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Abstract: Several recent emerging diseases have exhibited both sexual and non-sexual transmission modes (Ebola, Zika and
mpox). In the recent mpox outbreaks, transmission through sexual contacts appears to be the dominant mode of transmission.
Motivated by this, we use an SIR-like model, to argue that an initially dominant sexual transmission mode can be overtaken
by casual transmission at later stages, even if the basic casual reproduction number is less than one. Our results highlight the
risk of intervention designs which are informed only by the early dynamics of the disease.
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I. INTRODUCTION

Mpox (also known as monkeypox) is a neglected tropical disease, endemic in Western and Central Africa, which
frequently spills over from animal reservoirs into human populations. It has been documented to spread via respiratory
droplets and skin-to-skin contact, which we refer to as ‘casual contact’ in this paper. The basic reproduction number
for casual contact has been observed to be less than one [1–4]. In the recent outbreaks of this disease in non-endemic
regions (mainly in the Americas and Europe), sexual contact was identified as the dominant cause of transmission
with a reproduction number greater than one [5, 6].

A sexually transmitted disease where clearance of infection confers permanent immunity (in the absence of new
susceptibles) would be expected to have a small final size compared to a non-sexually transmitted disease with the
same basic reproduction number due to the highly heterogeneous contact structure of sexual transmission networks [7–
9]. However, if there is an additional transmission mechanism with a reproduction number less than one (R < 1) [3, 4],
we would expect that each individual infected through sexual contact would seed an outbreak through this additional
mechanism which (on average) would have R/(1−R) infections (subject to assuming the outbreaks are independent
which would not be the case if the number of sexual transmissions makes up a sizeable proportion of the population).
If R is close to 1, the expected size of the outbreaks can be quite large. This raises concerns that an epidemic might
be initially dominated by transmission through sexual contacts, but ultimately a large fraction (even the majority) of
infections could occur through casual transmission (see Figure 1). In this paper, we explore the dynamics of such a
disease, in which sexual transmission dominates at the start of the epidemic. We use a mathematical model to study
the interplay between the transmission routes and analyze how their behavior changes.

Mpox is not the only disease with multiple transmission routes. Sexual transmission has been identified as a possible
transmission route in Ebola and Zika in addition to their primary transmission route [10–15]. SARS-Cov-2 is airborne
and can spread through contact with surfaces [16]. The neglected tropical disease, Chagas disease, is vector-borne
and can spread through blood transfusions and oral routes [17, 18]. Scabies can spread via skin-to-skin contact and
through fomites [19]. Trachoma can spread via close contact and is also vector borne [20].
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This underlines the need for modeling of potential emerging diseases which have a casual contact reproduction
number close to one and a sexual reproduction number greater than one. It would be expected that if the sexual
transmission mode dominates at the start of the epidemic, intervention policies may focus only on sexual transmission
and ignore transmissions from casual contacts. Despite the documentation of multiple transmission routes in several
diseases, modeling literature on multiple transmission routes is sparse [21–23]. We adapt the framework developed in
[23] to develop an SIR model that uses two routes of transmission: homogeneous mass action transmission (representing
casual transmission) and a network with a heterogeneous degree distribution (representing sexual transmission).

FIG. 1. This figure illustrates the hypothesis that we explore in this paper. The ‘sexual’ epidemic (with a reproduction number
greater than one) causes many infections in the population, each of which acts as the initial seed for the ‘casual’ epidemic (with
reproduction number less than one), causing a significant number of infections. (A) The blue edges show the sexual partnership
network that exists among the nodes. Casual transmission is homogeneous (equivalent a fully connected network), so the casual
partnership network is not shown. Black dashed edges show casual transmission events. The initial state shows the population
in which an infection is introduced (the index case). The ‘sexual epidemic’ state shows the disease transmitted along the sexual
partnership network. The infections caused during the sexual epidemic act as a seeds for the ‘casual epidemic’ (for illustrative
purposes we ignore sexual transmissions seeded from the ‘casual epidemic’). On average, an infected node leads to less than
one direct casually transmitted infection, but the cumulative average number of descendants can be large. Further as there
are many infected seeds from sexual transmission, the casually transmitted infections add up to a significant proportion of the
population. (B) Time series of cumulative infections in a standard SIR model with R0 = 0.8. This shows that if the initial
number of infections is not small, a significant number of new infections can occur even if the reproduction number is less than
one i.e. even if individuals on average cause less than one new infection.

