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Abstract  

Overlapping symptoms and copathologies are common in closely related neurodegenerative 

diseases (NDDs). Investigating genetic risk variants across these NDDs can give further 

insight into disease manifestations. In this study we have leveraged genome-wide single 

nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) summary 

statistics to cluster patients based on their genetic status across identified risk variants for five 

NDDs (Alzheimer’s disease [AD], Parkinson’s disease [PD], amyotrophic lateral sclerosis 

[ALS], Lewy body dementia [LBD], and frontotemporal dementia [FTD]). The multi-disease 

and disease-specific clustering results presented here provide evidence that NDDs have more 

overlapping genetic etiology than previously expected and how neurodegeneration should be 

viewed as a spectrum of symptomology. These clustering analyses also show potential 

subsets of patients with these diseases that are significantly depleted for any known common 

genetic risk factors suggesting environmental or other factors at work. Establishing that 

NDDs with overlapping pathologies share genetic risk loci, future research into how these 

variants might have different effects on downstream protein expression, pathology and NDD 

manifestation in general is important for refining and treating NDDs. 
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Introduction  

Neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD), Parkinson’s disease 

(PD), amyotrophic lateral sclerosis (ALS), Lewy body dementia (LBD), and frontotemporal 

dementia (FTD), collectively affect more than 40 million people worldwide.1 This number is 

only expected to grow due to their mid- to late-life onset combined with an aging population.1 

Genome-wide association studies (GWAS) have been used to identify common genetic 

variants linked to a higher risk of developing certain NDDs to uncover pathways that can lead 

to more advanced and targeted treatments.2,3 

Clinical misdiagnosis can result from overlapping symptoms or copathologies shared by 

multiple NDDs.4,5 In this context, established risk variants for one NDD may play a role in 

the genetic makeup of several others. Overlapping risk variants across NDDs, even when 

sub-genome-wide significant in GWAS studies of a specific disease, may give insights into 

how disease can manifest across the spectrum of NDDs. Evidence of pleiotropic effects have 

been described previously in GRN for AD, PD, LBD, and ALS, and GBA for PD and LBD.6,7 

Mutations in MAPT and APOE have also been linked to a range of NDDs and pathologies.8,9 

Additionally, it is possible to investigate how high and low genetic risk may manifest within 

a single disease, partitioning individuals with an NDD into classes of genetic and potentially 

non-genetic manifestation of the disease. 

Here, we used genome-wide single nucleotide polymorphism (SNP) and GWAS summary 

statistics data for five NDDs (AD, PD, ALS, LBD, and FTD) to cluster patients based on 

their genetic status across identified risk variants for each disease. The multi-disease clusters 

presented here establish data-driven evidence of shared disease etiology and potential 

overlapping symptomatology on the molecular level.10 The single-disease cluster analysis 

supports the idea that NDD specific risk data can inform both genetically different subtypes 

within the same disease and identify patients that may have the disease due to environmental, 

epigenetic, or other risk factors. This work seeks to refine NDD phenotypes and could help to 

differentiate NDDs for diagnosis and clinical trial enrollment. 
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Materials and methods  

Samples 

Supplementary Fig. 1 summarizes the workflow and data used for this project. The samples 

were obtained from public domain whole-genome sequencing (WGS) cohorts across the 

aforementioned NDDs. AD samples were obtained from the Alzheimer's Disease Sequencing 

Project (ADSP), Alzheimer's Disease Neuroimaging Initiative (ADNI), Mayo RNAseq Study 

(MayoRNAseq), Mount Sinai Brain Bank (MSBB), and the Religious Orders Study/Memory 

and Aging Project (ROSMAP).11–13 PD samples were obtained from Accelerating Medicines 

Partnership Parkinson's disease (AMP-PD).14 FTD, LBD, and ALS data were all obtained 

from DementiaSeq.15 The total number of subjects across all cohorts was 23,885, of which 

13,190 were cases (Supplementary Table 1). Only samples of genetically-determined 

European ancestry were used. For this analysis, 1000 cases for each disease were randomly 

sampled to ensure even representation, resulting in a final sample size of 5000 cases 

(Supplementary Table 1). GWAS summary statistics were obtained for each disease for use 

in the final SNP selection. The GWAS summary-level data used include Schwartzentruber et 

al. 202116 (AD), Nalls et al. 201917 (PD), Nicolas et al. 201818 (ALS), Chia et al. 202119 

(LBD), and Ferrari et al. 201420 (FTD). 

