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Abstract (148/150 w) 

To investigate assortative mating (AM), participation bias, and socioeconomic status (SES) with respect 

to the genetics of behavioral and psychiatric traits, we analyzed gametic phase disequilibrium (GPD), 

within-spouses and within-siblings polygenic risk score (PRS) correlation, performing a SES conditional 

analysis. We observed genetic signatures of AM across multiple methods for traits related to substance 

use with SES conditioning increasing the within-spouses PRS correlation for Frequency of drinking 

alcohol (2.5% to 6%), Maximum habitual alcohol intake (1.33% to 4.43%), and Ever taken cannabis (1.5% 

to 5.3%). Comparing UK Biobank mental health questionnaire responders vs. non-responders, major 

depressive disorder PRS showed significant GPD in both groups when based on the Million Veteran 

Program (3.2% vs. 3%), but only in responders when based on the Psychiatric Genomics Consortium 

(3.8% vs. 0.2%). These results highlight the impact of AM, participation bias, and SES on the polygenic 

risk of behavioral and psychiatric traits. 
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Introduction  

Psychiatric disorders and traits are highly polygenic, i.e. they are influenced by several thousands of 

genetic variants, each having a small effect on disease risk
1
. Large-scale genome-wide studies have 

demonstrated that our ability to investigate their polygenic architecture could be influenced by several 

factors such as assortative mating (AM; i.e., mate choice driven by phenotypic similarity) and 

participation bias (i.e., individuals with a certain phenotype are more likely to enter a study)
2-4

. For 

example, AM increases the genetic variance in a population because it induces a systematic positive 

correlation between trait-increasing alleles across the genome
5
. Therefore, AM can result in inflated 

genetic effects as compared to those estimated in randomly mating population or using a family-based 

design. On the other hand, participation bias might exacerbate differences between sub-groups in a 

study, thereby reducing the generalizability of genetic effects estimated from the whole sample
6
.  

As exemplified hereafter, both AM and participation bias have been linked to behavioral traits and 

psychiatric disorders. A previous study investigating more than 700,000 individuals reported evidence of 

mate resemblance within and across eleven psychiatric disorders, including attention-

deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), schizophrenia, bipolar disorder, 

major depressive disorder (MDD), generalized anxiety disorder (GAD), agoraphobia, social phobia, 

obsessive-compulsive disorder (OCD), anorexia, and substance abuse
7
. A subsequent analysis provided 

an estimate of the genetic consequences of AM for psychiatric traits, suggesting a modest impact on 

their heritability but this may be considerable for the population prevalence of rare disorders with a 

high heritability
8
. Recently, an analysis of cross-phenotype AM highlighted how cross-phenotype mate 

correlations may bias estimates of genetic correlation between pairs of psychiatric disorders
9
. 

With respect to participation bias
10-15

, certain psychiatric traits (e.g., MDD, anxiety, and alcohol 

consumption) can be associated with the likelihood of becoming or remaining as study participants
16,17

. 

Genome-wide investigations showed that the non-participation in health surveys (including mental 

health assessments) is genetically correlated with several behavioral traits, such as educational 

attainment and neuroticism, and neuropsychiatric disorders, such as schizophrenia and Alzheimer’s 

disease
10,13

. Additionally, differential participation bias between sexes (i.e., participation bias where the 

determinants of study participation affect women and men to differing extents) is genetically correlated 

with behavioral and psychiatric traits, including educational attainment, risk-taking behaviors, cannabis 

use, loneliness, MDD, ASD, schizophrenia, and ADHD
12

.  

Factors responsible for AM (e.g., opportunities or exposure to potential intimate partners, individual 

preferences, and third-party constraints) can be strongly affected by socioeconomic status (SES)
18

. 

Similarly, the proportions of non-participation are typically not uniform across sociodemographic 

groups, with those from deprived backgrounds often under-represented in health surveys
15

. To our 

knowledge, no previous study systematically investigated the potential impact of SES on the genetic 

signatures of AM and participation bias across multiple behavioral and psychiatric traits. Accordingly, we 

evaluated whether the SES association with the polygenic risk of psychiatric and behavioral traits 

contributes to the genetic signatures of AM and participation bias. Specifically, we leveraged findings 

from large-scale genome-wide association studies generated by the Psychiatric Genomics Consortium 

(PGC)
19 

and the Million Veteran Program (MVP)
20 

together with individual-level data from UK Biobank 
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(UKB) participants that completed the UKB Mental Health Questionnaire (MHQ) and comparing to those 

that did not complete this assessment. 

Methods 

UK Biobank  

The UKB is a general population-based cohort comprising approximately 502,000 participants. This 

sample was recruited between 2006 and 2010 in 22 assessment centers across the UK
21

. UKB received 

ethical approval from the NHS National Research Ethics Service Northwest (reference: 11/NW/0382). 

UKB obtained informed written consent from all participants. A self-reported detailed account of 

sociodemographic, lifestyle, mental, and physical health information was collected from all UKB 

participants
21

.  

