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Abstract 

Objectives: An end-to-end method is introduced to build a combined segmentation-

classification pipeline using deep learning for opportunistic fracture detection in CT spine 

images of varying field-of-views. 

Materials and Methods: This retrospective study builds on 452 CTs of the 

lumbar/thoracolumbar spine. Patients were included based on the evidence of ≥1 vertebral 

body fracture and excluded in case of history of spinal surgery or pathologic fractures. The 

collective was split into training/validation (405) and test (47) sets. An open-source pre-

segmented spine dataset was used to train a preliminary segmentation model, which was 

applied on the training set. The resulting segmentation was post-processed to remove 

posterior vertebral structures and if needed manually refined by a radiologist. Using the 

refined version as new training data, a final segmentation nnU-net was trained. Sagittal slices 

from each vertebra were labelled individually with regard to fracture evidence. Slices without 
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signs of fracture were used as negative class. 27,019 slices (20,396 negative, 6,623 positive) 

trained a classification algorithm using resnet18. Two senior readers independently assessed 

fractures in the test set to obtain a consensual ground truth. The segmentation-classification 

pipeline was applied to the test set and compared to the ground truth. 

Results: The segmentation model correctly segmented 330/339 (97%) vertebrae. 

Considering every segmented vertebra, the classifier detected fractures with 88% sensitivity, 

95% specificity and 93% accuracy. 

Conclusion: Our two-step method can help to detect spine fractures on images of varying 

field-of-views, with an accuracy comparable to that of a radiologist in-training. The final 

models as well as our code material are available at https://github.com/usb-

radiology/VertebraeFx. 

 

Keywords:  computed tomography, vertebral segmentation, fracture detection, deep 

learning, neural networks 
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Introduction 

For a radiologist, accurately reporting and classifying vertebral fractures is an 

essential skill since they belong to the routine workflow of almost any health system. De 

facto, the prevalence of any kind of vertebral deformity was estimated at 25% in a large 

cohort of women over 50 years 1 and a recent meta-analysis yielded a regional range of up to 

26% for vertebral fracture prevalence 2. As a result, vertebral fractures account for 5% of all 

direct costs for care of osteoporosis and for up to 21% of the societal aftermath of 

osteoporosis 3,4. It is all the more reason to report them carefully since the risk of a new 

vertebral fracture increases up to 5-fold in the year following an incident vertebral fracture 5. 

Nevertheless, the radiologic identification of vertebral fractures is still insufficient. In a 

large multicentric study, the underdiagnosis of vertebral fractures on radiographs ranged 

between 29.5% and 45% 6, while a meta-analysis of studies assessing vertebral fractures 

estimated their mean reporting rate at 27% 7. Radiological reports for long-term hospital 

patients are particularly at risk of lacking a comprehensive description of vertebral fractures 8. 

The constantly rising use of diagnostic imaging 9 makes correcting this deficiency even more 

challenging, as radiology teams have to cope with a sustained increase in imaging volumes. 

At the same time, research in the field of automatic fracture detection and spine 

segmentation of CT images has seen an exponential growth over the years, as have the 

technological solutions available. Specifically, solutions for fracture detection shifted from the 

use of machine learning 10–14 to deep learning models trained on 2D 15,16 or more recently 3D 

images 17,18. Implementing those technologies and ideas appears as a credible way to 

standardize fracture reporting and to support radiologists in their real-life clinical workflow. 

On the other hand, implementing the work of others is limited by software compatibility, 

variability in CT images from different scanners, and the understanding of the technology 

offered. Also, many models cited above do not report the ability to process field-of-views of 

varying size. 
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Our goal was to contribute to this growing research field and to develop an opportunistic 

fracture detection model by leveraging deep learning technology. The network should be 

able to process CT images of varying field-of-views and accessible to other research teams 

via the open-source tools presented. We intend to evaluate the method as proof-of-concept, 

to pinpoint its limitations and identify future improvements. 
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Material and Methods 

The institutional review board waived informed consent. 

Study population 

This study is retrospective and builds upon CT studies of the lumbar and thoraco-

lumbar spine performed between January 2015 and December 2020 at our institution. The 

collection of datasets was performed using our department’s radiology report crawler. The 

sole inclusion criterion was any mention of at least one vertebral body fracture in the report. 