Genetic data quality control 

Data from cohorts were not all on the same build; thus, data from cohorts using the hg19 

build were lifted over to hg38.21 Summary statistics were lifted over as needed. Quality 

control (QC) was performed at both the individual cohort and combined cohort levels with 

Global Parkinson’s Genetics Program (GP2) pipelines (https://github.com/GP2code/) using 

PLINK (1.9 and 2). Sample level QC included genotype missingness (<0.02) as well as a 

duplicate removal (genetic relatedness matrix [grm] cutoff of 0.95) and second-degree 

relatedness pruning (grm cutoff of 0.125). ADNI, ROSMAP, and AMP-PD also underwent 

genetic sex confirmation due to the availability of data for the X chromosome. Variant level 

QC included call rate pruning (<0.05) and pruning SNPs with a minor allele frequency 

(MAF) less than 0.05 for exclusion. After common SNPs were identified across the cohorts 

(explained in the systematic review section), the merged genotype data underwent an 

additional duplicate and relatedness check. The merged data was then passed through an 
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ancestry prediction and pruning method to ensure all samples were of European descent. 

Ancestry was defined using reference panels from the 1000 Genomes Project and an 

Ashkenazi Jewish Population.22,23 

Systematic review 

Prior to clustering across the NDDs, we narrowed the number and scope of SNPs. Autosomal 

SNPs sequenced across all cohorts were identified and merged. Disease-specific GWAS data 

was then used to filter for SNPs that reached genome-wide significance (i.e., p < 5e-08) in 

relevant GWAS studies. This SNP set underwent munging and additional population 

substructure adjustment in GenoML.24,25 Munging consists of pruning provided genotype 

data for linkage disequilibrium (LD) by removing any highly correlated genotypes in the 

sample series (r2 > 0.3 as minimum exclusion criteria). The adjustment process removes the 

effect of population substructure, which is further described in Makarious et al. 202225. The 

process required creating principal component analysis (PCA) loadings using the 5000 

downsampled cases. Unlinked genome-wide SNPs outside of GWAS regions of interest were 

used to generate the 10 PCA loadings that approximate population substructure. The resulting 

10 PCA loadings were used as covariates and regressed against the final SNP candidates 

using ordinary least squares regression. The resulting residual minor allele dosages were then 

z-normalized and used as the final output for model training at clustering. After munging, the 

final SNP set consisted of 338 GWAS significant and population substructure adjusted SNPs 

not in LD with each other. 

Statistical Analysis 

To effectively visualize and cluster the adjusted SNPs, Unified Manifold Approximation and 

Projection (UMAP) was chosen for dimensionality reduction. UMAP is a non-linear 

approach that is widely used in the field of population genetics.26 Using UMAP, 338 SNPs 

were reduced to 3 dimensions. Unsupervised clustering was performed on the reduced data 

using the Mean Shift algorithm, as it is a deterministic algorithm that does not require the 

number of clusters to be specified, unlike more popular approaches such as K-Means 

clustering that require an a priori number of clusters to be defined.27 

UMAP employs two fine-tuning hyperparameters, a and b, that impact the resulting 

embedding more specifically than minimum distance and spread. UMAP is a flexible 

algorithm that can be used on many different types and sizes of data; fine-tuning these 
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hyperparameters enhances the model adjustment to the SNP data. Performing a grid search of 

a and b values from 0.25 to 3, with a step size of 0.25, the UMAP to Mean Shift pipeline was 

fitted and applied on a 70:30 (training:testing) split. To determine the best combination of 

hyperparameters, logistic regression was utilized with cluster membership as the input to 

predict an individual's disease status for each NDD (AD, PD, ALS, LBD, and FTD). The 

chosen evaluation metric was the average area under the receiving operating characteristic 

(ROC) curve (AUC) across the disease-cluster regressions. The hyperparameters with the 

highest average AUC across the 144 tested combinations were then identified and used 

throughout the analysis (a = 2.75, b = 0.75).  