The collection and processing of UKB genetic data have been described previously
22

. Briefly, genome-

wide genotype data were obtained from all UKB participants using the UKB Axiom array. UKB genotypic 

data were imputed using the Haplotype Reference Consortium reference panel. In this study, we 

analyzed a sample of 362,132 unrelated individuals of European descent (EUR) with available genotype 

data. Because of the limited sample size available, we were not able to analyze other ancestry groups. 

Ancestry and relatedness information of each UKB participant were obtained from the Pan-ancestry 

genetic analysis of the UKB (Pan-UKB)
23

. Briefly, genetic relatedness among UKB participants was 

estimated with PC-Relate, a principal component analysis (PCA)-based method
24

. While ancestry 

assignment was performed using a combined reference panel including both the 1000 Genomes 

Project
25

 and Human Genome Diversity Panel (HGDP)
26

. Then, a random forest classifier trained with the 

top six principal components (PCs) from the reference data was applied to the UKB PCs data. UKB 

participants were assigned to an ancestry group (African, Admixed American, Central/South Asian, East 

Asian, EUR, or Middle Eastern) based on a classifier probability >50%. A detailed description of the Pan-

UKB methods is available at https://pan.ukbb.broadinstitute.org.  

 

UKB Mental Health Questionnaire   

As part of the UKB assessment, behavioral and psychiatric outcomes, including mood disorders, anxiety, 

mental distress, self-harm, traumatic events, substance use, and post-traumatic stress disorder (PTSD), 

were evaluated with an online follow-up assessment including the UKB MHQ (Resource 22 on 

http://biobank.ctsu.ox.ac.uk)
27

. The MHQ was completed by 157,366 UKB participants (31% of total UKB 

participants) aged 45–82 years, 57% of them were female and had a higher SES (i.e., higher income and 

higher educational attainment) compared with UKB participants who did not complete this 

assesment
27,28

.  

Also, diagnostic criteria were evaluated for MDD, hypomania or mania, GAD, alcohol use disorder (AUD), 

and PTSD
27

. Addiction to substances other than alcohol and/or behavior was defined based only on self-

report. The MHQ is based on previously existing and validated measures, including the Composite 

International Diagnostic Interview Short Form (CIDI-SF) to assess lifetime mental disorders in general
29

, 

as well as instruments for specific mental disorders and trauma exposures, i.e., the PTSD Check List - 

Civilian Short version (PCL-6), the Childhood Trauma Screener – 5 item (CTS-5)
30,31

, and validated 

instruments developed specifically for the UKB such as an adult trauma screener
27

.   
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Large-scale Genome-wide Association Studies of Behavioral and Psychiatric Traits 

To investigate additional behavioral and psychiatric traits, we investigate AM genetic signatures using 

GWAS statistics that were generated from samples that did not include UKB. These included ADHD
32

, 

ASD
33

, anorexia nervosa
34

, anxiety disorder
35

, bipolar disorder
36

, bipolar disorder type I
36

, bipolar 

disorder type II
36

, MDD
37

, schizophrenia
38

, panic disorder
39

, PTSD
40

, Tourette syndrome
41

, and OCD
42

 

obtained from the PGC (available at https://pgc.unc.edu/for-researchers/download-results/); and 

AUD
43

, Alcohol Use Disorder Identification Test-Consumption (AUDIT-C)
43

, maximum habitual alcohol 

intake
44

, MDD
45

, opioid use disorder (OUD)
46

, PTSD
47

, and anxiety disorder
48

 obtained from the MVP 

(available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v8.p1). 

Briefly, PGC data was generally generated from meta-analyses of genome-wide genetic data derived 

from many cohorts with different characteristics and assessed with different instruments
49

. Conversely, 

MVP data were obtained from a single observational cohort study of US veterans
50

. The genetic 

correlation between PGC and MVP overlapping traits, i.e., MDD, PTSD, and anxiety was calculated with 

the Linkage Disequilibrium Score Regression method (LDSC)
51

. A description of these datasets is shown 

in Supplementary Table 1. Due to the limited sample size available for other ancestry groups in UKB, 

PGC, and MVP, our analyses were limited only to EUR. 

 

Gametic Phase Disequilibrium Analysis 

We estimated AM genetic signatures across behavioral and psychiatric traits using a method proposed 

by Yengo et al.,
5
. Briefly, this method is based on the fact that AM signatures of a specific trait can be 

quantified as the directional correlation between trait-increasing alleles, also referred as gametic phase 

disequilibrium (GPD). This can be estimated as the correlation between trait-specific PRS based on 

variants located on odd and even chromosomes
5
.  

Initially, we used GWAS statistics generated from the analysis of MHQ traits assessed in EUR MHQ 

responders to calculate PRS with respect to 243,476 EUR unrelated UKB participants who did not 

respond to the MHQ (MHQ non-responders). MHQ GWAS statistics were derived from the Pan-UKB 

analysis that used a generalized mixed model association testing framework available from the Scalable 

and Accurate Implementation of GEneralized (SAIGE) software
52

. A detailed description of these GWAS is 

available at https://pan.ukbb.broadinstitute.org. To reduce the multiple-testing burden, we tested only 

MHQ traits with SAIGE heritability estimates > 0.03 and single nucleotide polymorphisms-based 

heritability (SNP-h
2
) p-value < 0.05. For each MHQ trait, SNP-h

2
 was estimated using the LDSC 

approach
51

 as described in the Supplemental Methods.  