II. METHODS

A. Compartmental Model

We build a model following an existing framework for sexual transmission and nonsexual transmission [23]. For
sexual transmission, we use a heterogeneous mean-field (annealed) network. The annealed network assumption means
an individual changes their contacts on a time scale that is faster than transmission, but maintains the number of
contacts at a constant value. This assumption will later be used to derive the reproduction number in the next
sub-section. For casual transmission, we assume that individuals mix homogeneously.

Starting with equations for the proportion of individuals in each disease stage, the model can be reduced to a system
of four differential equations. We denote the proportion of the population with degree k (for the sexual network)
in state X by Xk, where X ∈ {S, I,R}. The proportion of the population in a state X (summed over all degrees)
is denoted by X. The proportion of the population with degree k (summed over all states) is denoted as Nk. The
per-partnership sexual contact transmission rate is β1, the overall casual contact transmission rate is β2 and the
recovery rate is γ. Our governing equations are
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dSk

dt
= −β1kSkπI − β2SkI, (1)

dIk
dt

= −β1kSkπI − β2SkI − γIk, (2)

dRk

dt
= γIk, (3)

where πX ≡
∑

kXk∑
kNk

is the probability that a random sexual contact occurs with an individual in the state X. We can

also define the probability generating function

Ψ(x) =
∑

Nkx
k. (4)

It can be immediately seen that Ψ′(1) =
∑

kNk = ⟨K⟩ and Ψ′′(1) = ⟨K(K − 1)⟩. Using the differential equation for
Sk

0 =
dSk

dt
+ (β1kSkπI + β2SkI)Sk, (5)

=⇒ Sk = Sk(0)e
−k

∫ t
0
β1πIdτe−

∫ t
0
β2Idτ . (6)

Let

θ ≡ e−
∫ t
0
β1πIdτ , (7)

for which

dθ

dt
= −β1πIθ. (8)

Similarly, let

χ ≡
∫ t

0

β2Idτ, (9)

=⇒ Sk = Sk(0)θ
ke−χ. (10)

If we assume that only sexual transmission is present, then θk is the proportion of individuals of degree k that are
susceptible. This proportion equals the probability that a randomly chosen individual of degree k is not infected, or
in other words, was never exposed to transmission. Similarly, if only casual transmission is present then e−χ is the
probability of never being exposed to transmission. When both transmission modes are present, the probability that
a randomly selected individual is not infected is equal to the product of the probability that the individual was never
exposed to sexual transmission from an infected individual and the probability that the individual was never exposed
to casual transmission from an infected individual. Therefore, θk and e−χ can be interpreted as the probability of not
being exposed to sexual transmission (for the given degree k) and casual transmission, respectively. For the initial
conditions, we assume that the proportion of initial infections in the population is ρk. We can now find an expression
for S(t)

Sk(0) = (1− ρk)Nk, (11)

=⇒ S(t) =
∑

Sk(t) = e−χ
∑

(1− ρk)Nkθ
k. (12)

Similarly,

πS =

∑
kSk

Ψ′(1)
=

e−χ

Ψ′(1)

∑
(1− ρk)kNkθ

k. (13)
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The system of equations (1, 2 and 3) can then be reduced to four differential equations

dR

dt
= γI = γ(1− S −R), (14)

dπR

dt
= γπI = γ(1− πS − πR), (15)

dθ

dt
= −β1(1− πS − πR)θ, (16)

dχ

dt
= β2(1− S −R). (17)

These equations can be solved numerically. In the limit ρk → 0, S(t) = Ψ(θ)e−χ. We can interpret Ψ(θ) as the
probability of not having been exposed to sexual transmission, and e−χ as the probability of not having been exposed
to transmission through the casual contact route. In Figures 2, we plot 1− Ψ(θ) and 1 − e−χ as a function of time.
These are the probabilities that a randomly chosen individual was exposed to sexual transmission at least once, or to
casual transmission at least once, respectively. In solving the system of differential equations (14 - 17) numerically,
we use ρk ∝ k as the initial conditions where all the ρk ≪ 1. This initial condition is used because we assume that
an individual with more sexual contacts is more likely to get infected.