Cases were excluded based on the following criteria: i) history of spinal fusion, vertebral 

augmentation or extensive spinal surgery, ii) concurrent or past spondylodiscitis, iii) presence 

of vertebral metastases or malignant lesions including pathologic fractures, iv) osteolysis 

arising from adjacent malignant tissue and v) studies performed for myelography. Fractures 

were classified using the AO spine classification19 which is being used at our institution. 

The study collective was split into training and test sets with a 9:1 ratio. The cases for 

the validation set were randomly selected from the training set included in the study.  

 

Imaging 

All included studies were non-enhanced and acquired by one of three multi-detector 

CT scanners (Somatom Definition Flash, Somatom Definition Edge, Somatom Force) from 

Siemens (Siemens Healthineers, Erlangen, Germany). The acquisition parameters are listed 

in Table 1. For each case, the sagittal reconstruction using a bone kernel was extracted from 

the PACS (GE Healthcare, Chicago, USA). The web-based framework for image analysis 

Nora (Nora Medical Imaging Platform Project, Freiburg im Breisgau, Germany) was used for 

organisation, visualisation and processing of images. 
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Table 1 

  Training Set 
(n = 375) 

Test Set 
(n = 47) 

P-value 

Demographics Gender Female: 68 % Female: 71 % - 

 Age (years) 77 ± 14 76 ± 11 0.85 

CT Parameters DLP (mGy*cm) 477 ± 321 575 ± 401 0.06 

 Voltage (kV) 112 ± 15 116 ± 13 0.06 

 Tube rate (mAs) 217 ± 94 218 ± 92 > 0.9 

 Collimation (mm) 0.7 ± 0.2 0.7 ± 0.2 > 0.9 

 Slice Thickness 
(mm) 

2.79 ± 0.47 2.83 ± 0.38 0.59 

Fracture 
Distribution 
(per AO classification 
system) 

Type A1 50% 39% - 

Type A2 1% 0% - 

 Type A3 27% 38% - 

 Type A4 21% 24% - 

Overview of the main demographic and CT acquisition parameters in the training and 
validation sets. Values are presented as mean ± standard deviation. 

 

System overview 

 The study follows a two-step approach by training a vertebral segmentation model 

and a fracture classification model independently. Studies acquired during the daily workflow 

and corresponding to a specific label (i.e. “CT of the spine”) can be automatically submitted 

from the PACS to the segmentation-classification pipeline built in the Nora framework. 

Following segmentation, the segmented vertebral volumes are presented as series of 2D-

slices to the classification algorithm. If the classification model detects a fracture in one of the 

slices, the vertebra at stake is considered affected by a fracture. Consecutively, a report is 

sent back to the PACS with a listing of all explored vertebrae in the field-of-view and their 

status regarding fracture. 
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Vertebral segmentation algorithm 

A preliminary model was trained with the open-source vertebral segmentation dataset 

of VerSe2019 20 consisting of pre-segmented healthy spines, using a nnU-net 21 which is 

described in the framework’s source paper. All cases from the training set were segmented 

by this preliminary model. In a second step, automated image post-processing techniques 

such as erosion, dilation and connected components were used to remove the posterior 

vertebral structures from the segmentation mask, to split segmentation masks possibly 

covering multiple vertebrae and to recount the vertebral order in cranio-caudal orientation 

starting from L5 upwards, Figure 1. Following segmentation and post-processing, cases were 

manually refined, if needed, by C.G.G. (resident in-training with 4 years of experience), using 

Nora framework’s built-in tools. 

Figure 1 

Overview of a typical segmentation inconsistency in a male patient in his 80s with a history of 
low energy fall and back pain. Note the heavy degeneration of the spine and partial 
destruction of Th12 (a). Raw segmentation mask obtained from the open-source data and 
the preliminary segmentation model (b). The anterior upper endplate of L2 (white arrow) has 
been wrongly mapped and the intervertebral disk between Th12-L1 (black arrow) has been 
segmented because of blurry calcifications within it. After correction, the posterior structures 
have been removed and Th12 is correctly demarcated (c). The last mask was used as 
ground truth to train the final nnU-net. 
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Finally, the segmented data was used to train a nnU-net as the final segmentation 

model. This model served as entry point of the segmentation-classification pipeline and was 

later applied onto the test set to extract the vertebral volumes to classify. 

Fracture classification algorithm 

 Employing the accurately segmented training cases, the content of each vertebral 

volume was extracted as batches of sagittal slices with an in-plane resolution of 2 mm to 3 

mm, Figure 2. The 5 outer slices on each side of a vertebral volume were removed to 

maintain homogeneity throughout the data. By “shaving” the sides of the vertebrae off, their 

often heavily degenerated edges are removed and the vertebral slices remaining are better 

suited for fracture identification. 

