 may activate the nucleotide-binding 

domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome 

with elevations in interleukin (IL)-1β, IL-18, and caspase 1(1-5). 

After remission of the acute phase of COVID-19, many people experience Long 

COVID which comprises a variety of neuropsychiatric symptoms, such as neurocognitive 

impairments, sleep disturbances, affective symptoms (low mood and anxiety), chronic fatigue, 

and somatic symptoms like dyspnea, autonomic symptoms, and pain symptoms (6-15). Within 

six months of the onset of COVID-19 symptoms, over one-third of COVID-19 survivors may 

suffer from such neuropsychiatric symptoms (16).  

Recently, we found that both acute and long-term COVID are characterized by 

increases in a) fatigue and physiosomatic symptoms such as headache, malaise, fibromyalgia-

like, gastrointestinal, cardiovascular, and autonomous symptoms, b) anxiety symptoms 

including anxious mood, tension, irritability, and fears, and c) depressive symptoms such as 

low mood, feelings of guilt, and loss of interest (17-20). Moreover, in both acute and Long-

COVID, one factor (latent vector) could be extracted from these diverse neuropsychiatric 

symptoms, suggesting that acute and Long-COVID are characterized by a wide range of 

neuropsychiatric symptoms which are driven by a single latent characteristic, named the 

“physio-affective phenome" (17-20).  
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Important predictors of the severity of the physio-affective phenome of acute and Long 

COVID are lowered oxygen saturation (SpO2) and an increased peak body temperature (PBT) 

during the acute phase (20). Both lowered SpO2 and increased PBT are sensitive markers of the 

intensity of the immune-inflammatory response during acute COVID-19 and predict not only 

critical disease and death due to COVID-19, but also the physio-affective phenome of both 

acute and Long COVID (20-22). 

Moreover, activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) 

pathways are significantly associated with the physio-affective symptoms of Long COVID (17, 

18). In different studies, we observed that activation of the NLRP3 inflammasome (as indicated 

by alterations in interleukin (IL)-1β, IL18, and caspase 1), increased C-reactive protein (CRP), 

myeloperoxidase (MPO), malondialdehyde (MDA), protein carbonyls, and advanced protein 

oxidation products (AOPP) and lowered zinc and glutathione peroxidase (Gpx) are associated 

with Long COVID’ physio-affective symptoms (18). 

People with COVID-19 exhibit an increased risk and excess burden of incident diabetes 

(23). For example, glycaemic abnormalities could be detected two months after recovery from 

COVID-19 (24). Mood disorders including major depression and anxiety disorders are not only 

accompanied by activated IO&NS pathways (25, 26) but also by relative insulin resistance (IR) 

and a significant association between IR assessments and depressive symptoms (26-30). The 

neuro-immune-toxicity theory of mood disorders conceptualizes that increased neurotoxicity 

due to multiple neurotoxic IO&NS pathways and neurotoxicity due to IR are involved in the 

pathophysiology of mood disorders (25-27). Importantly, in mood and anxiety disorders, 

increased damage due to O&NS, as indicated by increased AOPP and MDA levels, is 

significantly associated with increased IR, suggesting that, in mood disorders, increased O&NS 

plays a role in the onset of IR (26, 27). Furthermore, increased lipid peroxidation, aldehyde 

production, and chlorinative stress are characteristics of the metabolic syndrome (MetS) and 
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are known to mediate IR and atherogenicity in MetS. Inflammatory pathways and the NLRP3 

inflammasome play an important role in the pathogenesis of IR, type 2 diabetes mellitus 

(T2DM), and obesity (31, 32). Nevertheless, there are no studies that have examined whether the 

physio-affective symptoms of Long COVID are associated with increased IR and whether the 

latter is associated with signs of activated IO&NS pathways during the acute infectious and 

Long COVID phases. 

Hence, the present study aimed to examine a) whether Long COVID is associated with 

increased IR; b) whether increased IR in Long COVID is associated with the physio-affective 

phenome of Long COVID, the inflammatory response of the acute infectious phase (as 

indicated by increased PBT and lowered SpO2) and activated IO&NS pathways (as indicated 

by increased CRP, NLRP3, AOPP, and MPO levels); and d) IR impacts the physio-affective 

phenome above and beyond the effects of these IO&NS biomarkers. 

 

Participants and Methods 

Participants 

In the present study, we combined a case-control research methodology with a 

retrospective cohort study design to assess the impact of acute phase biomarkers on the IR 

parameters in Long COVID patients. The case-control strategy allowed us to analyze 

differences between controls and Long COVID subgroups. In the last three months of 2021, 

we included 86 individuals who had at least two Long COVID symptoms and had previously 

been identified and treated for an acute COVID-19 infection. The patients were identified using 

the officially published WHO criteria for post-COVID (long COVID)(33), which include the 

following: a) a history of proven SARS-CoV-2 infection; b) symptoms that persisted beyond 

the acute stage of illness or that manifested during recovery from acute COVID-19 infection, 
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lasted at least two months, and were present 3–4 months after the onset of COVID-19; and c) 

patients who have at least 2 symptoms (33). 

 All patients were admitted to one of the official quarantine facilities in the city of Al-

Najaf that specializes in the treatment of acute COVID-19, including the Hassan Halos Al-

Hatmy Hospital for Transmitted Diseases, the Middle Euphrates Center for Cancer, the Imam 

Sajjad Hospital, the Al-Hakeem General Hospital, and the Al-Zahraa Teaching Hospital for 

Maternity and Pediatrics. During the acute infectious phase, all patients included here showed: 

a) acute respiratory syndrome and the disease's typical symptoms of fever, breathing problems, 

coughing, and loss of smell and taste; b) positive reverse transcription real-time polymerase 

chain reaction (rRT-PCR) findings; and c) the presence of positive SARS-specific IgM 

antibodies. During Long COVID these patients had negative rRT-PCR results after the acute 

period. We also included 39 controls, who were either staff members or members of their 

families or friends, and selected from the same catchment area. All 39 controls had negative 

rRT-PCR results and showed no clinical signs of an acute infection, such as a dry cough, sore 

throat, shortness of breath, fever, night sweats, and chills. Exclusion criteria for controls were 

a lifetime and current history of psychiatric axis-1 disorders, such as major affective disorders 

(major depressive disorder and bipolar disorder), dysthymia, generalized anxiety disorder, 

panic disorder, schizo-affective disorder, schizophrenia, psycho-organic syndrome, substance 

use disorders—with the exception of tobacco use disorder—and chronic fatigue syndrome and 

fibromyalgia. Nevertheless, to account for the confounding effects of psychological stress due 

to the COVID-19 pandemic (including the effects of lockdown and social isolation), we 

allowed that around one-third of the controls would show some distress or adjustment 

symptoms. Consequently, some controls (one-third) showed Hamilton Depression Rating 

Scale (HAMD) scores (34) between 7 and 12. Long COVID patients were excluded for a lifetime 

history of the same disorders as described for controls and a current diagnosis of bipolar 
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disorder, schizo-affective disorder, schizophrenia, psycho-organic syndrome, and substance 

use disorders (with the exception of tobacco use disorder). Additionally, we excluded patients 

and controls who had T2DM and T1DM, systemic (auto)immune diseases like inflammatory 

bowel disease, psoriasis, scleroderma, rheumatoid arthritis, liver or renal disease, as well as 

neurodegenerative and neuroinflammatory disorders including Parkinson’s and Alzheimer's 

disease, multiple sclerosis, or stroke. Moreover, according to the requirements of the HOMA 

calculator software, the following patient exclusion criteria applied: patients with obvious 

serious overt diabetes complications, such as heart illnesses, liver diseases, and renal diseases; 

and patients whose fasting insulin was >400 pM. Additionally, since metformin may have an 

impact on insulin sensitivity and IR (35), we did not include individuals who were using 

metformin (36). Women who were pregnant or nursing were also excluded from this research. 

