Suppression of classical renin-angiotensin system and increase of soluble ACE2 in pregnancies with adverse outcomes

Robin Shoemaker, Marko Poglitsch, Hong Huang, Katherine Vignes, Aarthi Srinivasan, Cynthia Cockerham, Aric Schadler, John A. Bauer, John M. O'Brien

1 Department of Dietetics and Human Nutrition, University of Kentucky, Lexington KY, USA
2 Attoquant Diagnostics GmbH, Vienna, Austria
3 Department of Pediatrics, University of Kentucky, Lexington KY, USA
4 Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Kentucky, Lexington KY, USA

Running Title: Classical and alternative RAS in adverse outcomes of pregnancy

First and Corresponding Author:
Robin Shoemaker, PhD
Assistant Professor
University of Kentucky
Department of Dietetics and Human Nutrition
119 Funkhouser Building
Lexington, KY 40306
859-257-1031
Robin.shoemaker@uky.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Adverse pregnancy outcomes are major health risks to pregnant women and can increase maternal risk for cardiovascular disease. However, clinical risk factors are not always well-correlated with development of adverse pregnancy outcomes. The renin-angiotensin system (RAS) is a hormone system composed of two arms with opposing actions that plays a major role in cardiovascular function in pregnant and non-pregnant individuals. In the current study, we investigated whether the normal activity of the RAS during pregnancy was dysregulated in pregnancies complicated by adverse outcomes. In a retrospective study of 74 women followed prospectively for pregnancy-hypertension and related adverse outcomes, we used a novel mass spectrometry-based methodology to quantify serum concentrations of multiple angiotensin peptides and enzymatic activity of angiotensin-converting enzyme 2 (ACE2) and neprilysin in the first and third trimesters of pregnancy. There were n=46 women meeting the primary endpoint of a composite of adverse outcomes, and n=28 women without pregnancy complications. Serum concentrations of components of the “classical” RAS, those involved in the formation and action of the main bioactive peptide, angiotensin II, were increased during healthy pregnancy, but markedly suppressed in adverse outcome pregnancies. In contrast, components of the counter-regulatory, or “alternative”, RAS, such as ACE2, neprilysin, and angiotensin-1-5, were moderately increased in healthy pregnancy but more robustly increased in pregnancies with adverse outcomes. Our results indicate that a shift in the activation of the classical arm to the alternative arm of the RAS portends the development of adverse outcomes of pregnancy.

Keywords: angiotensin, maternal, pregnancy complications, ACE2, ACE2 shedding, biomarkers, mass spectrometry
Introduction

Adverse outcomes of pregnancy, such as pre-eclampsia, intrauterine growth restriction (IUGR), preterm birth, and maternal organ damage, pose major maternal and fetal health risks. Nearly one in five women in the United States experience adverse outcomes of pregnancy\(^1\), which are associated with long-term health risks for both the mother and the offspring. These include cardiovascular diseases, metabolic syndrome, cognitive and developmental impacts, and early mortality\(^2\). The risk for adverse outcomes is greatly affected by race and ethnicity, socioeconomic factors, and the presence of cardiometabolic and other clinical risk factors\(^3\).

Clinical parameters, such as blood pressure or proteinuria, poorly predict adverse outcomes\(^4\), underscoring an unmet and growing need for knowledge leading to the detection of patients at risk for adverse outcomes of pregnancy.

The renin angiotensin system (RAS) is a master regulator of cardiovascular function and blood pressure control in non-pregnant and pregnant states. Activity of the RAS increases during pregnancy to prompt vascular and hemodynamic changes necessary to accommodate the growing fetoplacental unit. The activity of the RAS is controlled by the rate-limiting enzyme renin, which cleaves a ten amino acid fragment, angiotensin I, from the precursor protein, angiotensinogen. Angiotensin I is then metabolized by angiotensin-converting enzyme (ACE) to generate the primary effector peptide, angiotensin II. The components involved in the formation and subsequent effects of angiotensin II from angiotensin I are collectively termed the “classical” RAS. An appreciable body of literature demonstrates that the classical RAS is consistently upregulated in pregnancy and suppressed in preeclampsia\(^5-7\). Angiotensin II can be metabolized by angiotensin converting enzyme 2 (ACE2) to generate angiotensin-(1-7)\(^8\). Effects of angiotensin-(1-7) are reported to oppose that of angiotensin II\(^9\), and the ACE2/angiotensin-(1-7) axis is termed the “alternative” RAS.