Figure 2 
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Overview of the training process. Case is a female patient in her 70s with chronic back pain. 

The raw data was segmented using nnU-net. The content of each vertebral mask (batches of 

2D-images) was extracted and labelled at the slice level. Every slice generated was then 

used for training of the classification network. The architecture presented is the 18-layer 

version of ResNet. 

For each vertebra in the training set, slices showing fracture stigmata as well as the 

fracture grade were manually recorded by C.G.G. Each study’s report was used as reference 

to define fractures. In the event of missing or ambiguous report information, unclear cases 

were read in consensus by C.G.G and D.H. (fellow-trained musculoskeletal radiologist with 8 

years of experience). Relying on the slice coordinates recorded, each slice inside a vertebral 

volume was assigned a label depending on fracture presence (i.e. “fracture” or “negative”). 

Negative cases were provided by the spared vertebrae inside each dataset, as well as by the 

slices showing no fracture stigmata inside one injured vertebra. 

A classification algorithm was trained using resnet18 22. The batch size was set to 32 

and optimized with Stochastic Gradient Descent (SGD) with an initial learning rate of 0.001 

and a momentum of 0.9. The learning rate was reduced every 7 epochs by a gamma factor 

of 0.1. For data augmentation the following transformations were applied to the images 

during training: intensity normalization, random rotation with a rotation angle of [-�/12,/12] 

radians, random horizontal flipping, random zoom with factor of [0.9,1.1] and as a final step a 

resize transformation with either padding or cropping to size 256 x 256. The model was 

implemented using Pytorch-lightning 23 and TIMM 24. Both the final segmentation and 

classification pipeline are available at https://github.com/usb-radiology/VertebraeFx. 

Assessing the test set 

Two senior readers, D.H. and S.M. (fellow-trained musculoskeletal radiologist with 2 

years of experience), blindly and independently assessed the cases within the test set with 

regard to fractures and fracture grade (per AO classification system). The reading was 
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performed on standard workstations using Centricity’s PACS (GE Healthcare). Differences in 

the reading scores were read in consensus 4 weeks after the initial reading to produce an 

absolute ground truth. Two readers in-training, C.G.G and H.W (1.5 years of experience), 

read the same test cases by listing the fractures they found and graded them using the AO 

scale. 

The algorithmic pipeline (segmentation and classification models) were applied to the 

test set. The segmentation model segmented each vertebra and located them anatomically 

by counting upwards from L5. Second, the classification model extracted the slices inside the 

vertebrae and classified each of them. A fracture was defined if at least one slice within the 

vertebra was classified as having a fracture. The results were compared to the absolute 

ground truth as well as to the scores of both readers in-training. 

Statistical Analysis 

All available cases fitting the inclusion criteria were included in the study. Cohen's 

Kappa score was used to assess the interrater agreement over the test set. A p-value of 0.05 

was used to infer statistical significance from the demographic and CT acquisition 

parameters, using independent T-tests, Table 1. 

The evaluation of the classification model’s performance compared to the ground 

truth is quantified through usual measures of diagnostic accuracy, Table 2. Statistical 

analysis was performed using IBM SPSS Statistics in combination with statistic libraries of 

the Python framework. 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.26.22282267doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.26.22282267


Results 

Study population 

The study collective consisted of 452 cases [308 women, mean age 79 ± 12 years 

and 244 men, mean age 72 ± 16 years] which were randomly split into a training set (405 

cases) and a test set (47 cases), Figure 3. There were no differences in age and gender 

distribution between the cases in the validation and training sets, p > 0.05, Table 1. There 

were more wedge-compression fractures in the training set (50%) than in the test set (39%). 

The distribution of other fracture types between both sets remained fit for comparison. 

Figure 3 

 

Flowchart outlining the process of patient inclusion in the study collective. 
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Imaging 

 CT studies were heterogeneous in scan range, from tailored field-of-views with four 

vertebrae depicted up to thoracolumbar protocols with twelve vertebrae inside the field-of-

view. Some studies did not show the lowest lumbar vertebrae (e.g. L4 or L5). The acquisition 

parameters are listed in Table 1. The matrix sizes ranged from 608 x 512 to 2228 x 1024 

pixels, Figure 4. 