UMAP is a stochastic algorithm; different runs can produce different results despite the input 

data and hyperparameters being the same. This can cause the Mean Shift to identify a 

variable number of clusters in different iterations. To investigate this phenomenon, the 

UMAP to Mean Shift analysis was run on 15 different 70:30 (training:testing) splits for 100 

iterations (i.e., 1500 iterations total), recording the number of clusters identified and the 

sample counts per cluster. Across the different splits and iterations, Mean Shift consistently 

identifies the main cluster that contains the majority (>4000 out of 5000 individuals) of the 

samples (Supplementary Table 2). From there, we applied an iterative clustering approach. 

Tracking samples across iterations, any sample consistently grouped into the main cluster 

was identified and labeled as a member of cluster 0 (C0). Conversely, any sample that was 

never grouped into this main cluster was labeled as a member of cluster 2 (C2). All the 

remaining samples that were not always grouped into the main cluster, according to the 

UMAP embedding, were labeled as a member of cluster 1 (C1). This process effectively 

addresses the variability caused by the stochastic nature of UMAP while capturing the 

clustering information provided by Mean Shift. 

A z-test for proportions was performed to determine which multi-disease clusters were 

significantly enriched with certain NDDs compared to others. Next logistic regressions were 

utilized to see how cluster membership relates to NDD status as a complement to the 

previously described enrichment analysis. Cluster memberships were regressed on the set of 

338 adjusted SNPs to identify any potential SNPs associated with increased likelihood of 

membership in a particular cluster, in part as a positive control, for loci with established 

pleiotropic associations (GBA, GRN, LRRK2, MAPT, and APOE). The Shapley values of 

the SNP predictors were then calculated, which is a popular game theory approach that helps 

explain and interpret how important each feature in a model is to the prediction of the 
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dependent variable, in our case, cluster membership.28  Finally, for each sample in the 

dataset, a polygenic risk score (PRS) was calculated for all five NDDs with the beta values 

from the same GWAS summary statistics used to determine the SNP set. From there, logistic 

regression was run to see how well the disease-specific PRSs determine cluster membership. 

Note that the PRS were z-score normalized to simplify the interpretation of the logistic 

regression output.  

The same UMAP hyperparameter combination was used to perform the dimensionality 

reduction for each NDD in the disease-specific cluster analysis. Similar to the multi-disease 

analysis, when the UMAP to Mean Shift pipeline was applied to the 1000 samples for each 

NDD separately, the main cluster that contained a majority (>500 out of 1000 individuals) 

was formed consistently across iterations and diseases. Therefore, the iterative clustering 

approach from the multi-disease analysis was once again utilized. To account for the 

increased variability that comes with running the pipeline on a reduced sample size, 

individuals were grouped into C0 or C2 (C1 if only 2 clusters were identified in a disease 

subset) if they were consistently inside or outside the main cluster for at least 12 of the 15 

70:30 (training:testing) splits. The previously calculated PRS were re-normalized using the 

mean and standard deviations from the set of 1000 samples for each NDD. A T-test was run 

to see where the PRSs differentiated significantly from the mean of 0 that they were 

standardized to within the NDD-specific clusters. 