Limited and conflicting studies suggest the alternative RAS may also play a role in pregnancy, and that alterations in these components are associated with pre-eclampsia and...
small-for-gestational age infants10-12. Recent studies demonstrate that soluble ACE2, a catalytically active ectodomain released into the circulation via proteolysis13, is a biomarker for cardiovascular disease14-16 and elevated with severity of COVID-19 disease17. Given the role of the RAS in the maternal adaptation to pregnancy, we hypothesized that dysregulation of the RAS and ACE2 could be a molecular link portending complications in pregnancy. In the current study, we quantified serum components of the RAS at two time points during human pregnancy using a novel mass spectrometry-based methodology. Our objective was to determine associations of serum components of the classical and/or alternative RAS with adverse outcomes of pregnancy.

Methods

Study Population

This is a retrospective analysis of n=74 women enrolled in an ongoing study at the University of Kentucky. The cohort is comprised of pregnant women meeting the United States Preventative Services Task Force (USPTFS) criteria for the recommendation of aspirin for the prevention of preeclampsia18 (n=38) and a control population considered to be at low-risk for developing pre-eclampsia (n=36). Inclusion criteria for the former were more than one of the following clinical risk factors: history of preterm preeclampsia, chronic hypertension, type 1 or 2 diabetes, renal or autoimmune disease; or more than two of the following clinical risk factors: nulliparity, obesity (BMI > 30), family history of pre-eclampsia, Black race, lower income, age 35 or older, previous pregnancy with small birth weight or adverse outcome, or in-vitro conception. Pregnant women not meeting these criteria were recruited as controls. Exclusion criteria included age less than 18 or greater than 45 years, multifetal gestation, history of allergy to aspirin, gastrointestinal bleeding, severe peptic ulcer or liver dysfunction, patients on anticoagulant medications, and women with anomalous fetus. All subjects gave informed consent to participate in the study, and
for the use of samples for this research, which was approved by the University of Kentucky Institutional Review Board.

Study Design and Outcomes

Pregnant women between 18 and 45 years of age in the first trimester of pregnancy were recruited at the time of their routine prenatal visits or ultrasound appointments in the first trimester screening and followed prospectively for pregnancy outcomes. Patients were treated according to standard clinical guidelines and data collected as part of routine clinical care. Demographic information was collected upon enrollment. Clinical data and maternal blood were collected by trained study personnel at the first (11-16 weeks) and third (28-32 weeks) trimesters of pregnancy and outcomes were recorded at delivery. Blood pressure was measured following the American Heart Association Guidelines, and was determined as the average of two consecutive measurements per arm assessed in a seated, resting position by one observer. Doppler investigations of the uterine artery were performed according to the standards of the Fetal Medicine Foundation at 18-22 weeks gestation and reported as mean pulsatility index of the left and right arteries. Clinical data and outcomes were obtained from electronic medical records (EMR), and input into a REDcap database by study personnel. Maternal blood was collected into red-top serum tubes and rested at room temperature for 60 minutes followed by centrifugation, transfer into 200 μL single-use aliquots, and barcoding. Samples were stored at -80 °C until analysis.

The primary endpoint of the current study was a composite outcome of maternal adverse outcomes (AO). The composite outcome was met if one of the following AOs was recorded: gestational hypertension (new onset >20 weeks), pre-eclampsia (early onset, late onset, or postpartum), intrauterine growth restriction (IUGR, defined as fetal weight below the 10th
percentile), postpartum hemorrhage, preterm premature rupture of membranes (PPROM), pre-
term labor or pre-term delivery (<34 weeks), presence of polyhydramnios, or fetal death.

Quantification of angiotensin peptides and angiotensin-based biomarkers in serum.