Before PRS calculation, quality control was performed on GWAS summary statistics and UK individual 

genotypic data using PLINK 1.9
53

. SNPs were included if they meet the following criteria: i) Hardy–

Weinberg equilibrium (HWE) p values >1 × 10
−6

, ii) missingness <0.05, iii) minor allele frequencies ≥ 0.01. 

PRS analysis included only LD-independent SNPs, selected with a clump r2<0.1 for SNPs < 1Mb apart 

using 1000 Genomes Project EUR populations as reference
25

.  

Even- and odd-chromosomes PRS were calculated using the software package PRSice
54,55

. We included 

20 PCs from SNPs in even and odd chromosomes when calculating the PRS for odd and even 

chromosomes, respectively to correct for population stratification. PCs were calculated from LD-

independent SNPs in even and odd chromosomes separately using the fast PCA approach implemented 
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in PLINK version 2.0
56,57

. LD pruning was performed in PLINK (r2<0.1 for SNPs < 1Mb apart) using 

HapMap3 (Utah residents with ancestry from northern and western EUR (CEU) as reference
58

.  

As suggested by the GPD method developers
5
, a P-value threshold of 0.005 was applied to select SNPs 

included for PRS calculation. Thus, AM was estimated as the coefficient from a linear regression model 

of the even-chromosomes PRS (PRSeven) onto odd-chromosomes PRS (PRSodd) and 20 PCs from the SNPs 

in odd chromosomes:  

PRSeven~ PRSodd + 20PCodd or PRSodd ~ PRSeven + 20PCeven 

AM estimate of each MHQ trait was obtained from the regression onto the PRS with the larger variance. 

A false discovery rate (FDR qS<S0.05) was applied to correct the GPD results for the number of 

phenotypes evaluated in each analysis. Then, we calculated GPD estimates for psychiatric traits in 

unrelated EUR UKB participants (N=362,132), and to assess the effect of SES on participation bias in the 

UKB, we compared GPD estimates for psychiatric traits between MHQ-responders (N= 118,656) and 

MHQ-non-responders (N= 243,476) using a z-test. Also, we assessed PRS-distribution differences 

between both groups using a t-test.  

 

Within-spouses and within-siblings polygenic risk correlation assessment 

In addition to using the GPD approach, we also estimated AM testing PRS correlation within spouses 

(WSps) and within siblings (WSib) available in the UKB cohort. The first analysis can be informative of the 

AM in the current generation, while the second one is informative of the AM in the previous 

generations. 

Putative spouses were identified using a method described previously
59

. First, we selected only UKB EUR 

participants identified as unrelated by kinship coefficients (N=362,132). Then, we selected pairs of 

individuals who were of opposite sex that reported identical and complete information for the following 

fields: (a) living with their spouse (UKB field ID: 6141), (b) length of time living in the house (UKB field ID: 

699), (c) number of occupants in the household (UKB field ID: 709), (d) number of vehicles (UKB field ID: 

728), (e) accommodation type and rental status (UKB field IDs: 670, 680), (f) home coordinates (UKB 

field IDs: 20074, 20075) and (g) registered in the same UKB recruitment center (UKB field ID: 54) and (h) 

available genotype data. When more than two individuals shared identical information, then these 

individuals were removed. To confirm the lack of relatedness in the selected sample, we recalculated 

the kinship coefficients using Kinship-based INference for GWAS (KING) toolset
60

. Three closely related 

pairs (identical by descent > 0.1) were removed and only those individuals classified as unrelated by 

KING were further analyzed. A total of 45,570 putative spouse pairs were identified and included in our 

analysis.  

The WSps-PRS correlation was calculated as the coefficient of the regression of PRS of spouse 1 onto 

PRS of spouse 2 and 20 PCs of spouse 2 to adjust by population stratification: 

PRSSpouse1~ PRSSpouse2 + 20PCSpouse2 

Evidence of possible AM in the current generation was considered when the WSps-PRS correlation was 

statistically significant after FDR multiple testing correction (FDR q<0.05). 
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To estimate AM in previous generations, we estimated the WSib-PRS correlation within siblings in the 

UKB. We selected only UKB EUR participants identified as related by kinship coefficients (n= 64,304). To 

estimate relatedness in the selected sample, we calculated the kinship coefficients using the KING 

toolset
60

, and further analyzed only those individuals classified as full siblings by this algorithm. Only two 

siblings per family were selected for further analysis. A total of 17,911 sibling pairs were included in our 

analysis.  

The WSib-PRS correlation was calculated as the coefficient of the regression of PRS of sibling 1 onto PRS 

of sibling 2 and 20 PCs of sibling 2 to adjust by population stratification: 

PRSSibling1~PRSSibling2 + 20PCSibling2 

Evidence of possible AM in previous generations was considered significant when the WSib-PRS 

correlation was statistically different from 0.5 (WSib-PRS rho-0.5Δ) after FDR multiple testing correction 

(FDR q<0.05). 