 Before participating in the study, all controls and patients, or their parents or legal 

guardians, supplied written informed consent. The Najaf Health Directorate, Training and the 

Human Development Center (Document No. 18378/2021) and the institutional ethics boards 

of the University of Kufa (8241/2021) both gave their approval for the study. The International 

Guideline for Human Research Safety is followed by our institutional review board, and the 

study was carried out in accordance with Iraqi and international ethical and privacy laws, such 

as the World Medical Association's Declaration of Helsinki, The Belmont Report, the CIOMS 

Guideline, and the International Conference on Harmonization of Good Clinical Practice (ICH-

GCP). 

 

Measurements  

 Three to four months after the acute infectious phase of COVID-19 (mean ± SD 

duration of illness: 14.68 ± 5.33 weeks), a senior psychiatrist used a semi-structured interview 

to collect sociodemographic and clinical data from controls and Long COVID patients. 
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Depression severity was evaluated using the HAMD (34) and the Beck-Depression Inventory 

(BDI-II) (37) scale scores. The diagnosis of TUD was made using DSM-5 criteria. We recorded 

the immunizations received by the participants, namely AstraZeneca, Pfizer, or Sinopharm. 

The body mass index (BMI) was calculated by dividing the body weight in kilograms by the 

square of the individual's height in meters. 

 A well-trained paramedical professional measured SpO2 using an electronic oximeter 

(Shenzhen Jumper Medical Equipment Co., Ltd.), and body temperature with a digital 

thermometer (sublingual until the beep). The lowest SpO2 and PBT readings recorded during 

the acute period of illness were extracted from patient records. We created a new indicator 

based on these two evaluations that represent decreased SpO2 and increased PBD as the z 

transformation of the latter (z PBT) - z SpO2 (dubbed zPBT-zSPO2).  

 Fasting blood samples were collected in the early morning between 7.30 and 9 a.m., 

before having breakfast. Five milliliters of venous blood were extracted and transferred to clean 

simple tubes. Hemolyzed specimens were discarded. After fifteen minutes, the blood samples 

were centrifuged at 3000 rpm for five minutes to separate the serum, which was then transferred 

to three fresh Eppendorf tubes for testing. Fasting Blood Glucose (FBG) levels were tested 

spectrophotometrically using a kit provided by Biolabo® (Maizy, France). Commercial ELISA 

sandwich kit were used to measure serum insulin (DRG® International Inc., USA). The 

sensitivity of the insulin assay was 1.76 µIU/ml (12.22pM) and the CV% was 2.6%. 

Homeostasis Model Assessment 2 (HOMA2) calculator© (Diabetes Trials Unit, University of 

Oxford; https://www.dtu.ox.ac.uk/homacalculator/download.php) was used to calculate β-cell 

function (HOMA2%B), insulin sensitivity (HOMA2%S), and IR (HOMA2-IR) from the 

fasting serum insulin and glucose levels. We used 2 threshold values of HOMA2-IR to denote 

IR (HOMA2-IR>1.8) and MetS (HOMA2-IR>1.4) (38). Furthermore, we computed two new z 

unit-based composite scores, namely, a first reflecting IR as zFBG+zInsuline (zFDG+zINS), 
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and a second reflecting β-cell function computed as zINS-zFBG (26). In the current study, 

zFBG+zINS was significantly correlated with the HOMA2-IR index (r=0.892, p<0.001, 

n=125) and zINS-zFBG with HOMA2%B (r=0.987, p<0.001, n=125). We employed the C-

Reactive Protein (CRP) latex slide test (Spinreact®, Barcelona, Spain) to assay CRP serum 

levels. ELISA kits from Nanjing Pars Biochem Co., Ltd. (Nanjing, China) were used to 

quantify serum levels of MPO, AOPP, IL-1β, IL-18, and caspase-1. The intra-assay CV values 

for all assays were less than 10%. Consequently, we computed different composite scores, 

namely reflecting a) oxidative stress toxicity (OSTOX) computed as the sum of z AOPP + z 

MPO; b) NLRP3 computed as z IL-1β + z IL-18 + z caspase 1; c) inflammation as z IL-1β + z 

IL-18 + z caspase + z CRP (labeled: zNLPR3+zCRP) (18); and d) an overall neurotoxicity index 

as zNLRP3+zCRP+zOSTOX+zIR. 

 

Statistical analysis 

Analysis of variance (ANOVA) or the Kruskal-Wallis test (in case of heterogeneity of 

variance) was used to examine differences in scale variables across groups, whilst analysis of 

contingency tables (χ2-test) was employed to examine the relationships between nominal 

variables. To evaluate relationships between biomarkers and clinical ratings, we generated 

correlation matrices using Pearson's product-moment correlation coefficients. Using the 

univariate generalized linear model (GLM) approach, we determined the relationships between 

diagnosis and biomarkers while adjusting for confounding factors such as TUD, age, sex, and 

BMI. We derived estimated marginal mean (SE) values produced by the GLM. Using multiple 

regression analysis, the significant biomarkers that predict physio-affective assessments were 

identified. We also used an automated stepwise procedure with a p-value of 0.05 to enter and 

p=0.06 to remove. We determined the standardized beta coefficients for each significant 

explanatory variable using t statistics with accurate p-values, model F statistics, and total 
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variance explained (R2). In addition, we investigated the residual plots and checked for 

multicollinearity utilizing the variance inflation factor (VIF) and tolerance, and using the White 

and modified Breusch-Pagan tests, we tested for heteroskedasticity. K means cluster analysis 

was performed to delineate a subgroup of patients with aberrations in the biomarkers and 

increased depression rating scales as well. All statistical analyses were conducted using version 

28 of IBM SPSS for Windows.  

Partial least squares (PLS) analysis (39) was used to determine a) the associations 

between biomarkers entered as input variables and symptom domains scores entered as output 

variables. Data were entered as either single indicators (all biomarkers) or a latent vector 

generated from the symptom dimensions. PLS path analysis was conducted using 5,000 

bootstrap samples only when: a) the overall quality of the model as indicated by Standardized 

Root Mean Squared Error (SRMR) 0.080 was adequate; b) the latent vectors extracted from 

indicators had adequate reliability as indicated by average variance extracted (AVE) > 0.500, 

Cronbach alpha > 0.7, composite reliability > 0.7, rho_A > 0.80; c) all indicators loaded highly 

(> 0.660) at p<0.001 on the latent vector; and d) construct cross-validated redundancies are 

adequate (39). We employed complete bootstrapping (5,000 subsamples) and PLS path 

modelling to compute path coefficients with p-values and total and indirect effects (40). 