Equilibrium levels of six different RAS angiotensin peptide metabolites and aldosterone in serum
samples were quantified by LC-MS/MS using previously validated and described methods (RAS
Fingerprint™, Attoquant Diagnostics GmbH, Vienna, Austria). Previous studies demonstrate
controlled sample conditioning followed by analysis of angiotensin peptides under equilibrium
conditions to be highly correlated with circulating peptide profiles, and effective for prediction of
outcomes. Equilibration was performed at 37 C for one hour, followed by stabilization
through addition of an enzyme inhibitor cocktail. Samples were spiked with stable isotope-
labeled internal standards at 200 pg/mL for each angiotensin metabolite. The samples were
subjected to C-18-based solid-phase-extraction followed by LC-MS/MS analysis using a
reversed-phase analytical column operating in line with a Xevo TQ-S triple quadruple mass
spectrometer (Waters). Internal standards were used to correct for peptide recovery of the
sample preparation procedure for each analyte in each individual sample. Analyte
concentrations are reported in pmol/L. The lower limits of quantification (LLOQs) for each
peptide were: angiotensin I: 5 pmol/L; angiotensin II: 4 pmol/L; angiotensin III: 4 pmol/L;
angiotensin IV: 2 pmol/L; angiotensin-(1-5): 2 pmol/L; angiotensin-(1-7): 3 pmol/L, and
aldosterone: 10 pmol/L. Equilibrium-based biomarkers were calculated as previously reported:
renin activity (pmol/L): [Ang I + Ang I] and ACE activity (pmol/L/pmol/L): [Ang II / Ang I]. For
values below the LLOQ, means for each analyte and calculation of equilibrium-based
biomarkers were calculated using half the LLOQ.

Quantification of active ACE2 and neprilysin concentration
LC-MS/MS based quantification of ACE2 and NEP concentrations, respectively, in serum samples was performed using natural substrate-based conversion assays, as previously described24,25. Briefly, an excess of substrate (angiotensin I or angiotensin II) was spiked to a diluted sample in the presence of angiotensin-(1-7)-stabilizing protease inhibitor mix. Following a one-hour incubation at 37°C, angiotensin I, II, and (1-7) levels were quantified by LC-MS/MS using internal standardization with stable isotopes. The assay was validated by spiking recombinant human ACE2 or NEP, respectively, into human serum in the presence and absence of respective inhibitors (MLN-4760 and thiorphan). The angiotensin-(1-7) formation rate was calculated in (pmol/L)/h and converted to ng/mL of active enzyme concentration based on the standard curve obtained from assay calibration.

\textit{Statistical Analysis}

Bivariate statistical analyses were performed via GraphPad Prism version 9 (San Diego, CA, USA). Independent continuous variables were analyzed using independent samples t-tests or independent samples difference of medians as appropriate. Statistical significance of continuous variables between first and third trimester were analyzed using paired samples \textit{t}-test or Wilcoxon signed rank test as appropriate. A p-value less than 0.05 was considered statistically significant.

\textit{Results}

\textit{Subject characteristics}. Paired clinical data and biological samples from first and third trimester visits were obtained for 74 women between April 2019 and May 2020. There were 46 women (62.2\%) that developed AOs, and 28 (37.8\%) that did not. Subject demographics and clinical characteristics are described in Table 1. The cohort was primarily Caucasian, with Black, Hispanic, and mixed race women distributed fairly equally among those who developed AOs.
and those who did not. Women with AO had slightly elevated age, first trimester BMI, systolic and diastolic blood pressures, and uterine artery pulsatility index (PI) compared to those with no AO, although none of these parameters were statistically significant. Women who experienced AOs had significantly shorter gestation (P<0.0001) and smaller infant body weights (P<0.05) compared to those without (Table 1). There were 31 women with one adverse outcome, 9 with two adverse outcomes, and 6 with three adverse outcomes. All recorded outcomes for this group are listed in Table 2.

Serum components of the classical RAS were increased in healthy pregnancies, and suppressed in pregnancies with AOs. In women with no AOs, components of the classical RAS (angiotensin I, angiotensin II, and renin activity) robustly increased from first to third trimester of pregnancy (Table 3). In contrast, only angiotensin I was increased during gestation in pregnancies with AOs. Further, the change in angiotensin I, angiotensin II, and renin activity over gestation was lower in pregnancies complicated by AOs (Figure 1A). In addition, concentrations of angiotensin I and angiotensin II and renin activity were generally lower in pregnancies complicated by AOs compared to those without, and this was statistically significant at the third trimester time point (Table 3). Angiotensin IV was marginally, but not significantly, increased with pregnancy in women with and without AOs, with a trend of lower concentrations in AO pregnancies. Interestingly, activity of ACE was significantly reduced from first to third trimester in both groups, with no significant differences between groups at either time point.

ACE2 and the alternative RAS is increased in pregnancy, and more pronounced in pregnancies complicated by AOs. ACE2 activity was detected in all patients, and was significantly increased from the first to the third trimester in patients with and without AOs (Table 3). However, ACE2
activity in the first trimester was significantly lower in AO compared to no AO patients (Table 3; P<0.05), and the change in ACE2 activity over gestation was significantly greater in patients with AOs (Figure 1B; P<0.05).