Vertebral segmentation algorithm 

The inconsistencies of the preliminary segmentation via the data of VerSe2019 

included errors due to anatomical variations (e.g. a 6th lumbar vertebra), inadequate 

coverage or numeration of a vertebra (Figure 1) and fused masks over two vertebrae. In 

total, 30/405 cases could not be segmented or post-processed due to major spine 

degeneration, anatomical variations unworkable by the post-processing step, corrupt data or 

data too large to process. This resulted in a final collective of 375 segmented cases for the 

training set. Following preliminary segmentation and post-processing, 67/375 cases had to 

be corrected manually by C.G.G. 

Fracture classification algorithm 

There were 438 fractures recorded in the training set’s 375 cases. AO classification 

was used. 220 fractures (50%) were type A1, 5 (1%) were type A2, 119 (27%) were type A3, 

94 (21%) were type A4. After segmenting every vertebra and extracting every labeled slice, a 

collection of 27,019 2D-pictures was obtained: 20,396 of the negative class, 6,623 of the 

positive class. The model was trained up to 5 epochs. 
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Figure 4 

 

Different cases from the test set after segmentation, with varying matrix sizes: (a) 658 x 512, 
(b) and (c) 1046 x 512, (d) 797 x 512 and (e) 777 x 512. Note the excessive removal of the 
most cranial vertebrae in cases (b) and (c). Case (a) is a typical example of a shifted 
vertebral atlas, due to the lowest vertebra not being L5. However, all vertebrae are correctly 
segmented. 
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Test set 

The test set consisted of 47 cases encompassing a total of 339 vertebrae. The senior 

readers D.H. and S.M. reported 87 and 95 fractures, respectively, with 11 discrepant cases 

out of the 339. The corresponding interrater agreement was of 0.86 (Cohen’s Kappa Score). 

After consensus reading, the ground truth was set at 91 fractures. 35 fractures (38%) were 

type A1, 34 (37%) were type A3, and 22 (24%) were type A4. 

The in-training readers C.G.G. and H.W. reported 82 and 92 fractures, respectively, 

with 10 discrepant cases out of the 339. The corresponding interrater agreement was of 0.91 

(Cohen’s Kappa Score). The respective sensitivity of C.G.G. and H.W. was 82.4% and 

86.8%, their specificity was 97.1% and 94.5%. 

The segmentation model correctly segmented 330/339 vertebrae (97.3%). 9 

vertebrae were not segmented due to the post-processing step programmed to remove 

vertebrae edging the field-of-view. 4 cases from the 47 were correctly segmented but not 

rightfully located. This was due either to the presence of an anatomical variation (6th lumbar 

vertebra) or because some of the considered spines did not comprise an L5 (e.g., lowest was 

L3). Consequently, and because the segmentation started at L5, the whole vertebral 

sequence was shifted upwards and accurate location could not be achieved in an automated 

fashion. From a per-case point of view, 38/47 cases (80.8%) were correctly segmented and 

anatomically identified. 

The classification model reported 92 fractures out of the 330 segmented vertebrae, 

Table 2. There were 80 true positives, 227 true negatives, 12 false positives and 11 false 

negatives. This matches a sensitivity of 87.9%, a specificity of 94.9%, an accuracy of 93.0%, 

and positive and negative predictive values of respectively 86.9% and 95.3%. From a per-

case point of view, 30/47 (63.8%) cases were correctly classified. All missed fractures 

(11/11) were of type A1 per AO classification system, i.e. wedge-compression fractures. 
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False positive cases were caused by cortical irregularities, Schmorl nodes and 

osteochondrosis, Figure 5. 

A standard output to the PACS from the algorithmic pipeline fracture assessment is 

proposed, Figure 6. In addition, the weights of both segmentation and classification models 

as well as the image post-processing code for the segmentation pipeline are made available 

at github. 

Table 2 

Total 
Population: 330 

Condition 
positive: 91 

Condition 
negative: 239 

Prevalence: 
80/330 = 24.2% 

Accuracy: 
307/330= 93.0% 

Classification 
positive = 92 

 
True positive 

= 80 

 
False positive 

= 12 

Positive 
predictive value: 
80/92 = 86.9% 

False discovery 
rate: 
12/92 = 13.0% 

Classification 
negative = 238 

 
False negative 

= 11 

 
True negative 

= 227 

False omission 
rate: 
11/238 = 4.6% 

Negative 
predictive value: 
227/238 = 95.3% 

 Sensitivity: 
80/91 = 87.9% 

Specificity: 
227/239 = 94.9% 

 
F-score = 0.87 

 

Confusion matrix of the classification model after processing the correctly segmented 
vertebrae, compared to the test set’s consensual ground truth. 