 

Results 

Sociodemographic data and IR measurements 

 Table 1 shows the sociodemographic data and IR measurements in healthy controls and 

patients with Long COVID. There were no significant differences in age, sex, BMI, married 

status, urban/rural distribution, vaccination status, and smoking between both groups, although 

education was marginally higher in the patient group. The total BDI and HAMD scores were 

significantly higher in patients than in controls. FBG, insulin, HOMA2-IR, zFBG+zINS were 
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significantly higher in patients than in controls, whereas HOMA2%S and zINS-zFBG were 

significantly lower in patients. The incidence of IR (defined as HOMA2-IR > 1.8) and MetS 

(defined as HOMA2-IR >1.4) were significantly higher in Long COVID patients than in 

healthy controls. 

 

Results of cluster analysis 

In order to delineate a cluster of Long COVID patients characterized by disorders in 

biomarkers and increased depression scale scores, we performed K means factor analysis using 

OSTOX, zNLRP3+CRP, zFBG+zINS, and zBDI+zHAMD as clustering variables. Two 

clusters were formed with an adequate silhouette measure of cohesion and separation of 0.6, 

cluster 1 comprises 63 subjects, and cluster 2 comprises 61 subjects. Only Long COVID 

patients were allocated to cluster 2, while cluster 1 consists of 25 patients and 39 healthy 

controls. Table 2 demonstrates the sociodemographic data of Cluster 1 and Cluster 2 subjects. 

No significant differences between these study groups were detected in age, BMI, sex, 

vaccination type, and TUD, whereas subjects in cluster 2 have a significantly higher PBT, 

zPBT-zSpO2, and total BDI and HAMD scores, and lower SpO2-than Cluster 1 subjects. FBG 

and insulin, HOMA-2IR, and the zFBG+zINS score were significantly greater in cluster 2 than 

in cluster 1, whereas there were no significant differences in HOMA2%B, and zINS-zFBG. 

The HOMA2%S and zINS-zFBG indices were significantly lower in cluster 2 than in cluster 

1. Covarying for age, BMI, sex, and TUD showed that none of these variables had any effect 

on the IR-related data. Table 2 shows that zOSTOX, AOPP, zNLRP3, zNLRP3+zCRP, CRP, 

caspase 1, IL-1β, and IL-18 were significantly higher in Cluster 2 as compared with cluster 1. 

 

Intercorrelation matrix  
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 Table 3 shows the intercorrelation matrix between zFBG+zINS and zINS-zFBG and 

other clinical data and biomarkers.  zFBG+zINS was significantly correlated with 

zBDI+zHAMD, total BDI, total HAMD, and PBT. There were no significant correlations 

between zFBG+zINS and zINS-zFBG, zNLRP3+zCRP, zOSTOX, or SpO2. There were no 

significant correlations between zINS-zFBG and any of the other variables. 

 

Prediction of the scores of depression scales using biomarkers 

Table 4 shows the results of the multiple regression analysis with the total scores of the 

HAMD and BDI as dependent variables and the measured biomarker composite scores as 

explanatory variables while allowing for the effects of age, sex, education, TUD, and BMI. 

Regression #1 shows that zNLRP3+CRP, zFBG+zINS, and zOSTOX (all three significantly 

and positively associated) explained 26.4% of the variance in the zBDI+zHAMD score. Figure 

1 shows the partial regression plot of zBDI+zHAMD on zFBG+zINS after adjusting for the 

variables listed in Table 4. In regression #2, 56.8% of the variance in the zBDI+zHAMD score 

could be explained by PBT and zNeurotoxicity. Figure 2 shows the partial regression plot of 

zBDI+zHAMD on zNeurotoxicity. We found that 24.8% of the variance in the total BDI score 

could be explained by the regression on zNLRP3+CRP, zFBG+zINS, and zOSTOX 

(Regression #3). Regression #4 shows that 24.7% of the variance in the total HAMD score 

could be explained by the regression on the zNLRP3+CRP, zFBG+zInsulin, and zOSTOX.  

 

Results of PLS path and PLS predict analysis 

 Figure 3 shows the final PLS model obtained after feature selection, prediction-

oriented segmentation with multi-group analysis, and PLS prediction analysis. The model 

shows adequate quality fit data including an SRMR of 0.013. We found that 26.4% of the 

variance in depression severity (a factor extracted from the total HDRS and BDI scores) was 
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explained by zFBG+zINS, OSTOX, and zNLRP+CRP. Increased PBT explained part of the 

variance in zFBG+zINS (7.1%), OSTOX (3.5%), and zNLRP+CRP (17.1%). PBT had a 

significant indirect effect on depression severity (t=4.49, p<0.001), which was mediated by 

zFBG+zINS (t=2.13, p=0.034) and zNLRP3+zCRP (t=2.86, p=0.004). 

 

Discussion 

Differences in IR parameters between Long-COVID and controls  

 The first major finding of the present study is that Long COVID is characterized by 

increased HOMA2-IR, FBG, insulin, and lowered HOMA2%S. Moreover, using threshold 

values of HOMA2-IR to denote IR (HOMA2-IR>1.8) and MetS (HOMA2-IR>1.4) (38), we 

found that 33.7% of the patients fulfilled the criteria for IR (versus 0% of the controls) and 

52.3% for MetS (versus 12.8% of the normal controls). It is known that T1DM and T2DM 

patients are more vulnerable to SARS-CoV-2 and increased risk of critical disease and 

mortality due to COVID-19 (1, 41). Moreover, COVID-19 may increase glucose levels, 

aggravate IR, and cause new-onset IR and chronic metabolic disorders that did not exist before 

the COVID-19 infection (41-43). Our results of an increased HOMA2-IR index and increased IR 

in Long COVID patients extend previous results that the prevalence rate of IR ranges between 

8.2% and 15% in hospitalized Chinese children and adults infected with SARS-CoV-2 (44, 45), 

whilst higher prevalence rates (34.6%) were observed in COVID-19 patients with the more 

severe and critical disease (45). 

 

Biomarkers of increased IR in Long COVID 

 The second major finding of this study is that IR due to Long COVID is predicted by 

increased PBT during the acute phase of infection. Contrary to the a priori hypothesis, IR was 

not significantly associated with lowered SpO2 during the acute phase and with key IO&NS 
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biomarkers of Long COVID, such as increased CRP, NLRP3 activation, and oxidative 

pathways (including MPO and AOPP levels). The results of our PLS analysis show that the 

severity of the inflammatory response during the acute infectious phase is associated with 

increases in IR (small effect size of 7.1%), inflammatory responses (medium effect size of 

17.1%), and oxidative toxicity (small effect size of 3.5%) during Long COVID. 