B. Sexual transmission network

For the sexual transmission network, we use a class of networks whose degree distribution P (K = k) (we use Nk as
a shorthand for this) is given by

P (K = k) = Nk =


N0 for k = 0

Ck−α for k ≥ 1 & k ≤ kmax

0 for k > kmax

(18)

for integral values of k, where N0 is chosen arbitrarily, C = 1−N0∑
k−α is a normalization constant and kmax is the

maximum number of sexual contacts an individual is allowed to have. The exponent −α with α > 0 corresponds to
decay at large k, but much slower than exponential. Often, scale-free networks or Erlang distributed networks are
used for modeling of sexual transmission networks [24–26] to capture the slow decay at large k. Our network differs
from these networks by including a cutoff on the degree and the presence of nodes with zero degree. In the next
subsection, we show that the second moment of the distribution, ⟨K2⟩, forms a component of R0. The qualitative
features of our results will persist irrespective of the details of the distribution. What is crucial is that the distribution
has sufficient high-degree individuals that ⟨K2⟩ is large compared to ⟨K⟩2, but the high-degree individuals comprise
a small proportion of the population.

C. Next generation matrix and R0

The reproduction number can be obtained by calculating the largest eigenvalue of the next generation matrix
G [27, 28], whose elements are:

Gkl =
Sk

γ

(
kℓβ1

Ψ′(1)
+ β2

)
. (19)

Another approach is by using a lower dimensional description of the system. At each generation, the newly infected
population can be grouped into those who have been infected through sexual contact (Ng

s ) and those who have been
infected through casual contact (Ng

c ). In the next generation, this grouping is transformed by a next generation
matrix [29] [

Ng+1
c

Ng+1
s

]
=

[
Rc Rc

Rs/c Rs/s

] [
Ng

c

Ng
s

]
. (20)

The average number of new infections caused by an individual through casual transmission is Rc. From the model,
we see that the transmission rate is β2 for casual transmission and 1/γ is the time spent in the infectious stage,
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so Rc = β2

γ . The average number of new sexually transmitted infections caused by an individual who was infected

casually is Rs/c = β1⟨K⟩
γ . The average number of new sexually transmitted infections caused by an individual who

was infected sexually is Rs/s =
β1⟨K2⟩
γ⟨K⟩ . These can be computed by considering the following.

There are two network layers, a homogeneous layer and the sexual transmission layer with degree given by random
variable k and a distribution Nk. This leads to four types of reproduction numbers:

(i) Casual infections caused by a casually infected individual: the casual contact network distribution is homoge-
neous with all transmitting at rate β2 with an average duration of 1/γ. So the expected number of new casual

infections per infected individual is β2ℓ
γ .

(ii) Casual infections caused by a sexually infected individual: the expected number of new casual infections is also
β2

γ , because being infected through sexual contact does not affect transmission through the contact network.

(iii) Sexual infections caused by a sexually infected individual: The expected number of infections caused by a node

of degree k is β1k
γ and the probability that a newly infected node has degree k is Nkk∑

Nℓℓ
(higher the degree, higher

is the chance of contacting an infected individual). Thus, the expected number of infections is proportional to
β1⟨K2⟩
γ⟨K⟩ .

(iv) Sexual infections caused by a casually infected individual: the number of infections caused by a node of degree k

is β1k
γ . The probability that the newly infected node has degree k is Nk, and the expected number of infections

is β1

γ ⟨K⟩.