 

Conditional analysis to account for the effect of socioeconomic status on polygenic risk of behavioral and 

psychiatric traits 

To evaluate whether the estimates of AM genetic signatures were affected by SES, we conducted a 

conditional analysis adjusting the GWAS summary statistics. Specifically, we used the multi-trait-based 

conditional and joint analysis (mtCOJO)
61

 to adjust UKB-MHQ, PGC, and MVP GWAS statistics by the 

effect of two SES-related variables: household income (HI, UKB Data-Field 738; i.e., the combined gross 

income of all members of a household) and the Townsend deprivation index (TDI, UKB Data-Field 189; 

i.e., a measure of material deprivation based on four variables: unemployment, non-car ownership, non-

home ownership, and household overcrowding aggregated for postcodes of residence)
62

. The p-value 

threshold to select SNPs for clumping in mtCOJO was 0.05. We generated SES-adjusted GWAS summary 

statistics considering three models: i) HI-adjusted, ii) TDI-adjusted, and iii) adjusted for both HI and TDI. 

The HI and TDI GWAS statistics were generated by analyzing unrelated EUR UKB-MHQ responders 

(N=118,656) as described in the Supplementary Methods. 

Leveraging the SES-adjusted GWAS summary statistics, the estimates of AM genetic signatures for the 

behavioral and psychiatric traits were re-estimated and statistical differences between original and SES-

adjusted estimates were tested with z-tests. A false discovery rate (FDR qS<S0.05) was applied to 

correct the results for the number of phenotypes evaluated. Furthermore, we evaluated the effect of 

SES-adjustment on heritability by estimating SNP-h
2
 for the SES-adjusted GWAS summary statistics of 

the included traits using LDSC
51

.  

 

Results 

Genetic signatures of assortative mating in MHQ-derived traits 

We investigated genetic signatures of AM on MHQ-derived traits (Supplementary Table 2) using three 

different approaches: GPD
5
, WSib-PRS correlation

63
, and WSps-PRS correlation

59
 (Figure 1). WSib- and 

WSps-PRS correlation analyses identified multiple AM genetic signatures surviving FDR multiple testing 

correction, while GPD analysis showed only nominally significant findings. However, although they 
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model different aspects of AM, we observed consistency across the three methods. Interestingly, the

MHQ-derived traits showing evidence of AM in at least two analyses were all related to substance use

(mostly alcohol consumption) and emotional well-being. The two traits that showed significant

estimates in all analyses (WSib- and WSps-PRS correlation FDR q<0.05 and GPD p<0.05) were Frequency

of drinking alcohol (UKB Field ID: 20414) and General happiness with own health (UKB Field ID: 20459)

Consistency between WSib- and WSps-PRS correlation analyses (FDR q<0.05 in both) was also observed

for Amount of alcohol drunk on a typical drinking day (UKB Field ID: 20403), Ever taken cannabis (UKB

Field ID: 20453), and Recent feelings of tiredness or low energy, UKB Field ID: 20519). The WSps-PRS

correlation and GPD analyses showed significant results (FDR q<0.05 and p<0.05, respectively) for

Frequency of consuming six or more units of alcohol (UKB Field ID: 20416) and Felt distant from other

people in past month (UKB Field ID: 20496). Below, we described the results obtained in each analysis

and the differences observed after adjusting for SES variables. 

Figure 1. Genetic signatures of assortative mating across Mental Health Questionary (MHQ) traits. Cell shades

correspond to the significance strength of each estimate, from white (p > 0.05, non-significant), light blue (p < 0.05

nominally-significant), to dark blue (FDR q < 0.05, FDR-significant). The estimate reported as a percentage is shown

in the center of each cell. An asterisk in the cell indicates a significant difference of the SES-conditioned estimate

with respect to the original estimate (difference-p<0.05). Abbreviations: Household income (HI); Townsend

Deprivation Index (TDI). 

In the WSib-PRS correlation analysis, we identified FDR-significant results with respect to 19 MHQ-

derived traits (FDR q<0.05; Figure 1, Supplemental Table 3). These included substance use (e.g.,

Frequency of consuming six or more units of alcohol: WSib-PRS rho-0.5Δ=0.03, p=7.05�10
-5

, UKB Field

ID: 20416; Ever taken cannabis: Wsib-PRS rho-0.5Δ=0.03,  p=9.14�10
-5

, UKB Field ID:20453), self-harm

behaviors (e.g., Ingesting a medication in excess of the normal dose: Wsib-PRS rho-0.5Δ=0.03,

p=5.41�10
-5

, UKB Field ID:20553, coding:4; Need hospital treatment following self-harm: Wsib-PRS rho-

0.5Δ=0.03, p=2.14�10
-6

, UKB Field ID:20554, coding:3), negative emotions (e.g., Recent feelings of

tiredness or low energy: Wsib-PRS rho-0.5Δ=0.03, p=5.55�10
-5

, UKB Field ID:20519), positive emotions

(e.g., Belief that own life is meaningful: Wsib-PRS rho-0.5Δ=0.02, p=5.31�10
-4

, UKB Field ID:20460)
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social support (Felt loved as a child: Wsib-PRS rho-0.5Δ=0.03, p=2.48�10
-6

, UKB Field ID:20489), mania 

manifestations (e.g., I was more talkative than usual: Wsib-PRS rho-0.5Δ=0.02, p=0.003, UKB Field 

ID:20548, coding:1), and other psychiatric symptoms (e.g., Difficulty stopping worrying during worst 

period of anxiety: Wsib-PRS rho-0.5Δ=0.02, p=0.002, UKB Field ID:20541). Wsib-PRS rho-0.5Δ estimates 

remained virtually unchanged after conditioning for SES variables (Figure 1, Supplemental Table 3). 