Data availability  

As previously mentioned, all samples for this analysis were obtained from public domain 

WGS cohorts. A repository containing all code for processing and analysis is publicly 

available to facilitate replication (https://github.com/NIH-

CARD/NDD_risk_variant_clustering). In addition, an interactive website has been developed 

where researchers can further explore the described cluster memberships and results 

(https://nih-card-ndd-risk-variant-clustering-app-25rr5g.streamlitapp.com/). 
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Results 

Multi-disease clustering  

Using the iterative clustering approach, C0 contained 2,863 samples, C1 contained 2,074 

samples, and C2 contained 63 samples (Fig. 1A). Regressions of each disease status per 

sample against cluster membership revealed that C0 was most significantly enriched with 

ALS (odds ratio [OR] = 1.631, p = 4.66e-08, beta = 0.489, standard error [SE] = 0.090), C1 

with AD (OR 1.637, p = 9.20e-09, beta 0.493, SE 0.086), and C2 with FTD (OR = 3.063, p = 

6.50e-05, beta = 1.119, SE = 0.280). C2 was enriched with PD compared to the overall 

disease distributions but not to the point of significance in the regressions (Table 1). After 

multiple test corrections, none of the clusters were significantly enriched with LBD. 

The PRS regressions revealed that the only PRS that was significantly associated with 

membership in all clusters was AD. C0 and C2 had negative associations (defining non-AD 

driven clusters), while C1 had a positive association. The trend of C0 having significant 

negative associations and C1 having significant positive associations continued for the PD, 

ALS, and LBD PRS, while no other PRS was shown to be significantly associated with C2. 

The FTD PRS was not significantly associated with membership in any of the clusters. For a 

summary of these results, please refer to Table 2. The PRS distributions by cluster are 

displayed in Fig. 2. 

Based on the Shapley values for individual SNPs, important variants determining 

membership in C0 and C1 were localized to APOC1 (rs72654445) and CEACAM16/AS1 

(rs112952132 and rs111278137) for C2 (Fig. 1B-D). Two SNPs in NECTIN2 (rs41290102 

and rs79701229) were of high importance for differentiating C0 and C1 from C2. Variants 

belonging to the genes APOC1, CBLC, CEACAM16/AS1, CLPTM1, and NECTIN2 were 

identified as significant drivers in at least one multi-disease cluster based on their mean 

absolute Shapley value. All these top variants are associated with AD and cluster within 1Mb 

of the APOE locus on chromosome 19 and likely driven by a connection to variable E4 allele 

risk.29 Variants associated with the specified loci account for 20.99%, 20.97%, and 8.90% of 

the differentiation between C0, C1, and C2, respectively. 

The individual SNP regressions reveal variants localized with APOE, GBA, and LRRK2 are 

significantly associated with all clusters (Supplementary Table 3). Additionally, a variant 
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localized to MAPT (rs713522) showed significant associations with C0 and C1. The GBA 

variant (rs76763715) shows a strong positive association with C1 (OR = 8.020, p = 0.008, 

beta = 2.082, SE = 0.782) and a very strong negative association with C2 (OR = 8.33e-04, p 

= 0.023, beta = -7.091, SE = 3.11). 

Disease-specific clustering 

For the NDD-specific clusters, only AD and FTD had a group of samples that were 

consistently outside the main cluster across iterations (i.e., a presence of C2), containing 14 

and 25 samples, respectively (Supplementary Fig. 2). Interestingly, across all single-disease 

clustering analyses, the AD PRS is significantly associated with differentiating subsets of 

samples (Table 2 and Supplementary Table 4). 

In the AD-specific analysis, C1 showed significant genetic risk enrichment for AD. This 

same cluster also demonstrated significant enrichment of ALS and LBD genetic risk factors. 

In the PD-specific analysis, C0 was significantly enriched for AD genetic risk, and C1 for 

LBD genetic risk. In ALS, there are two clearly defined clusters, one significantly enriched 

for ALS genetic risk and the other depleted for genetic risk. The ALS cluster that has 

increased ALS genetic risk shows a significant decrease in AD genetic risk loading. For 

LBD, C0 shows a significant decrease in both AD and LBD genetic risk. In contrast, C1 

shows a significant increase in AD and LBD genetic risk, suggesting a less genetically 

influenced form of the disease is likely. FTD disease-specific clusters were complicated, as 

the FTD genetic risk was not significantly associated with any of the three clusters identified. 