Note that in (i) and (ii) above, the reproduction numbers are identical, Rc = β2

γ . For (iii) and (iv), using the

appropriate normalization, Rs/s and Rs/c, are obtained respectively [29]. The largest eigenvalue of the matrix in
equation (20) matches with that of the next generation matrix defined in equation (19).

D. Final state relations

We can derive transcendental equations for the variables θ and χ at the end of the epidemic by assuming that the
proportion of initial infections in the population is negligible, i.e., ρk → 0. Starting with equation (17) and using
equation (14),

χ(∞)− χ(0) =

∫ ∞

0

β2Idt, (21)

χ(∞) =
β2

γ
R(∞). (22)

At the end of the epidemic, I(∞) = 0, and S(∞) can be obtained using equation (12)

χ(∞) =
β2

γ

(
1− e−χ(∞)Ψ(θ(∞))

)
. (23)

The equation for θ can be derived by considering its definition and using equation (15)

θ(∞) = exp

(
−
∫ ∞

0

β1πIdt

)
= exp

(
−β1

γ
πR(∞)

)
. (24)

At the end of the epidemic, πI(∞) = 0, and πS(∞) can be obtained from equation (13)

θ(∞) = exp

(
−β1

γ

(
1− e−χ(∞)θ(∞)

Ψ′(θ(∞))

Ψ′(1)

))
. (25)

Thus, equations (23 and 25) together are transcendental equations for the final state of χ and θ. We solve them
numerically through recursion and use the solutions for constructing Figure 3.
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III. RESULTS

A B

C D

FIG. 2. The probability of getting exposed to casual transmission may exceed that of sexual transmission even when the
reproduction number for casual transmission is less than one (Rc < 1 < Rs/s). Parameters: (A) N0 = 0.34, kmax = 60, α = 2;
(B) N0 = 0.75, kmax = 20, α = 2; (C) N0 = 0.75, kmax = 60, α = 3; (D) N0 = 0.34, kmax = 20, α = 3. The recovery rate is
γ = 1 for all cases. The reproduction numbers are as follows – Rc: casually transmitted infections caused by any individual,
Rs/s: sexually transmitted infections caused by a sexually infected individual, Rs/c: sexually transmitted infections caused by a
casually infected individual. We use R0 = 4 and Rc = 0.9 and the rest of the reproduction numbers are determined. The three
curves show the probability that a randomly selected individual (i) is susceptible, given by 1−S and shown by dotted line, (ii)
was exposed to sexual transmission, given by 1−Ψ(θ) and shown by solid line, (iii) was exposed to casual transmission, given
by 1 − e−χ and shown by dot-dashed line. The inset is the initial dynamics at magnified scale with log-scale for the y-axis,
which shows the dominance of sexual transmission over casual transmission. The cross over can be seen in (A, B, C) where
casual transmission starts to dominate.

We are interested in studying if the presence of casual transmission (through homogeneous mass action) with a
basic reproduction number Rc less than one, in addition to sexual transmission (through a heterogeneous network)
with a basic reproduction number Rs/s greater than one, can affect the dynamics of an epidemic. We use a heuristic
method to find some long-term insights into this problem. An infectious individual would on average create Rc

infections, which would lead to R2
c infections in the next generation, and so on, through casual contacts. For a large

population, ignoring the fact that chains of transmission from multiple seeds may intersect and ignoring the sexual
transmissions seeded by these chains, we can see that the total number of casually transmitted infections originating
from an infected individual approaches the sum Rc +R2

c +R3
c + · · · = Rc

1−Rc
. As Rc → 1, the sum diverges and we

would expect a large number of infections from casual contact for each ‘seed’ infected through sexual transmission.
Casual transmission by a single infectious individual may not amount to a large proportion of infections, but when
a significant proportion of the population is infected through sexual transmission, all the infections caused by casual
transmission will add up to a considerable proportion. If Rc > 1/2, then we can expect more than one casual infection
per seed.