In contrast to the observed rise in ACE2 activity during pregnancy, concentrations of angiotensin-(1-7) (the product of enzymatic action of ACE2) in serum were not similarly increased over pregnancy. In fact, median concentrations of angiotensin-(1-7) at both time points were below the lower limit of quantification (LLOQ) in both AO and non-AO groups. Angiotensin (1-7) concentrations in non-AO patients were above the LLOQ in only 6 and 13 patients in the first and third trimesters, respectively, and in 11 and 12 patients with AOs in the first and third trimesters, respectively, and were therefore not reported in Table 3. However, angiotensin-(1-7) can be cleaved at the c-terminus by ACE to generate angiotensin-(1-5)20, and this peptide was detected in all patients. Angiotensin-(1-5) concentrations increased during gestation, but this was only significant in AO patients (Table 3; P<0.05 in AO, versus p=0.0627 in non-AO patients). In addition to the conversion from angiotensin II by ACE2, angiotensin-(1-7) can generated from angiotensin I via the enzymatic action of neprilysin26. Neprilysin activity was increased from first to third trimester of pregnancy in both groups (Table 3), with the effect more pronounced in AO (P<0.001) versus non-AO patients (P<0.05). There was no difference in neprilysin activity at either time point in AO versus non-AO patients.

Discussion

Detection of adverse outcomes of pregnancy is an emergent and unmet need in the fields of obstetric and maternal-fetal-medicine. Because these conditions can have long-term effects on cardiovascular health, detection (and ultimately prevention) of adverse outcomes of pregnancy is an important strategy for the prevention of cardiovascular disease2. In the current study, we
investigated the association of serum markers of the RAS, a hormone system with key roles in both cardiovascular function and maternal adaptation to pregnancy, with adverse outcomes in a cohort of pregnant women. This is the first study to perform comprehensive molecular profiling of the RAS (e.g. classical and alternative arms) at multiple time points during pregnancy via mass spectrometry. The major findings of this study are: 1) both the classical and alternative arms of the RAS are robustly increased in healthy pregnancy; 2) pregnancies with adverse outcomes are characterized by attenuated activation of the classical RAS (both compared to healthy pregnancy and across gestation), and 3) in contrast, the alternative RAS, and release of soluble ACE2 into the circulation, is more active in pregnancies with adverse outcomes. These data demonstrate that alterations in the normal activity of the RAS in pregnancy are associated with adverse outcomes in pregnancy.

Published literature demonstrate elevated plasma renin activity, angiotensin I and/or angiotensin II concentrations, either longitudinally throughout healthy pregnancy, or compared to a non-pregnant population11,27-32. These data are derived using plasma renin activity assays (where radioimmunoassay is used to quantify formation of angiotensin I from angiotensinogen, and values are reported as concentration per unit time20), or other antibody-based capture techniques for quantification of angiotensin I or II, reported as concentration (ng/mL). Data in our study are derived via RAS FingerprintTM (developed by Attoquant Diagnostics GmBH) a novel LC-MS/MS-based method for simultaneous measurement of multiple angiotensin peptides in blood, which are also used to calculate surrogate biomarkers for renin and ACE activity. Comparison of this method to classical renin activity and antibody-based methods has been reported in non-pregnant states33, and reported a body of literature demonstrates RAS biomarkers generated using this method are associated with clinical conditions and outcomes related to cardiovascular and hypertensive diseases22,33-37. This is the first study to report direct quantification of angiotensin peptides via LC-MS/MS at multiple time points of pregnancy. In
agreement with published literature, we report a marked increase in renin activity, angiotensin I,
and II over gestation in healthy pregnancy.