The effects of the immune-inflammatory response during the acute phase on new-onset 

IR may be explained by the knowledge that SARS-CoV-2 may cause an (excessive) immune 

response with a release of a wide spectrum of cytokines generating a systemic proinflammatory 

milieu with increased levels of IL-6 and TNF-α which are known to contribute to IR, β-cell 

hyperstimulation, and, ultimately, β-cell death (41, 43, 46, 47,48,49). In addition, low-grade 

inflammation, as may be observed in Long COVID (17) is known to contribute to the 

development of IR and the progression to T2DM (50, 51), for example, through increases in 

gluconeogenic stress hormones and the resulting increased demand for β-cells (52). 

 Our negative findings that lowered SpO2 and increased MPO levels have no 

discernable effect on the HOMA2-IR index contrast with the knowledge that intermittent 

hypoxia can lead to increased β-cell proliferation and death due to oxidative stress (53). The 

pancreatic β-cell is metabolically very active and highly dependent on oxygen supply (54), 

whilst β-cells have relatively low antioxidant levels and are, therefore, very sensitive to 

oxidative stress (55-57). In addition, hypoxia, followed by reoxygenation, elicits oxidative stress 

(58). Our negative findings that increased O&NS, including MPO levels, have no significant 

impact on the HOMA2-IR index contrast with the knowledge that COVID-19-associated 

elevations in MPO are associated with the HOMA2-IR index (42). Moreover, treatment with 

MPO may upregulate gluconeogenesis, TNF-α, and IL-6 gene expression in adipocytes and 

HUVEC cells, resulting in increased IR (42). Although increased reactive oxygen species 
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impact insulin receptor signaling, thereby, contributing to IR (59), we could not detect any 

effects of O&NS on IR in Long COVID. 

 All in all, there is only a small effect of inflammation during the acute phase on new-

onset IR, whilst activated IO&NS pathways during Long COVID appear to have no effect at 

all. This indicates that other factors related to the SARS-CoV-2 virus or COVID-19 are largely 

involved in new-onset IR. In this respect, evidence suggests that SARS-CoV-2 can infect and 

replicate in insulin-producing pancreatic β-cells, thereby resulting in impaired production and 

secretion of insulin and the metabolic dysregulation observed in patients with COVID-19 (60-

63). Indeed, transcriptome analysis of infected pancreatic cell cultures confirmed that SARS-

CoV-2 hijacks the ribosomal machinery in these cells (64). Microvascular damage caused by 

SARS-CoV-2 or via micro-thrombotic lesions may result in perfusion anomalies in pancreatic 

islets, which are required for glucose sensing and insulin release, whilst abnormal capillary 

architecture and fragmentation contribute to β-cell failure in T1DM and T2DM (65, 66). As such, 

SARS-CoV-2 infection may cause direct pancreatic injury, which may worsen existing IR in 

T1DM/T2DM or contribute to new-onset IR and T2DM (67, 68). Mechanistic explanations 

associated with COVID-19 are: a) COVID-19 is accompanied by a hypercoagulable state (69, 

70) which may cause endothelial injuries leading to microvascular inflammation and thrombosis 

(71); b) autonomic dysfunction or autoimmunity (60, 61); and c) secondary mitochondrial 

dysfunctions (72). 

 

Insulin resistance and depression in Long COVID. 

 The third major finding of this study is that the increased depression scores during Long 

COVID are significantly related to IR and that the latter impacts depression above and beyond 

the effects of inflammation, NLRP3 and O&NS activation. Previously, we have reviewed that 

there is a link between major depression and increased IR, T1DM/T2DM, and obesity (26, 27, 30). 
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Apart from IO&NS processes, other mechanisms may explain this relationship including 

changes in the endocannabinoid system, mitochondrial dysfunctions, the gut microbiome, and 

the endogenous opioid system (30). 

Our results suggest that IR in Long COVID may contribute to the overall neurotoxicity 

which comprises effects of IO&NS mechanisms (25, 73). Recently, we have described the 

mechanism that may explain these IR-associated neurotoxic effects on the physio-affective 

phenomenon of MDD (74). For example, IR is associated with a decrease in metabolic activity 

in the medial prefrontal cortex and hippocampal volume, dysfunctions in the medial prefrontal 

cortex and hippocampal connectome, and neurocognitive impairments including in executive 

functions and memory (75-77). Increased IR in the central nervous system is associated with 

lower levels of brain-derived neurotrophic factor, impaired synaptic plasticity, fewer dendritic 

spines, and neurodegeneration (78, 79). Furthermore, the endothelial dysfunctions caused by IR 

may result in blood-brain barrier breakdown, which in turn may lead to elevated translocation 

of proinflammatory compounds from the plasma compartment to the CNS, thereby 

contributing to neuronal abnormalities, neuroinflammation, and neurodegeneration (80, 81). 

 

Limitations 

 The results of this study would have been more informative if we had measured 

atherogenicity biomarkers, gluconeogenic stress, and MetS-related peptide hormones including 

adiponectin, leptin, ghrelin and somatostatin, and mitochondrial dysfunctions. 

 

Conclusions  

 The results show that long COVID is associated with increased IR and new onset IR 

(based on a HOMA2-IR INDEX > 1.8) and that the increased IR is only mildly associated with 

signs of the inflammatory response during the acute phase and not at all with the mild IO&NS 
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processes during Long COVID. IR due to Long COVID is associated with depressive 

symptoms that are present in Long COVID and increased IR may contribute to the 

neurotoxicity pathophysiology of depression together with IO&NS pathways. Future research 

should examine other possible mechanisms leading to IR in Long COVID including 

hypercoagulation, endothelial injuries, microvascular inflammation, thrombosis, and 

mitochondrial functions during acute COVID-19 infection, and the onset of autoimmune 

responses in Long COVID. One possibility could be to evaluate treatments with metformin 

which may be useful to treat depression (82)  and improving the outcome of COVID-19 patients 

and patients with pre-existing T2DM (83, 84).  

 

Author’s contributions 

 All authors contributed substantially to the conceptualization of the analysis, the 

interpretation of the results, the writing and editing of the paper, and the final version of the 

manuscript. 

 

Ethics approval and consent to participate 

 Before participating in the study, all controls and patients, or their parents or legal 

guardians, supplied written informed consent. The Najaf Health Directorate, Training and the 

Human Development Center (Document No. 18378/2021) and the institutional ethics boards 

of the University of Kufa (8241/2021) both gave their approval for the study.  

 

Funding 

This research was not supported by any dedicated funds. 

 

Conflict of interest 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.01.22283011doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.01.22283011
http://creativecommons.org/licenses/by/4.0/


20 
 

The authors have no commercial or other competing interests concerning the submitted paper. 

 

Acknowledgments 

 We appreciate the assistance of the workers at Al-Sadr Teaching Hospital and Al-Amal 

Specialized Hospital for Communicable Diseases in the Najaf governorate of Iraq. For their 

assistance in determining biomarker levels, we'd also want to thank the highly-skilled 

employees of the hospital's internal laboratories. 