What is of interest is that one FTD cluster is significantly enriched for AD, PD, ALS, and 

LBD genetic risk, while another cluster is significantly depleted with regard to genetic risk 

for PD, ALS, and LBD. 

Discussion  

Utility in disease subtyping and clinical trials 

The clustering results support the idea that closely related NDDs have more overlapping 

genetic etiology than previously expected, using data-driven approaches to show how in 

many cases, neurodegeneration should be viewed as a spectrum of symptomology and risk 

factors, not discrete units. This is evident in that we have shown that all three of the multi-
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disease clusters have members from each studied NDD, and each of these clusters shows a 

significant association with variants from loci that have been previously linked to multiple 

NDDs.  Synthesizing the results of our disease-specific and multi-disease clustering, we note 

that major differentiating factors between patients seem to be a general lack of genetic risk or 

a mix of disease risk enrichments at varying degrees. This exemplifies the need for future 

studies of environmental and epigenetic risk factors shared across NDDs. We also suggest 

that repeating these analyses in a large set of harmonized pathology derived data would 

provide downstream insights on shared mechanisms in the brains of affected patients within 

and across diseases. 

The overlapping deviations between the disease-specific clusters and the PRS for various 

NDDs provide evidence that neurodegeneration lies on a spectrum.30 There may be groups of 

patients diagnosed with one NDD but have a high genetic risk for another. For example, the 

PRS for LBD, a disease that is already known to be closely related to PD and AD in terms of 

both clinical and pathological manifestations, has significant associations with cluster 

membership in all of the other presented NDDs.31–33 Overlaps like these show the need for 

further research into refining phenotypes for the diagnosis of NDDs, as well as closer 

monitoring of individuals post-diagnosis to see if changes occur that may cause the need for 

reconsideration of treatments. Understanding that NDDs with overlapping pathologies tend to 

share genetic risk loci, in diagnosis and clinical trial enrollment, it will be important to 

determine how the variants are most strongly associated with each NDD. More importantly, 

understanding how the variants might have subtly different effects on downstream protein 

expression (i.e., tau pathology, alpha-synuclein expression) and pathology that influence 

disease manifestation will be valuable for precision clinical trials. 

Limitations 

The limitations of this research include a lack of diversity, insufficient clinical data across 

sample series, case imbalances between diseases that limited total sample sizes, and a lack of 

rare variant inclusion.34 In particular, the FTD PRS estimates suffered from the small GWAS 

sample size and that may have impacted the results. Given the limited availability of non-

European samples, it is difficult to appropriately model any effects ancestral differences may 

introduce. Similarly, the imbalance between disease sample sizes was a significant limitation. 

The imbalance resulted in the use of 1000 cases from each disease. The decision to use 1000 

cases from each disease resulted from ALS, the smallest cohort, only having 1105 cases. The 
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clustering model would benefit from having more samples in order to make it more robust to 

outliers and to potentially identify any other potential clusters not captured in the currently 

sampled cohorts. The lack of broad and uniform clinical/phenotypic data across cohorts 

limited analyses and translational conclusions. The only common phenotype data common 

across cohorts was sex and European ancestry. Age collection across cohorts varied with no 

common collection point (i.e., age at onset, age at death, etc.) and differing age measures 

from precise ages to age range bins. Additionally, the quality of phenotypes and the impact of 

“proxy-cases” or self-reported cases in some large biobank studies may impact the overlap 

across diseases, as in a perfect world, all phenotypes would be corroborated by imaging or 

pathology. Other clinical traits that would have been useful for further analyses include 

family history, disease severity, and medication status. Lastly, the lack of rare variant 

inclusion implies that the clustering model may not identify acute genetic differences 

between NDDs. This lends to these clusters being quite broad and focused on sporadic 

manifestations of these NDDs, likely not establishing contrasts that could be attributed to 

early-onset familial cases. 