Published literature indicates that activation of the classical RAS observed in healthy
pregnancy is suppressed in women with pre-eclampsia. Similarly, we demonstrate that in
pregnancies complicated by adverse outcomes, renin activity and angiotensin II concentrations
do not increase over gestation are reduced compared to healthy pregnancies in the third
trimester. In contrast, limited and conflicting findings exist regarding the activity of the alternative
RAS in pregnancy, and few studies provide a comprehensive assessment of both the classical
and alternative RAS. Merrill et al performed a comprehensive assessment of the RAS in women
in the third trimester of uncomplicated pregnancy compared to a non-pregnant group and a
preeclamptic group. Elevated renin activity and concentrations of angiotensins I, II, and (1-7)
in plasma of pregnant versus non-pregnant women, and a reduction in these parameters with
preeclampsia, were reported. The authors hypothesized that angiotensin-(1-7) may function in
healthy pregnancy to oppose potentially adverse (vasoconstrictive) effects of angiotensin II and
that reductions in angiotensin-(1-7) may contribute to hypertension in preeclampsia, further
supported by the observation that plasma concentrations of angiotensin-(1-7) were negatively
associated with blood pressure. Similarly, in a recent study by Tamanna et al, plasma
angiotensin-(1-7) concentrations were elevated throughout pregnancy compared to a non-
pregnant control group, and reduced in preeclampsia. Compared to normal pregnancy,
plasma ACE2, quantified via ELISA, was elevated in the third trimester in small-for-gestational
age (SGA) pregnancies and reduced in preeclamptic pregnancies.

Findings from the current study agree with those of Merrill et al, where the classical RAS
is increased during pregnancy, and with Tamanna et al. that ACE2 activity is increased during
pregnancy. However, using mass spectrometry, we report limited detection of serum
angiotensin-(1-7) in either the first or third trimester; in samples where angiotensin-(1-7) was
detected, concentrations were significantly lower than those reported via radioimmunoassay. A possible explanation for discrepancies in findings is methodology for detection of angiotensin peptides, an analyte posing several analytic challenges. These include extremely short half-lives (e.g. seconds) of peptides, inefficient inhibition of angiotensin-metabolizing enzymes during sampling, and cross-reactivity in antibody-based assays, (as peptide sequences may only differ by one or two amino acids) \(^{38}\). Notably, reliability of ELISA for quantification of angiotensin-(1-7) has recently been called into question\(^{39}\). However, in the current study, angiotensin-(1-5) was readily detected. This peptide is generated from angiotensin-(1-7) by the actions of ACE\(^{28}\), and is thus considered part of the alternative RAS. Although the absolute concentrations of this analyte were very low, angiotensin-(1-5) levels were significantly reduced in the third trimester in pregnancies with adverse outcomes, compared to healthy pregnancies (median value of 5.6 compared to 7.9 pmol/L).

In a recent case control study, plasma levels of ACE2 in mid-pregnancy were elevated in 296 pregnant women prior to the development of preeclampsia compared to 333 healthy pregnancies using proximity extension assay technology (Olink PEA CVD-II panel; Uppsala, Sweden)\(^{14}\). Similarly, in the current study, we report that soluble ACE2 is significantly increased in pregnancy, and that this increase is greater in women who subsequently developed adverse outcomes. ACE2 is a membrane-bound protein, but conditions of tissue damage or stress (e.g. heart or renal failure) result in shedding of a soluble portion of the protein, which can be detected in the urine or circulation\(^{13}\). Soluble ACE2 is normally not detected, or found in low levels in healthy individuals (at concentrations 100-fold lower than that of ACE)\(^{40}\), but a growing number epidemiological and clinical studies report patients with cardiovascular disease\(^{15,16,41}\), and in some reports of severe COVID-19, exhibit higher circulating levels of soluble ACE2. However, it is not clear why pregnancy is associated with enhanced ACE2 shedding, or from what organ(s) ACE2 was shed. A dysfunctional placental RAS has been implicated in
preeclampsia\(^42,43\), but in a small cohort, gene expression of ACE2 in placenta was not different
in preeclamptic versus normotensive patients\(^44\). Regardless of the tissue origin, elevated
shedding of ACE2 is likely reflective of local tissue damage in pregnancies with adverse
outcomes.

Identification and characterization of pathophysiologies related to adverse outcomes of
pregnancy is necessary for the development of novel, targeted risk assessment and intervention
strategies. Results from the current study indicate temporal activity of biomarkers of the RAS as
a potential candidate for identification of women at high risk for adverse outcomes of pregnancy.

Acknowledgements

We are most grateful for the team of caring clinicians and clinical staff that collect and manage
patient samples and data.

Sources of funding. The work was supported in part by a grant from the Kentucky BIRCWH
Program, NIDA 5K12DA035150 (RS) and by the Kentucky Children’s Hospital Children’s
Miracle Network Research Fund.

Competing interests. M. Poglitsch is an employee at Attoquant Diagnostics, a company
developing angiotensin-based biomarkers for hypertension. The other authors report no
conflicts.