 

References 

1. Maes M, Tedesco Junior WLD, Lozovoy MAB, Mori MTE, Danelli T, Almeida ERD, et al. In 
COVID-19, NLRP3 inflammasome genetic variants are associated with critical disease and these 
effects are partly mediated by the sickness symptom complex: a nomothetic network approach. Mol 
Psychiatry. 2022;27(4):1945-55. 
2. Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nature reviews Microbiology. 
2022;20(5):270-84. 
3. Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. The European 
respiratory journal. 2020;55(4). 
4. Sagulkoo P, Plaimas K, Suratanee A, Vissoci Reiche EM, Maes M. Immunopathogenesis and 
immunogenetic variants in COVID-19. Current Pharmaceutical Design. 2022;28(22):1780-97. 
5. Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, Dias S, Fintelman-Rodrigues N, 
Sacramento CQ, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary 
monocytes. Cell Death Discov. 2021;7(1):43. 
6. Wong TL, Weitzer DJ. Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome 
(ME/CFS)-A Systemic Review and Comparison of Clinical Presentation and Symptomatology. 
Medicina (Kaunas, Lithuania). 2021;57(5). 
7. Shah W, Hillman T, Playford ED, Hishmeh L. Managing the long term effects of covid-19: 
summary of NICE, SIGN, and RCGP rapid guideline. BMJ (Clinical research ed). 2021;372:n136. 
8. Cares-Marambio K, Montenegro-Jiménez Y, Torres-Castro R, Vera-Uribe R, Torralba Y, Alsina-
Restoy X, et al. Prevalence of potential respiratory symptoms in survivors of hospital admission after 
coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Chronic respiratory 
disease. 2021;18:14799731211002240. 
9. Arnold DT, Hamilton FW, Milne A, Morley AJ, Viner J, Attwood M, et al. Patient outcomes 
after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK 
cohort. Thorax. 2021;76(4):399-401. 
10. Davis HE, Assaf GS, McCorkell L, Wei H, Low RJ, Re'em Y, et al. Characterizing long COVID in 
an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 
2021;38:101019. 
11. Simani L, Ramezani M, Darazam IA, Sagharichi M, Aalipour MA, Ghorbani F, et al. Prevalence 
and correlates of chronic fatigue syndrome and post-traumatic stress disorder after the outbreak of 
the COVID-19. Journal of neurovirology. 2021;27(1):154-9. 
12. Cirulli ET, Schiabor Barrett KM, Riffle S, Bolze A, Neveux I, Dabe S, et al. Long-term COVID-19 
symptoms in a large unselected population. medRxiv. 2020:2020.10.07.20208702. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.01.22283011doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.01.22283011
http://creativecommons.org/licenses/by/4.0/


21 
 

13. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in 
patients discharged from hospital: a cohort study. Lancet (London, England). 2021;397(10270):220-
32. 
14. Lu Y, Li X, Geng D, Mei N, Wu PY, Huang CC, et al. Cerebral Micro-Structural Changes in 
COVID-19 Patients - An MRI-based 3-month Follow-up Study. EClinicalMedicine. 2020;25:100484. 
15. van den Borst B, Peters JB, Brink M, Schoon Y, Bleeker-Rovers CP, Schers H, et al. 
Comprehensive Health Assessment 3 Months After Recovery From Acute Coronavirus Disease 2019 
(COVID-19). Clinical infectious diseases : an official publication of the Infectious Diseases Society of 
America. 2021;73(5):e1089-e98. 
16. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric 
outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health 
records. The Lancet Psychiatry. 2021;8(5):416-27. 
17. Al-Hakeim HK, Al-Rubaye HT, Al-Hadrawi DS, Almulla AF, Maes M. Long-COVID post-viral 
chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant 
defenses and inflammation: a proof of concept and mechanism study. Mol Psychiatry. 2022:1-15. 
18. Al-Hakeim HK, Al-Rubaye HT, Almulla AF, Al-Hadrawi DS, Maes M. Chronic fatigue, 
depression and anxiety symptoms in Long COVID are strongly predicted by neuroimmune and neuro-
oxidative pathways which are caused by the inflammation during acute infection. medRxiv. 
2022:2022.06.29.22277056. 
19. Al-Jassas HK, Al-Hakeim HK, Maes M. Intersections between pneumonia, lowered oxygen 
saturation percentage and immune activation mediate depression, anxiety, and chronic fatigue 
syndrome-like symptoms due to COVID-19: A nomothetic network approach. Journal of Affective 
Disorders. 2022;297:233-45. 
20. Al-Hadrawi DS, Al-Rubaye HT, Almulla AF, Al-Hakeim HK, Maes M. Lowered oxygen 
saturation and increased body temperature in acute COVID-19 largely predict chronic fatigue 
syndrome and affective symptoms due to Long COVID: A precision nomothetic approach. Acta 
neuropsychiatrica. 2022:1-12. 
21. Tharakan S, Nomoto K, Miyashita S, Ishikawa K. Body temperature correlates with mortality 
in COVID-19 patients. Critical care. 2020;24(1):1-3. 
22. Maes M. Precision nomothetic medicine in depression research: a new depression model, 
and new endophenotype classes and pathway phenotypes, and a digital self. Journal of personalized 
medicine. 2022;12(3):403. 
23. Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study. The 
lancet Diabetes & endocrinology. 2022;10(5):311-21. 
24. Montefusco L, Ben Nasr M, D’Addio F, Loretelli C, Rossi A, Pastore I, et al. Acute and long-
term disruption of glycometabolic control after SARS-CoV-2 infection. Nature Metabolism. 
2021;3(6):774-85. 
25. Maes M, Carvalho AF. The Compensatory Immune-Regulatory Reflex System (CIRS) in 
Depression and Bipolar Disorder. Molecular neurobiology. 2018;55(12):8885-903. 
26. Morelli NR, Maes M, Bonifacio KL, Vargas HO, Nunes SOV, Barbosa DS. Increased nitro-
oxidative toxicity in association with metabolic syndrome, atherogenicity and insulin resistance in 
patients with affective disorders. Journal of Affective Disorders. 2021;294:410-9. 
27. de Melo LGP, Nunes SOV, Anderson G, Vargas HO, Barbosa DS, Galecki P, et al. Shared 
metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic 
syndrome and mood disorders. Progress in neuro-psychopharmacology & biological psychiatry. 
2017;78:34-50. 
28. Silva N, Atlantis E, Ismail K. A Review of the Association Between Depression and Insulin 
Resistance: Pitfalls of Secondary Analyses or a Promising New Approach to Prevention of Type 2 
Diabetes? Current Psychiatry Reports. 2012;14(1):8-14. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.01.22283011doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.01.22283011
http://creativecommons.org/licenses/by/4.0/