Considering the WSps-PRS correlation, we observed significant results surviving multiple testing 

correction (FDR q<0.05) with respect to seven MHQ-derived traits (Figure 1, Supplemental Table 4). 

These included Ever addicted to any substance or behaviour (WSps-PRS rho=0.014, p=0.003; UKB Field 

ID:20401), Amount of alcohol drunk on a typical drinking day (WSps-PRS rho=0.045, p=1.29�10
-21

; UKB 

Field ID:20403), Frequency of drinking alcohol (WSps-PRS rho=0.025, p=1.52�10
-7

; UKB Field ID:20414), 

Ever taken cannabis (WSps-PRS rho=0.042, p=0.002; UKB Field ID:20453), Age when last took cannabis 

(WSps-PRS rho=0.019, p=4.11�10
-5

; UKB Field ID: 20455, General happiness with own health (WSps-PRS 

rho=0.024, p=3.04�10
-5

; UKB Field ID:20459), and Recent feelings of tiredness or low energy (WSps-PRS 

rho=0.024, p=2.85�10
-7

; UKB Field ID:20519). Considering the WSps-PRS correlation conditioned with 

respect to SES variables, four of these traits showed statistically significant differences when compared 

to the unconditioned estimates (Figure 1; Supplementary Table 4). Statistically significant increases of 

the WSps-PRS correlation were observed for Frequency of drinking alcohol (original estimate 2.5% vs. 

TDI-adjusted estimate 6%, difference-p=9.44�10
-8

) and Ever taken cannabis (original estimate 1.5% vs. 

HI-adjusted estimate 5.3%, difference-p=7.88�10
-9

). The Amount of alcohol drunk on a typical drinking 

day WSps-PRS correlation from 4.5% in the original estimate changed to 2.3% in the estimate adjusted 

for both HI and TDI (difference-p=9.13�10
-4

). While these changes were consistent across the different 

SES conditioning performed (i.e., HI, TDI, and HI+TDI), a significant reduction in General happiness with 

own health WSps-PRS correlation was observed, decreasing from 2.4% in the original estimate to 0.6% 

when adjusted for HI (difference-p=0.005), but not for the other SES-adjusted traits (difference-p>0.05).  

GPD estimates with respect to MHQ-derived traits were not significant after FDR correction (Figure 1, 

Supplementary Table 5). 

With respect to LDSC h
2 

estimates, we observed nominally-significant differences after adjusting by HI 

and both HI and TDI for Frequency of drinking alcohol (original LDSC h
2
=8.3% vs. LDSC h

2 
HI-

adjusted=6.7%; difference-p=0.028; original LDSC h
2
=8.3% vs. LDSC h

2 
HI-TDI-adjusted=6.7%; difference-

p=0.028; UKB Field ID:20414) and Ever taking cannabis (original LDSC h
2
=7.29% vs. LDSC h

2 
TDI-

adjusted=5.6%; difference-p=0.021; UKB Field ID:20453) (Supplemental Table 2).  

 

Genetic signatures of assortative mating in psychiatric traits and disorders 

To further expand the breadth of our study, we investigated genetic signatures of AM on psychiatric 

traits and disorders previously analyzed by large-scale PGC and MVP GWAS (Supplementary Table 1). For 

three phenotypes, we had information from both MVP and PGC GWAS. The genetic correlation between 

traits assessed in both PGC and MVP datasets was 1.01 (se=0.17) for anxiety, 0.50 (se=0.15) for PTSD, 

and 0.92 (se=0.01) for MDD. The limited genetic correlation between PGC-PTSD (excluding UKB) and 

MVP-PSTD is in line with what previously reported
64

. 

We investigated GPD estimates in psychiatric traits and disorders in the whole sample combining MHQ 

responders and non-responders (Supplementary Table 6; Supplementary Figure 1), as well as differences 
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between MHQ responders vs. non-responders with respect to PRS (Supplementary Table 7;

Supplementary Figure 2) and GPD for psychiatric disorders. Comparing GPD, WSib-PRS correlation, and

WSps-PRS correlation results (Figure 2), we observed FDR-significant AM genetic signatures in at least

two different methods for seven phenotypes. In particular, maximum habitual alcohol intake showed

FDR-significant results in all approaches and in both MHQ responders and non-responders. Similar

consistency was observed for MDD assessed in MVP and Tourette syndrome where FDR-significant

evidence was observed in the GPD analysis (both MHQ responders and non-responders) and WSib-PRS

correlation with only nominally significant WSps-PRS correlation. Below, we described the results

obtained in each analysis and the differences observed after adjusting for SES variables.  