Author contributions. Study conception and design, clinical (JAB, JOB, CM), analytical (RS);
data collection (KV, AS, HH); analysis and interpretation of results (RS, MP, JAB, JOB);
manuscript preparation (RS).
References

29. Leanos-Miranda A, Inova C-G, Mendez-Aguilar F, Molina-Perez CJ, Ramirez-Valenzuela KL, Sillas-Pardo LJ, Uraga-Camacho NC, Isordia-Salas I, Berumen-Lechuga MG. Lower circulating...
angiotensin II levels are related to the severity of preeclampsia and its risk as disclosed by a specific bioassay. Medicine (Baltimore). 2018;97:e12498. doi: 10.1097/MD.00000000000012498

39. Chappell MC, Pirro NT, South AM, Gwathmey TM. Concerns on the Specificity of Commercial ELISAs for the Measurement of Angiotensin (1-7) and Angiotensin II in Human Plasma. Hypertension. 2021;77:29-e31. doi: 10.1161/hypertensionaha.120.16724

Figure Legends

Figure 1: Adverse outcomes of pregnancies (AO) are associated with suppression of the classical components of the RAS, and activation of the counter-regulatory protein, ACE2. A) Renin activity, angiotensin I (Ang I) and angiotensin II (Ang II) peptides, and B) concentration of soluble ACE2 in serum of pregnant women. Data are the change in concentration over gestation (third – first trimester). Data are represented as median with 95% confidence interval. *, P<0.05 analyzed by Wilcoxon signed rank test; n=74 pairs.
Table 1. Patient Demographics and Clinical Characteristics of Pregnant Women With and Without Adverse Outcomes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No AO N = 28</th>
<th>AO N = 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Demographics, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>18 (64)</td>
<td>34 (74)</td>
</tr>
<tr>
<td>Black or African</td>
<td>5 (18)</td>
<td>8 (17)</td>
</tr>
<tr>
<td>American</td>
<td>4 (14)</td>
<td>3 (7)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1 (4)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Mixed race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primiparous</td>
<td>11 (39)</td>
<td>20 (42)</td>
</tr>
<tr>
<td>Chronic hypertension</td>
<td>8 (29)</td>
<td>9 (20)</td>
</tr>
<tr>
<td>Previous pre-eclampsia</td>
<td>5 (18)</td>
<td>9 (20)</td>
</tr>
<tr>
<td>Type 1 DM</td>
<td>1 (4)</td>
<td>7 (15)</td>
</tr>
<tr>
<td>Type 2 DM</td>
<td>2 (7)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Renal disease</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>3 (11)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Medications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>15 (54)</td>
<td>25 (54)</td>
</tr>
<tr>
<td>Labetalol</td>
<td>2 (7)</td>
<td>8 (17)</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>0</td>
<td>3 (7)</td>
</tr>
<tr>
<td>Clinical Characteristics, mean ± SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>28.9 ± 4.1</td>
<td>29.5 ± 5.7</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>30.0 ± 7.6</td>
<td>32.3 ± 8.3</td>
</tr>
<tr>
<td>SBP, mmHg 1st Trimester</td>
<td>117 ± 15</td>
<td>120 ± 9</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>119 ± 13</td>
<td>124 ± 14</td>
</tr>
<tr>
<td>DBP, mmHg 1st Trimester</td>
<td>75 ± 10</td>
<td>79 ± 6</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>76 ± 9</td>
<td>80 ± 9</td>
</tr>
<tr>
<td>PI (uterine), %</td>
<td>1.08 ± 0.36</td>
<td>1.26 ± 0.47</td>
</tr>
<tr>
<td>Gestational age at delivery, weeks</td>
<td>38.7 ± 1.1</td>
<td>36.9 ± 2.2**</td>
</tr>
<tr>
<td>Infant body weight, grams</td>
<td>3383 ± 429</td>
<td>3083 ± 648*</td>
</tr>
</tbody>
</table>