We study the same scenario using equations (14)–(17) that incorporates casual transmission using a mass action type
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dynamics and sexual transmission using an annealed network chosen to produce a power law-like degree distribution,
described in the methods section. Our results show that the role played by the two transmission modes in the spreading
of the disease at early times is not a good indicator of their roles at later times. The early dynamics are analyzed
using the next generation matrix derived in equation (20). The stable distribution of transmissions, meaning the
proportions of casual transmissions and sexual transmissions for each generation is obtained by the top eigenvector

of the next generation matrix,
[
Rc

R0
, 1− Rc

R0

]
. If Rc ≪ Rs/s, then R0 ≈ Rs/s [23]. Therefore, more infections will be

caused by sexual transmission in the early times.
In Figure 2 we show the trajectory of the epidemic for four populations that have different sexual contact networks

with Rc = 0.9 and R0 = 4. Since Rc < Rs/s, the probability of getting exposed to sexual transmission (1−Ψ(θ)) is

initially higher than that of getting exposed to casual transmission (1−e−χ). However, as the epidemic progresses, the
dominant mode of transmission changes and the probability of exposure to casual transmission exceeds that of sexual
transmission. This behavior, which we refer to as ‘switching of the dominant transmission mode’, can occur over a
wide range of parameter values, and the final size can considerably change with the presence of casual transmission
(Figure 3).

The mechanism for switching of the dominant transmission mode can be deduced from equation (12). The rate
at which susceptibles deplete is higher for those with a larger degree. When the epidemic is starting, the first nodes
to get infected sexually and recover are disproportionately those with the highest degree. Since the proportion of
high degree nodes is very small (Nk ∼ k−α), after the initial stage, the epidemic is sustained only through the more
prevalent low-degree nodes which do not contribute much to sexual transmission. Therefore, despite having a low
basic reproduction number, the probability of exposure to casual transmission may be comparable to or even exceed
the probability of exposure to sexual transmission in the later stages of the epidemic.

In contrast, if Rc were larger than Rs/s, casual transmission would certainly dominate in the early times. However,
as discussed above, sexual transmission events become less likely after a short period of time due to depletion of
higher-degree susceptibles. So, casual transmission will continue to dominate throughout the epidemic. Thus, the
heterogeneous degree distribution (of the initially dominant mode) is playing an important role in switching the
dominance of transmission modes and just the existence of two routes of transmission with disparate reproduction
numbers is not sufficient for switching.

Figure 3 also shows the disproportionate effect that casual transmission has on the final epidemic size. Despite the
fact that Rc is smaller than one, reducing it to zero may lead to a larger reduction in final size than reducing Rs/s

by the same amount, depending on the characteristics of the sexual contact network and values of the reproduction
numbers.

IV. DISCUSSION

In this paper, we have presented and analyzed a model of a disease with two transmission routes: casual and sexual,
based on [23]. We model casual transmission using homogeneous mass action dynamics and sexual transmission using
an annealed network with heterogeneous degree distribution. The degree distributions from empirically observed
sexual transmission networks are often described as long-tailed distributions (P (X = x) ∼ x−α with X > 0) [24, 25].
However, the social and biological constraints on an individual’s sexual activity would imply that there is an upper
limit on the number of sexual contacts. To account for this, distributions which have an exponential cutoff for
large degrees are often employed [24, 26]. Instead of an exponential cutoff, we impose a cutoff on the maximum
degree and also allow for a non-zero probability for individuals with zero sexual contacts. We have approximated
casual transmission using homogeneous mass action dynamics i.e. all individuals are identical. Casual transmission,
although heterogeneous, has not been reported to have long-tail properties [30, 31]. Relative to the large dispersion
in the distribution of sexual contacts, the dispersion in the casual contact distribution would be negligible, justifying
the homogeneous assumption.