22 
 

29. Kan C, Silva N, Golden SH, Rajala U, Timonen M, Stahl D, et al. A Systematic Review and 
Meta-analysis of the Association Between Depression and Insulin Resistance. Diabetes Care. 
2013;36(2):480-9. 
30. Duarte-Silva E, de Melo MG, Maes M, Chaves Filho AJM, Macedo D, Peixoto CA. Shared 
metabolic and neuroimmune mechanisms underlying Type 2 Diabetes Mellitus and Major Depressive 
Disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2021;111:110351. 
31. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. The Journal of clinical 
investigation. 2006;116(7):1793-801. 
32. Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role of the NLRP3 
inflammasome on obesity and insulin resistance: A systematic review. Metabolism. 2017;74:1-9. 
33. WHO WHO. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 
October 2021. World Health Organization; 2021. 
34. Hamilton M. A rating scale for depression. Journal of neurology, neurosurgery, and 
psychiatry. 1960;23(1):56-62. 
35. Sangeeta S. Metformin and pioglitazone in polycystic ovarian syndrome: a comparative 
study. The Journal of Obstetrics and Gynecology of India. 2012;62(5):551-6. 
36. Pernicova I, Korbonits M. Metformin—mode of action and clinical implications for diabetes 
and cancer. Nature Reviews Endocrinology. 2014;10(3):143. 
37. Beck AT, Steer RA, Brown GK. Beck depression inventory (BDI-II): Pearson; 1996. 
38. Geloneze B, Vasques ACJ, Stabe CFC, Pareja JC, Rosado LEFPdL, Queiroz ECd, et al. HOMA1-IR 
and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic 
Syndrome Study (BRAMS). Arquivos Brasileiros de Endocrinologia & Metabologia. 2009;53:281-7. 
39. Ringle CM. Ringle, Christian M., Wende, Sven, & Becker, Jan-Michael.(2015). SmartPLS 3. 
Bönningstedt: SmartPLS. 2015. 
40. Luo Y, He H, Zhang J, Ou Y, Fan N. Changes in serum TNF-α, IL-18, and IL-6 concentrations in 
patients with chronic schizophrenia at admission and at discharge. Comprehensive psychiatry. 
2019;90:82-7. 
41. Govender N, Khaliq OP, Moodley J, Naicker T. Insulin resistance in COVID-19 and diabetes. 
Primary Care Diabetes. 2021;15(4):629-34. 
42. He X, Liu C, Peng J, Li Z, Li F, Wang J, et al. COVID-19 induces new-onset insulin resistance 
and lipid metabolic dysregulation via regulation of secreted metabolic factors. Signal Transduction 
and Targeted Therapy. 2021;6(1):427. 
43. Abramczyk U, Nowaczyński M, Słomczyński A, Wojnicz P, Zatyka P, Kuzan A. Consequences of 
COVID-19 for the Pancreas. International Journal of Molecular Sciences. 2022;23(2):864. 
44. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus 
Disease 2019 in China. The New England journal of medicine. 2020;382(18):1708-20. 
45. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 
1590 patients with COVID-19 in China: a nationwide analysis. The European respiratory journal. 
2020;55(5). 
46. Bornstein SR, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld AL, et al. Practical 
recommendations for the management of diabetes in patients with COVID-19. The lancet Diabetes & 
endocrinology. 2020;8(6):546-50. 
47. de Carvalho Vidigal F, Cocate PG, Pereira LG, Alfenas CG. The role of hyperglycemia in the 
induction of oxidative stress and inflammatory process. Nutricion hospitalaria. 2012;27(5):1391-8. 
48. Maddaloni E, Buzzetti R. Covid‐19 and diabetes mellitus: unveiling the interaction of two 
pandemics. Diabetes/metabolism research and reviews. 2020;36(7):e33213321. 
49. Prete M, Favoino E, Catacchio G, Racanelli V, Perosa F. SARS-CoV-2 inflammatory syndrome. 
Clinical features and rationale for immunological treatment. International Journal of Molecular 
Sciences. 2020;21(9):3377. 
50. Chiappetta S, Sharma AM, Bottino V, Stier C. COVID-19 and the role of chronic inflammation 
in patients with obesity. International journal of obesity. 2020;44(8):1790-2. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.01.22283011doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.01.22283011
http://creativecommons.org/licenses/by/4.0/


23 
 

51. Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low-grade 
inflammation. The Journal of endocrinology. 2014;222(3):R113-27. 
52. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS letters. 2008;582(1):97-105. 
53. Xu J, Long Y-S, Gozal D, Epstein PN. β-cell death and proliferation after intermittent hypoxia: 
Role of oxidative stress. Free Radical Biology and Medicine. 2009;46(6):783-90. 
54. Cantley J, Grey S, Maxwell P, Withers D. The hypoxia response pathway and β‐cell function. 
Diabetes, Obesity and Metabolism. 2010;12:159-67. 
55. Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell 
dysfunction in diabetes mellitus. Antioxidants & redox signaling. 2017;26(10):501-18. 
56. Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene 
expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997;46(11):1733-
42. 
57. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic 
islets compared with various other mouse tissues. Free Radical Biology and Medicine. 
1996;20(3):463-6. 
58. Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, et al. Activation of signal 
transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-
induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation. 
2001;104(9):979-81. 
59. Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomedical journal. 
2017;40(5):257-62. 
60. Tazare J, Walker AJ, Tomlinson L, Hickman G, Rentsch CT, Williamson EJ, et al. Rates of 
serious clinical outcomes in survivors of hospitalisation with COVID-19: a descriptive cohort study 
within the OpenSAFELY platform. MedRxiv. 2021. 
61. Sathish T, Kapoor N, Cao Y, Tapp RJ, Zimmet P. Proportion of newly diagnosed diabetes in 
COVID-19 patients: A systematic review and meta-analysis. Diabetes, obesity & metabolism. 
2021;23(3):870-4. 
62. Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, et al. SARS-CoV-2 infects human 
pancreatic β cells and elicits β cell impairment. Cell metabolism. 2021;33(8):1565-76.e5. 
63. Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, et al. SARS-CoV-2 infects 
and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149-65. 
64. Shaharuddin SH, Wang V, Santos RS, Gross A, Wang Y, Jawanda H, et al. Deleterious Effects 
of SARS-CoV-2 Infection on Human Pancreatic Cells. Frontiers in cellular and infection microbiology. 
2021;11:678482. 
65. Hayden MR, Yang Y, Habibi J, Bagree SV, Sowers JR. Pericytopathy: oxidative stress and 
impaired cellular longevity in the pancreas and skeletal muscle in metabolic syndrome and type 2 
diabetes. Oxidative medicine and cellular longevity. 2010;3(5):290-303. 
66. Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, et al. Expression of 
SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19. Cell 
metabolism. 2020;32(6):1041-51. e6. 
67. Lima-Martínez MM, Boada CC, Madera-Silva MD, Marín W, Contreras M. COVID-19 and 
diabetes: A bidirectional relationship. Clínica e Investigación en Arteriosclerosis (English Edition). 
2021;33(3):151-7. 
68. Azar WS, Njeim R, Fares AH, Azar NS, Azar ST, El Sayed M, et al. COVID-19 and diabetes 
mellitus: how one pandemic worsens the other. Reviews in Endocrine and Metabolic Disorders. 
2020;21(4):451-63. 
69. Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in 
COVID-19: Incidence, pathophysiology, and management. Thrombosis research. 2020;194:101-15. 
70. Singhania N, Bansal S, Nimmatoori DP, Ejaz AA, McCullough PA, Singhania G. Current 
Overview on Hypercoagulability in COVID-19. American journal of cardiovascular drugs : drugs, 
devices, and other interventions. 2020;20(5):393-403. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.01.22283011doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.01.22283011
http://creativecommons.org/licenses/by/4.0/