* P< 0.05; ***, P<0.0001
Table 2. Recorded Pregnancy Outcomes

<table>
<thead>
<tr>
<th>Pregnancy Outcomes</th>
<th>No AO N = 28</th>
<th>AO N = 46 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational hypertension</td>
<td>0</td>
<td>19 (41)</td>
</tr>
<tr>
<td>Pre-eclampsia</td>
<td>0</td>
<td>7 (15)</td>
</tr>
<tr>
<td>Post-partum pre-eclampsia</td>
<td>0</td>
<td>3 (7)</td>
</tr>
<tr>
<td>IUGR</td>
<td>0</td>
<td>3 (7)</td>
</tr>
<tr>
<td>IAEDF</td>
<td>0</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Polyhydramnios</td>
<td>0</td>
<td>5 (11)</td>
</tr>
<tr>
<td>Pre-term labor</td>
<td>0</td>
<td>3 (7)</td>
</tr>
<tr>
<td>PPROM</td>
<td>0</td>
<td>5 (11)</td>
</tr>
<tr>
<td>PROM</td>
<td>0</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Pre-term birth</td>
<td>0</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Stillbirth</td>
<td>0</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Postpartum hemorrhage</td>
<td>0</td>
<td>10 (22)</td>
</tr>
</tbody>
</table>
Table 3. Serum Concentrations of Components of the Classical and Alternative Renin Angiotensin System in Pregnancies With and Without Adverse Outcomes

<table>
<thead>
<tr>
<th>RAS Component</th>
<th>No AO N=28</th>
<th>AO N=46</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical RAS, median (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renin activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Trimester</td>
<td>266.5 (232.2 – 303.9)</td>
<td>199.5 (147.0 – 275.9)</td>
<td>0.070</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>349.5 (294.4 – 476.9)</td>
<td>239.3 (196.9 – 303.4)</td>
<td>0.011</td>
</tr>
<tr>
<td>ACE activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Trimester</td>
<td>2.18 (1.84 – 2.65)</td>
<td>2.49 (2.22 – 3.08)</td>
<td>0.237</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>1.61 (1.32 – 2.07)***</td>
<td>2.07 (1.76 – 2.26)***</td>
<td>0.140</td>
</tr>
<tr>
<td>Ang I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Trimester</td>
<td>86.3 (69.5 – 100.9)</td>
<td>60.9 (40.9 – 97.6)</td>
<td>0.154</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>135.1 (92.2 – 183.0)***</td>
<td>78.4 (62.7 – 119.0)***</td>
<td>0.020</td>
</tr>
<tr>
<td>Ang II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Trimester</td>
<td>179.3 (151.5 – 197.0)***</td>
<td>147.5 (102.2 – 185.4)</td>
<td>0.107</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>228.2 (177.2 – 292.5)***</td>
<td>150.7 (123.3 – 198.0)</td>
<td>0.010</td>
</tr>
<tr>
<td>Ang IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Trimester</td>
<td>8.3 (6.5 – 9.7)</td>
<td>6.9 (5.0 – 10.0)</td>
<td>0.174</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>9.6 (6.8 – 12.8)</td>
<td>7.6 (5.2 – 9.8)</td>
<td>0.108</td>
</tr>
<tr>
<td>Alternative RAS, median (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Trimester</td>
<td>1.43 (1.27 – 1.76)</td>
<td>1.23 (1.14 – 1.37)</td>
<td><0.05</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>1.68 (1.56 – 2.10)***</td>
<td>1.69 (1.5 – 2.09)***</td>
<td>0.844</td>
</tr>
<tr>
<td>Ang-1-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Trimester</td>
<td>5.7 (5.1 – 7.0)</td>
<td>3.9 (3.0 – 5.1)</td>
<td>0.308</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>7.9 (6.6 – 9.3)</td>
<td>5.6 (3.9 – 7.6)***</td>
<td>0.017</td>
</tr>
<tr>
<td>NEP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Trimester</td>
<td>10.77 (6.6 – 16.2)</td>
<td>9.43 (6.69 – 11.29)***</td>
<td>0.373</td>
</tr>
<tr>
<td>3rd Trimester</td>
<td>14.52 (10.54 – 26.33)</td>
<td>13.10 (11.18 – 18.55)***</td>
<td>0.415</td>
</tr>
</tbody>
</table>

*, P<0.05, **, P<0.01, ***, P<0.001, ****, P<0.0001 for third trimester vs first trimester within group analyzed by Wilcoxon signed rank test
A

\[\Delta \text{ (3rd Trim - 1st Trim)} \text{ pmol/L} \]

- Renin Activity
- Ang I
- Ang II

B

\[\Delta \text{ (3rd Trim - 1st Trim)} \text{ ng/mL} \]

- ACE2

No AO □
AO ○

*