Sexual transmission as an additional route of transmission was identified for both Zika and Ebola viruses [10,
11, 13, 14]. Sexual transmission in mpox was a discovery from the recent outbreaks in non-endemic regions. From
observations in endemic regions, it was believed to spread through casual contact and zoonotic transmissions and
sexual contact was not documented as a transmission route [1, 2, 5, 6]. This work started out as an attempt to
explore the potential impact of casual transmission in later stages of the emerging mpox epidemics, which were
mainly driven by sexual contact transmission. But since the time of writing, the outbreaks have started to subside.
At its peak in mid-August, about a thousand daily cases of mpox were detected world-wide. Heightened awareness of
the disease, contact tracing, COVID-19-induced social distancing and a very small basic casual reproduction number
may explain why the outbreaks did not continue to grow.
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FIG. 3. Sections of parameter space of the model. The first plot of each row shows how the final size or the proportion infected
(R(∞)) in the epidemic, changes with Rs/s for different values of Rc, the casual contact reproduction number. The second
plot in each row shows a heat map of the difference between probability of exposure to casual transmission and probability of
exposure to sexual transmissi, at the end of the epidemic, plotted across the basic casual reproduction number and basic sexual-
sexual reproduction number. Green regions in the heatmap indicate the reproduction numbers for which casual transmission
eventually dominates. The third plot shows the degree distribution and its parameters. For all the three cases, the recovery
rate γ = 1.

Although this analysis was originally motivated by mpox, our results are applicable to any SIR-like disease with a
dominant sexual mode of transmission (basic reproduction number greater than one) and a secondary casual mode of
transmission (basic reproduction number less than one). The main insight from our model is that those individuals
with highest levels of sexual activity (and therefore most infectious) are at the highest risk of getting infected at the
time of epidemic onset. But as the epidemic progresses, casual transmission can become dominant and even those
who are sexually inactive can be at risk of getting infected.
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In terms of designing intervention policies, recognizing the possibility of changing dominant transmission modes
has important implications:

(i) Expected outcome of interventions: Due to the heterogeneous degree distribution, the final size of a disease
spreading on a sexual contact network is expected to be smaller than that in a homogeneous population, for
the same value of R0. Our results show that final size estimates based only on sexual transmission could be
significant underestimates. Underestimating the final size in this manner could have a decisive impact on the
performance of interventions. If the interventions are intensive and can completely eliminate sexual transmission
at early stages of the epidemic, then the secondary route of casual transmission will not pose any significant
risk. On the other hand, if the interventions are not able to eliminate, but only moderate sexual transmission,
then casual transmission could become dominant at a later time leading to a significantly larger final size than
expected. Thus, intervention policies for curtailing sexual transmission, based on the early observations of a
disease may fail to meet the expected outcomes if an initially insignificant casual transmission route is ignored.

(ii) Risk factors for different groups: For sexually transmitted diseases, children are generally considered to be not
at-risk because they are sexually inactive. The degree distribution we have used accounts for a sexually inactive
component of the population and the results show that this group is also at risk once casual transmission
becomes dominant.

(iii) A broader space of interventions: When Rs/s ≫ Rc, sexual transmission forms the main component to the
basic reproduction number and a reduction in Rs/s will have an appreciable effect on reducing R0. However,
subject to the structure of sexual contacts, a reduction in Rs/s and in Rc by the same amount will have a
starkly different effect on the final size of the epidemic. Even if the casual reproduction number is less than
one, policymakers should consider the disproportionate contribution of casual transmission to the final size and
implement interventions on casual transmission along with the interventions on sexual transmission.

(iv) Critical community size: Diseases that induce immunity typically spread as an epidemic wave, and then infection
counts crash for a long period until immunity wanes or new susceptibles join the at-risk population. In small
populations the disease is likely to go extinct during this inter-epidemic phase [32]. The possibility of long chains
of casual transmissions may help a disease to persist in smaller communities than would happen otherwise.

In conclusion, for a disease with dominant sexual transmission and a secondary casual transmission component at
the beginning of the epidemic, the dominant transmission route can switch and by the end of the epidemic, casual
transmission may have a far larger impact than what would be expected from only sexual transmission. Therefore,
policymakers should consider interventions against casual transmission along with the conventional approaches to
curtailing sexual transmission.
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