24 
 

71. Lowenstein CJ, Solomon SD. Severe COVID-19 Is a Microvascular Disease. Circulation. 
2020;142(17):1609-11. 
72. Morrow RM, Picard M, Derbeneva O, Leipzig J, McManus MJ, Gouspillou G, et al. 
Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and 
enhanced insulin sensitivity. Proceedings of the National Academy of Sciences of the United States 
of America. 2017;114(10):2705-10. 
73. Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress 
(O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative 
processes in that illness. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 
2011;35(3):676-92. 
74. Al-Hakeim HK, Al-Naqeeb TH, Almulla AF, Maes M. The physio-affective phenome of major 
depression is strongly associated with biomarkers of astroglial and neuronal projection toxicity 
which in turn are associated with peripheral inflammation, insulin resistance and lowered calcium. 
medRxiv. 2022:2022.07.04.22277246. 
75. Kenna H, Hoeft F, Kelley R, Wroolie T, DeMuth B, Reiss A, et al. Fasting plasma insulin and 
the default mode network in women at risk for Alzheimer's disease. Neurobiology of aging. 
2013;34(3):641-9. 
76. Rasgon NL, Kenna HA, Wroolie TE, Kelley R, Silverman D, Brooks J, et al. Insulin resistance 
and hippocampal volume in women at risk for Alzheimer's disease. Neurobiology of aging. 
2011;32(11):1942-8. 
77. Rasgon NL, Kenna HA, Wroolie TE, Williams KE, DeMuth BN, Silverman DH. Insulin resistance 
and medial prefrontal gyrus metabolism in women receiving hormone therapy. Psychiatry Research: 
Neuroimaging. 2014;223(1):28-36. 
78. Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Molecular 
Metabolism. 2021;52:101234. 
79. Park L, Furey M, Nugent AC, Farmer C, Ellis J, Szczepanik J, et al. Neurophysiological changes 
associated with antidepressant response to ketamine not observed in a negative trial of scopolamine 
in major depressive disorder. International Journal of Neuropsychopharmacology. 2019;22(1):10-8. 
80. Janus A, Szahidewicz-Krupska E, Mazur G, Doroszko A. Insulin resistance and endothelial 
dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators of 
inflammation. 2016;2016. 
81. Kleinridders A, Cai W, Cappellucci L, Ghazarian A, Collins WR, Vienberg SG, et al. Insulin 
resistance in brain alters dopamine turnover and causes behavioral disorders. Proceedings of the 
National Academy of Sciences. 2015;112(11):3463-8. 
82. Dodd S, Sominsky L, Siskind D, Bortolasci CC, Carvalho AF, Maes M, et al. The role of 
metformin as a treatment for neuropsychiatric illness. European neuropsychopharmacology : the 
journal of the European College of Neuropsychopharmacology. 2022;64:32-43. 
83. Bailey CJ, Gwilt M. Diabetes, Metformin and the Clinical Course of Covid-19: Outcomes, 
Mechanisms and Suggestions on the Therapeutic Use of Metformin. Frontiers in pharmacology. 
2022;13:784459. 
84. Ma Z, Yang KY, Huang Y, Lui KO. Endothelial contribution to COVID-19: an update on 
mechanisms and therapeutic implications. Journal of Molecular and Cellular Cardiology. 
2022;164:69-82. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.01.22283011doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.01.22283011
http://creativecommons.org/licenses/by/4.0/


25 
 

 

Table 1. Sociodemographic characteristics and insulin resistance (IR) data in Long COVID patients and healthy controls (HC) 

 

Variables HC  

(n=39) 

Long COVID 

(n=86) 

F/χ2 df p 

Age                Yrs. 28.1 (7.6) 28.4 (6.2) 0.00 1/123 0.967 

Sex F/M 15/24 24/62 1.39 1 0.238 

BMI              Kg/m2 25.60 (3.98) 26.15 (4.55) 0.42 1/123 0.517 

Education    Yrs. 14.95 (1.28) 15.65 (1.74) 5.10 1/123 0.026 

Single/Married 17/22 37/49 0.00 1 0.953 

Urban/Rural 8/31 15/71 0.17 1 0.681 

Vaccination A/Pf/S 9/21/9 20/48/18 0.08 2 0.963 

Smoking No/Yes 44/20 41/20 0.03 1 0.854 

BDI-Total 8.5 (3.6) 24.8 (7.6) MWU - <0.001 

HAMD-Total 5.6 (2.1) 16.9 (5.0) MWU - <0.001 

FBG    mM* 5.52 (0.12) 5.89 (0.08) 6.39 1/119 0.013 

Insulin pM* 62.38 (4.45) 86.74 (2.99) 20.49 1/119 <0.001 

HOMA2%B* 89.42 (3.67) 96.84 (2.46) 2.49 1/119 0.097 

HOMA2%S* 86.71 (3.19) 67.07 (2.14) 25.86 1/119 <0.001 

HOMA2-IR* 1.19 (0.09) 1.67 (0.06) 20.58 1/119 0.087 

IR (HOMA2-IR >1.8) No/Yes 39/0 57/29 17.12 1 <0.001 

MetS (HOMA2-IR >1.4) No/Yes 34/5 41/45 17.45 1 <0.001 

zFBG+zINS (z scores)* -0.527 (0.153) 0.239 (0.103) 17.09 1/119 <0.001 

zINS-zFBG (z scores)* -0.220 (0.165) 0.125 (0.111) 2.98 1/119 0.087 

BMI: body mass index; MWU: Mann–Whitney U test, Vaccination A,Pf,S: vaccination type either AstraZeneca (A), Pfizer-BioNTech (Pf) or 

Sinopharm (S); HAMD: Hamilton Depression Rating scale, BDI: Beck’s depression inventory; FBG: fasting blood glucose; HOMA2: Homeostasis 

Model Assessment 2; (HOMA2%B: beta cell function; HOMA2%S:  insulin sensitivity; HOMA2-IR: IR index; MetS: metabolic syndrome; 
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zFBG+zINS (z scores): composite score reflecting IR; zINS-zFBG: composite score reflecting beta cell function. *Estimated marginal mean (SE) 

values after covarying for age, sex, smoking, and BMI. 
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Table 2. Features of the two clusters generated using K mean cluster analysis 

 