Conclusion 

This report used data driven methods to define the spectrum of neurodegenerative disease 

interconnectivity. These connections between diseases are based on shared genetic risk 

factors and the interplay between these risk factors, often recapitulated in symptomology and 

pathology. Using this data, we can better understand potential fine-grained diagnoses that 

incorporate more variability than previous discrete classifications of neurodegenerative 

diseases. 
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Figure legends 

Figure 1 Multi-disease cluster membership. (A) Multi-disease clusters. Shapley values of 

SNPs most impacting the defining of (B) cluster 0, (C) cluster 1, and (D) cluster 2.  

Figure 2 Standardized PRS distributions per multi-disease cluster. 
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Table 1 Disease association summary statistics and frequency per multi-disease cluster 

Disease Multi-disease cluster membership OR BETA SE P % samples with 
disease 

AD 

Cluster 0 0.646 -0.436 0.086 3.51e-07 0.165* 

Cluster 1 1.637 0.493 0.086 9.20e-09 0.252* 

Cluster 2 0.245 -1.408 0.596 0.018 0.079* 

PD 

Cluster 0 1.141 0.132 0.086 0.125 0.210 

Cluster 1 0.859 -0.152 0.087 0.080 0.186 

Cluster 2 1.308 0.269 0.322 0.404 0.238* 

ALS 

Cluster 0 1.631 0.489 0.090 4.66e-08 0.226* 

Cluster 1 0.646 -0.437 0.090 1.15e-06 0.167* 

Cluster 2 0.245 -1.408 0.596 0.018 0.079* 

LBD 

Cluster 0 0.836 -0.179 0.084 0.033 0.190 

Cluster 1 1.198 0.18 0.084 0.032 0.213 

Cluster 2 1.004 0.004 0.341 0.99 0.206 

FTD 

Cluster 0 1.021 0.021 0.085 0.802 0.208 

Cluster 1 0.895 -0.111 0.086 0.196 0.182* 

Cluster 2 3.063 1.119 0.280 6.50e-05 0.397* 

 

*denotes a p-value < 0.05 for the frequency increase or decrease in a certain disease status per cluster compared 
to the null estimate of 20%. 
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Table 2 PRS association summary statistics per cluster for both the multi-disease and single-disease clustering 
analyses 

 Multi-disease clustering Disease-specific clustering 

Disease/PRS Cluster OR BETA SE P Cluster OR BETA SE  P 

AD 

Cluster 0 0.804 -0.218 0.034 2.31e-10 Cluster 0 0.918 -0.086 0.077 0.266 

Cluster 1 1.331 0.286 0.035 2.32e-16 Cluster 1 1.117 0.111 0.078 0.154 

Cluster 2 0.146 -1.921 0.249 1.31e-14 Cluster 2 0.55 -0.598 0.425 0.160 

PD 

Cluster 0 0.838 -0.177 0.035 3.95e-07 Cluster 0 0.826 -0.192 0.080 0.017 

Cluster 1 1.209 0.19 0.035 6.38e-08 Cluster 1 1.211 0.192 0.080 0.017 

Cluster 2 0.829 -0.187 0.144 0.192  

ALS 

Cluster 0 0.858 -0.154 0.034 7.00e-06 Cluster 0 0.577 -0.549 0.093 3.69e-09 

Cluster 1 1.171 0.1577 0.034 4.00e-06 Cluster 1 1.732 0.549 0.093 3.69e-09 

Cluster 2 0.95 -0.051 0.142 0.721  

LBD 

Cluster 0 0.653 -0.427 0.036 1.31e-32 Cluster 0 0.627 -0.466 0.081 7.36e-09 

Cluster 1 1.549 0.437 0.036 5.22e-34 Cluster 1 1.594 0.466 0.081 7.36e-09 

Cluster 2 0.872 -0.137 0.148 0.354  

FTD 

Cluster 0 0.977 -0.023 0.034 0.498 Cluster 0 0.988 -0.012 0.077 0.872 

Cluster 1 1.029 0.029 0.034 0.402 Cluster 1 1.039 0.038 0.078 0.625 

Cluster 2 0.920 -0.084 0.132 0.528 Cluster 2 0.777 -0.252 0.232 0.278 
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