Figure 2. Genetic signatures of assortative mating across psychiatric traits and disorders. Cell shades correspond to

the significance strength of each estimate, from white (p > 0.05, non-significant), light green (p < 0.05, nominally

significant), to dark green (FDR q < 0.05, FDR-significant). The estimate reported as a percentage is shown in the

center of each cell. An asterisk in the cell indicates a significant difference of the SES-conditioned estimate with

respect to the original estimate (difference-p<0.05). Abbreviations: Psychiatric Genomics Consortium (PGC)

Million Veteran Program (MVP); Mental Health Questionary (MHQ); Household income (HI); Townsend Deprivation

Index (TDI). 

As mentioned above, the GPD analysis was conducted in MHQ responders and non-responders,

separately (Figure 2; Supplementary Tables 8 and 9, respectively). We found significant GPD estimates

(FDR q<0.05) for six psychiatric traits in both groups: AUD (GPDResponders=1.2%, p=7.09�10
-6

; GPDNon

Responders=0.45%,  p=0.016), AUDIT-C (GPDResponders=0.7%,  p=0.008; GPDNon-Responders=0.62%,  p=7.92�10
-4

),

MVP-MDD (GPDResponders= 3.23%, p=9.44�10
-33

; GPDNon-Responders=2.98%, p=7.04�10
-55

), maximum

habitual alcohol intake (GPDResponders= 1.22%, p=8.43�10
-6

; GPDNon-Responders=1.45%, p=3.99�10
-14

), MVP-

PTSD (GPDResponders=0.66%, p=0.018; GPDNon-Responders=0.52%, p=0.008), and Tourette syndrome
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(GPDResponders=0.94%, p=3.22�10
-4

; GPDNon-Responders=1.26%, p=4.56�10
-12

). Also, we found FDR-significant 

GPD estimates related to BD (GPDNon-Responders=0.68%, p=1.69�10
-4

), BD1 (GPDNon-Responders=0.39%, 

p=0.036), BD2 (GPDNon-Responders=0.46%, p=0.016), and schizophrenia (GPDNon-Responders=0.51%, p=9.03�10
-

4
) in MHQ-non-responders. While there were significant GPD estimates with respect to PGC-MDD 

(GPDResponders= 3.83%, p=7.5�10
-50

) and OCD (GPDResponders=-0.64%, p=0.018) in MHQ-responders. 

Although there was some variation in the GDP estimates between the two samples investigated, we 

found significant differences between MHQ-responders and MHQ-non-responders only for PGC-MDD 

(GPDResponders=3.83% vs. GPDNon-Responders=0.23%, difference-p=2.27�10
-30

) and AUD (GPDResponders=1.2% vs. 

GPDNon-Responders=0.45%, difference-p=0.02). Also, we found a significant difference for PGC-MDD GPD 

estimates in MHQ-responders (GPDEUR=1.44% vs. GPDResponders=3.83%, difference-p=8.36�10
-16

)
 
and 

MHQ-non-responders (GPDEUR=1.44% vs. GPDNon-Responders=0.23%, difference-p=1.79�10
-7

)
 
with respect 

to those in EUR (Supplementary Table 10).  

After conditioning on SES variables, we observed statistically significant changes in the GPD estimates 

only for maximum habitual alcohol intake and Tourette syndrome. These changes were observable in 

both MHQ responders and non-responders (Figure 2; Supplementary Tables 8 and 9). For TDI 

adjustment of maximum habitual alcohol intake, GPD increased from 1.22% and 1.45% to 4.74% and 

5.21% in MHQ-responders (difference-p=1.61�10
-20

) and MHQ-non-responders (difference-p=3.68�10
-

45
), respectively. Conversely, HI-TDI adjustment reduced the GPD estimates for Tourette syndrome from 

0.94% and 1.26% in MHQ-responders down to <0.001% and 0.14% (difference-p=0.018) in MHQ-non-

responders (difference-p=2.47�10
-5

). 

We observed significant WSps-PRS correlation (FDR q<0.05) with respect to four traits (Figure 2, 

Supplementary Table 11): AUD (WSps-PRS rho=1.47%, p=0.002), MVP-assessed anxiety disorder (WSps-

PRS rho=1.4%, p=0.003), maximum habitual alcohol intake (WSps-PRS rho=1.32%, p=0.005), and 

schizophrenia (WSps-PRS rho =1.74%, p=2.11�10
-4

). Conditioning for SES variables, we observed 

significant changes in the WSps-PRS correlation only for maximum habitual alcohol intake where the 

estimate increased from 1.32% to 4.47% after accounting for TDI (difference-p=2.24�10
-6

). A similar SES 

effect was also present in WSib-PRS correlation analysis where the WSib-PRS rho-0.5Δ estimate changed 

from 2.4% (p=1.39�10
-4

) to 5.87% (p=1.97�10
-45

) after accounting for TDI (difference-p=8.32�10
-13

). 

FDR-significant WSib-PRS rho-0.5Δ estimates were observed also for other two traits (Figure 2; 

Supplementary Table 9): AUDIT-C (WSib-PRS rho-0.5Δ=0.022, p=0.001), and MVP-MDD (WSib-PRS rho-

0.5Δ=0.025, p=9.61�10
-5

. The conditioning for SES variables did not change the estimates observed for 

the other traits (difference-p>0.05; Figure 2, Supplementary Table 12). 