Variables Cluster 1 

N=64 

Cluster 2 

N=61 

F/χ2 df p 

Age                Yrs. 28.1 (7.2) 28.59 (6.00) 0.17 1/123 0.686 

Sex F/M 22/42 17/44 0.62 1 0.433 

Healthy controls/patients 39/25 0/61 54.03 1 <0.001 

BMI              Kg/m2 25.66 (3.68) 26.32 (5.01) 0.70 1/123 0.404 

Vaccination A/Pf/S 14/33/17 15/36/10 1.91 2 0.385 

Peak body temperature  37.39 (0.75) 38.75 (0.96) 78.29 1/123 <0.001 

Lowest SpO2 (%) 93.58 (2.62) 90.85 (4.56) 16.98 1/123 <0.001 

zPBT_zSPO2 -0.532 (0.686) 0.558 (0.977) 52.57 1/123 <0.001 

BDI-Total 12.8 (7.5) 26.87 (6.8) 119.73 1/123 <0.001 

HAMD-Total 8.6 (4.7) 18.33 (4.8) 131.02 1/123 <0.001 

FBG    mM 5.63 (0.09) 5.92 (0.10) 4.68 1/120 0.032 

Insulin pM 70.91 (3.58) 87.78 (3.67) 10.77 1/120 0.001 

HOMA2%B 92.33 (2.87) 96.82 (2.94) 1.19 1/120 0.278 

HOMA2%S 80.28 (2.57) 65.77 (2.63) 15.43 1/120 <0.001 

HOMA2 IR 1.36 (0.07) 1.69 (0.07) 10.83 1/120 0.001 

zFBG+zInsulin (z scores) -0.273 (0.122) 0.286 (0.125) 10.19 1/120 0.002 

zINS-zFBG (z scores) 0.114 (0.133) -0.075 (0.130) 1.03 1/120 0.311 

AOPP (µmol/g)  0.148 (0.113) 1.1432 (0.116) 4.30 1/120 0.040 

MPO   (ng/ml) 44.46 (2.57) 51.28 (2.63) 3.42 1/120 0.067 

zOSTOX (z scores) -0.229 (0.123) 0.267 (0.126) 7.91 1/120 0.006 

CRP (mg/L) 5.26 (0.43) 8.36 (0.44) 29.59 1/120 <0.001 

Caspase1 (pg/ml) 69.10 (2.56) 81.98 (2.62) 12.30 1/120 <0.001 

IL-1β        (pg/ml) 4.40 (0.25) 5.92 (0.25) 18.37 1/120 <0.001 
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IL-18        (pg/ml) 219.59 (9.22) 257.75 (9.45) 8.30 1/120 0.005 

zNLRP3 (z scores) -0.496 (0.109) 0.463 (0.112) 37.40 1/120 <0.001 

zNLRP3+zCRP (z scores) -0.641 (0.096) 0.673 (0.098) 91.01 1/120 <0.001 

zNeurotoxicity (z scores) -1.958 (0.266) 1.999 (0.272) 107.71 1/119 <0.001 

 

BMI: body mass index; Vaccination A,Pf,S: vaccination type either AstraZeneca (A), Pfizer-BioNTech (Pf) or Sinopharm (S); SpO2: oxygen 

saturation; HAMD: Hamilton Depression Rating Scale; BDI: Beck Depression Inventory; FBG: fasting blood glucose; HOMA2: Homeostasis 

Model Assessment 2; HOMA2%B: beta cell function; HOMA2%S: insulin sensitivity; HOMA2-IR: insulin resistance index; MetS: metabolic 

syndrome; zFBG+zINS: composite score reflecting IR; zINS-zFBG: composite score reflecting beta cell function; AOPP: advanced oxidation 

protein products; MPO: myeloperoxidase; CRP: C-reactive protein, IL: interleukin, zOSTOX: composite score of oxidative stress, NLRP3: the 

NLRP3 inflammasome computed as zIL-1β+zIL-18+zcaspase1; zNeurotoxicity: a composite score based on zIR+zNLRP3+zCRP+zOSTOX. 
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Table 3. Intercorrelation matrix between insulin resistance (zFBG+zINS) and beta cell function (zINS-zFBG) and other biomarkers. 

 

Variables zFBG+zINS zINS-zFBG 

zFBG+zINS 1 0.007(0.941) 

zINS-zFBG 0.007 (0.941) 1 

Total BDI 0.284 (0.001) 0.003 (0.973) 

Total HAMD 0.262 (0.003) -0.025 (0.779) 

zBDI+zHAMD 0.283 (0.001) -0.012 (0.898) 

zNLRP3+zCRP 0.092 (0.308) 0.018 (0.844) 

zOSTOX 0.058 (0.522) 0.082 (0.365) 

Peak body temperature 0.267 (0.003) 0.087 (0.334) 

SpO2 -0.040 (0.660) -0.140 (0.119) 

 

 

FBG: fasting blood glucose; INS: insulin; zFBG+zINS: composite score reflecting insulin resistance (IR); zINS-zFBG: composite score 

reflecting beta cell function; HAMD: Hamilton Depression Rating Scale; BDI: Beck Depression Inventory; zBDI+zHAMD: index of depression 

severity; zNLRP3+zCRP: integrated inflammasome and CRP (C-reactive protein) index; zOSTOX: composite score of oxidative stress 

biomarkers; SpO2: oxygen saturation. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.01.22283011doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.01.22283011
http://creativecommons.org/licenses/by/4.0/


30 
 

 

Table 4. Results of multiple regression analysis with depression scale scores as dependent variables and biomarkers as explanatory variables. 

 

 

Dependent Variables  Explanatory Variables β t p F model df p R2 

#1 zBDI+zHAMD 

 

  

Model 
  

 
14.48 

 

  

3/121 

 

  

<0.001 

 

  

0.264 

 

  

zNLRP3+zCRP 0.348 4.42 <0.001 

zFBG+zINS 0.238 3.04 0.003 

zOSTOX 0.218 2.78 0.006 

#2. zBDI+zHAMD 

  

Model    
80.26 

  

2/122 <0.001 
0.568 

  
Peak body temperature 0.632 9.33 <0.001 

zNeurotoxicity 0.207 3.06 0.003 

#3. Total BDI 

 

  

Model    
13.287 

 

  

3/121 

 

  

<0.001 

 

  

0.248 

 

  

zNLRP3+zCRP 0.307 3.85 <0.001 

zFBG+zInsulin 0.242 3.05 0.003 

zOSTOX 0.242 3.04 0.003 

4. Total HAMD 

 

 

 

Model    13.21 

 

 

 

3/151 

 

 

 

<0.001 

 

 

 

0.247 

 

 

 

zNLRP3+zCRP 0.365 4.58 <0.001 

zFBG+zINS 0.218 2.75 0.007 

zOSTOX 0.179 2.25 0.026 

 

HAMD: Hamilton Depression Rating Scale, BDI: Beck Depression Inventory, zBDI+zHAMD: composite score comprising BDI and HAMD,  

zNLRP3+zCRP: composite score comprising the NLRP3 inflammasome and CRP (C-reactive protein), zOSTOX: composite of oxidative stress 

biomarkers, SpO2: peripheral oxygen saturation, FBG: fasting blood glucose, INS: insulin,  zFBG-zINS: index of insulin resistance. 
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Figure 3 Results of partial regression analysis with severity of depression (entered as a latent vector) as dependent variable. Direct predictors are 

the index of insulin resistance (zFBG+zINS), index of oxidative stress toxicity (OSTOX) and an index of inflammation (zNLRP3+zCRP). Peak 

body temperature (PBT) during the acute phase of illness predicts the biomarkers of Long COVID. 

BDI: Beck Depression Inventory; HAMD: Hamilton Depression Rating scale; FBG: fasting blood glucose; INS: insulin; NLRP3: index of the 

nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 inflammasome; CRP: C-reactive protein.  
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