Considering the results of the SES conditioning across the three methods applied, we observed a strong 

and statistically significant increase of the AM genetic signature in the polygenic risk of maximum 

habitual alcohol intake. Specifically, the adjustment for HI, TDI, and both HI and TDI increased GPD, 

WSib-PRS rho-0.5Δ, and WSps-PRS rho estimates more than three times (Figure 3).  
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Figure 3. Genetic signatures of assortative mating for Maximum habitual alcohol intake before and after SES 

conditioning. 95% confidence intervals (CI) are reported for each estimate. Abbreviations: Mental Health 

Questionary (MHQ); Household income (HI); Townsend Deprivation Index (TDI).  

 

Discussion 

In the present study, we used multiple methods to detect genetic signatures of AM across behavioral 

and psychiatric traits. We also  quantified differences in AM genetic signatures due to i) the effect of SES 

factors, ii) participation bias by comparing UKB MHQ responders and non-responders, and iii) related to 

the genetic effect estimates detected by GWAS conducted in samples with different characteristics (i.e., 

PGC and MVP). 

In the UKB MHQ-based analysis, we found consistent evidence of AM genetic signatures across multiple 

methods for traits related to substance use and emotional well-being. With respect to substance use, 

three outcomes were related to alcohol consumption (i.e., Frequency of drinking alcohol, Amount of 

alcohol drunk on a typical drinking day, and Frequency of consuming six or more units of alcohol) and 

one to cannabis use (i.e., Ever taken cannabis). While several studies have demonstrated phenotypic 

resemblance between spouses pairs regarding alcohol drinking behaviors
65-67

, limited information is 

available regarding AM and cannabis use. It has been hypothesized that individuals pick companions 

compatible with, and supportive of, their substance use, leading to high levels of similarity between 

romantic partners
68

. Similar mechanisms could be responsible also for the genetic signatures observed 

with respect to individual feelings (i.e., General happiness with own health, Recent feelings of tiredness 

or low energy, and Felt distant from other people in past month). Indeed, evidence of the effect of 

negative emotions on mating preferences has been previously reported
69

. Interestingly, General 

happiness with own health showed significant evidence of AM across the three methods applied, but 

with a nominally-significant negative GDP. This suggests that factors other than AM may affect the 

genetics of this trait in UKB. With respect to possible temporal changes, our results showed mostly 

evidence of AM both in current and past generations (i.e., significant PRS correlation within spouses and 

within siblings, respectively). However, considering the two domains identified (i.e., substance use and 
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emotions), Frequency of consuming six or more units of alcohol, Felt distant from other people in past 

month, Difficulty stopping worrying during worst period of anxiety, and Belief that own life is meaningful 

showed genetic signatures for past-generations AM but not for current generation AM. A similar pattern 

was present also for other MHQ traits, including those related to self-harm (e.g., Ever self-harmed) and 

mania manifestation (e.g., I was more talkative than usual). Conversely, the only two traits with 

evidence of current-generation AM and not to past-generations AM were related to substance use: Age 

when last took cannabis and Ever addicted to any substance or behaviour. These different AM patterns 

may be related to temporal changes in demographic phenomena in the UK populations. For instance, 

the increased availability of cannabis
70

 may influence mating preferences more in the current generation 

than in previous ones.  

With respect to the SES conditioning in the MHQ analyses, changes in the AM genetic signatures were 

observed only for traits related to substance use with respect to the WSps-PRS correlation. However, 

they showed different patterns: increased WSps-PRS correlation for Frequency of drinking alcohol and 

Ever taken cannabis and reduced WSps-PRS correlation for Frequency of consuming six or more units of 

alcohol after SES conditioning. This could be due to the known genetic differences between substance 

use and substance use disorders observed for alcohol, cannabis, and other addictive substances
71-73

. 

Additionally, misreports and longitudinal changes have been reported to bias genetic associations of 

alcohol-drinking behaviors
74

. These factors could contribute to the effect of SES conditioning on the 

WSps-PRS correlation of MHQ-derived alcohol consumption phenotypes together with the complex 

association of SES observed across the spectrum of alcohol use traits
75

. The analyses based on PGC and 

MVP GWAS data also showed AM genetic signatures across multiple alcohol-drinking phenotypes: AUD 

(GPDresponders; GPDnon-responders; WSps-PRS), AUDIT-C (GPDresponders; GPDnon-responders; WSib-PRS), and 

maximum habitual alcohol intake (GDPresponders; GDPnon-responders; WSib-PRS; WSps-PRS). Interestingly, 

while significant GDP estimates were observed across these traits, the possible AM temporal scale 

appears to be different. AUD, an indicator of alcohol addiction, showed AM genetic signatures only in 

the current generation (i.e., significant estimates for WSps-PRS and not for WSib-PRS). Conversely, 

AUDIT-C, an indicator of alcohol consumption, showed AM genetic signatures only in the past 

generations (i.e., significant estimates for WSib-PRS and not for WSps-PRS). In line with the fact that it is 

less related to addiction than AUD and is more genetically correlated with AUDIT-C than AUD in UKB
76

, 

maximum habitual alcohol intake showed AM genetic signatures in both current and past generations. 

Additionally, SES conditioning showed inflated AM genetic signatures of maximum habitual alcohol 

intake across all methods used (Figure 3). Accordingly, the same population phenomena and/or 

confounders contributing to the SES-conditioned inflation of AM genetic signature observed in UKB 

MHQ substance-use traits (i.e., Frequency of drinking alcohol and Ever taken cannabis) could also be 

involved in the SES-conditioned inflation of AM genetic signatures observed in MVP maximum habitual 

alcohol intake. Unfortunately, the limited availability of large-scale GWAS of substance use disorders
77

 

did not permit us to fully explore patterns of fully AM genetic differences across different substances. 

The analysis of PGC and MVP GWAS data (not including UKB) allowed us to explore GPD differences 

between UKB MHQ responders and non-responders. While most of the GDP estimates were not 

statistically different between these UKB subsamples, we observed higher GDP estimates for AUD and 

PGC-assessed MDD in MHQ responders than in non-responders. As previously described
28,78

, UKB MHQ 

responders have higher socioeconomic status, are healthier, and report less severe internalizing 

symptoms. Accordingly, the differences observed may be due to the MHQ participation bias, which may 
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not only affect the generalizability of the prevalence of the MHQ-assessed traits but also the 

characterization of the polygenic architecture.  

Because we had access to PGC and MVP GWAS data related to the same phenotypes (anxiety disorder, 

MDD, and PTSD), we were able to consider this additional layer of variability. As previously shown
28,79,80 

and confirmed in this study, there is a moderate to high PGC-MVP genetic correlation with respect to 

these traits. As mentioned, PGC-MDD showed different GPD estimates between MHQ responders and 

non-responders (3.8% vs. 0.2%). Conversely, MVP-MDD showed FDR-significant and similar GPD 

estimates in both groups (3.2% vs. 3%). With respect to PTSD, while there was no difference with 

respect to MHQ participation, FDR-significant GPD was observed when testing MVP-PTSD PRS 

(responders=0.66%; non-responders=0.52%) but not when considering PGC-PTSD PRS (responders=-

0.02%; non-responders=-0.01%). Instead, anxiety disorder showed only FDR-significant WSps-PRS 

correlation when testing MVP data but not when considering PGC data. These differences are likely due 

to the characteristics of the PGC and MVP cohorts. PGC GWAS are based on the meta-analysis of many 

cohorts including participants from different countries that were assessed with different instruments 

and were enrolled with different recruiting strategies
19,81

. Conversely, MVP GWAS are based on a single 

cohort that includes only US veterans that were assessed with the same instruments and were enrolled 

through the same recruiting strategy
20

. Based on the differences observed between PGC- vs. MVP-based 

analyses, we hypothesize that the analysis of AM genetic signatures based on PRS generated from 

GWAS meta-analyses may be less affected by the specific characteristics of a cohort (e.g., target 

population group, assessment, and recruitment strategy). Instead, the analysis of AM genetic signatures 

based on PRS generated from GWAS conducted in a single cohort may be more affected by the 

characteristics of that cohort. For example, MVP and UKB cohorts likely present population dynamics 

that are specific to US and UK demographic histories, respectively
82,83

. Although PRS differences are 

plausible contributors to GPD differences between both groups, the widespread presence of such 

differences across the analyzed phenotypes i.e., not being limited to phenotypes where we found 

significant AM estimates, and the opposite direction of such differences to GPD estimates make them 

unlikely to significantly influence our results.  Accordingly, the AM genetic signatures generated from 

the analysis of GWAS generated from MVP and UKB-MHQ data could be influenced by cohort-specific 

characteristics.
 

Although our study provides new insights into the impact of AM, participation bias, and SES on the 

polygenic risk of behavioral and psychiatric traits, we acknowledge several limitations. First, due to 

confidentiality, the identified spouse pairs cannot be confirmed. Thus, it is possible that to an unknown 

extent the identified pairs do not correspond to actual spouse pairs. Second, the statistical power of the 

GWAS used to generate the PRS may have contributed to the differences observed across methods and 

datasets. Third, we cannot discard that observed changes in AM estimates after controlling for SES-

related variables may be partially influenced by a potential collider bias
84

. Fourth, the limited availability 

of large-scale GWAS representative of diverse ancestry groups limited the present study only to data 

generated from participants of European descent.  

In conclusion, we provide evidence of the possible interplay among AM, participation bias, and SES in 

the polygenic risk of multiple behavioral and psychiatric disorders. Our findings indicate that population 

phenomena and cohort-specific characteristics could influence our ability to model the polygenicity of 

traits related to mental health. This highlights the need to model more accurately different aspects that 

could influence the generalizability of genetic effects detected across cohorts and study designs. 
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Data availability 

All results used to make conclusions discussed in this study are provided as Supplementary Material. All 

GWAS data are publicly available on their respective websites. 

UK Biobank, https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access  

Psychiatric Genomics Consortium, https://pgc.unc.edu/for-researchers/download-results/ 

Million Veteran Program, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs001672.v8.p1  
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