Figure 5 

Examples of failed classifications. The upper row presents false positive cases which were 
due to: sclerotic endplates following osteochondritis (a), unspecific cortical irregularities (b) 

(d) (e) (f)

(a) (b) (c)
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and calcified Schmorl nodes (c). The lower row presents false negative cases: three wedge-
compression fractures (d-f), type A1 per AO classification system. Note the various image 
grain, resolution and vertebral density across the set. 

 

Figure 6 

Example of a possible model output. The diagram is produced aside from the PACS (on the 
server on which the model is running) and can be transferred to it afterwards. Note the 
indication to retrace the slice presented. 
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Discussion 

The aim of this study was to develop an algorithmic pipeline using deep learning, to 

detect fractures from CT images with varying scan ranges. The results show that sensitive 

(88%), specific (95%) and accurate (93%) detection can be achieved by training a network 

over a medium-sized collective of 400 cases. In terms of diagnostic accuracy measures, our 

model fits the range of previously published studies (sensitivity, specificity and accuracy 

measures of fracture detection ranged between 81-96%, 77-94% and 89-90% respectively), 

10,11,13–18. 

The scope of techniques used previously is very broad, ranging from support vector 

machines 13 to 3D-based convolutional networks 17,18. The latest state-of-the-art research 

comes from the work of Husseini and al. 17 which combined an unsupervised 3D-based CNN 

for representational learning of vertebral shapes and a discriminative MLP (multi-layer 

perceptron) for classification, with a recall rate of up to 100%. Instead, our work builds on a 

2D-based CNN to classify fractures from series of slices input to the network. 2D-based 

models are yet better understood and adjustable than 3D-models, and generally need much 

less GPU for training. On the other hand, the vertebra’s global assessment is better with a 

3D-based approach, as valuable information can be aggregated along the z-axis. Other 

features than the fracture diagnostic, such as the fracture type or age, could then be 

predicted without requiring additional reading. It is not clear whether the amount of data 

needed would have to grow from the 400 presented here or the 2700 vertebrae processed by 

Husseini and al. Other studies have determined the fracture type in CT studies using ML 11, 

but accurate prediction of a spine fracture’s age has to our knowledge not been achieved yet. 

We deliberately chose a two-step over a one-stop-shop approach because separating 

segmentation and classification tasks made the system more adjustable. Instead, for 

example, of using a Faster-RCNN 25 to simultaneously train an object detector (which would 

detect the bounding boxes for the vertebral bodies) and a classifier on those objects. In 

addition, valuable information such as bone density values can be extracted from the 
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segmented volume. This kind of two-step approach is not new but the type of data input to 

the network can vary greatly. Tomita and al have also used CNNs 15 but with whole CT slices 

as inputs instead of smaller vertebral slices. This makes the algorithm susceptible to learning 

confounders in the volume instead of relying entirely on the considered vertebra. Bar and al. 

16 used patches of vertebral slices provided by a CNN as input, and a recurrent neural 

network as classifier, but needed a patient collective of around 3700 cases for similar 

diagnostic accuracy results. In our case, slicing relatively few vertebrae into 2D-images 

translated into a large image database, which was sufficient for accurate training. 

Regarding our work, it has to be noted that all missed cases were minor wedge-

compression fractures which do not call upon surgical management. False positives were 

mainly due to sclerotic endplates or disc degeneration. In comparison with our in-training 

radiologists who run the diagnostic front during shifts, the algorithm showed a higher 

sensitivity than both readers and a slightly inferior specificity. Interestingly, its detection 

pattern (i.e. high sensitivity and consequently lower specificity) closely matched the pattern of 

our resident with < 2 years of experience. In terms of processing time, our segmentation-

classification pipeline on the Nora platform needed on average 2-3 minutes per case, once it 

had received PACS images. This delay is compatible with its assigned task of opportunistic 

fracture detection. Past studies reported processing times from 50 min/case 10 to 0.02 

sec/case 15. 

Our work holds some limitations. First and foremost, we disclose an important 

selection bias on our study population by excluding studies with surgical material and 

pathological fractures for training. Obviously, the potential of the trained algorithmic pipeline if 

presented with such cases – especially the segmentation part of it – is not clear. The 

preliminary nature of this study made us focus on the flexibility and continuity of the pipeline 

instead of its exhaustiveness. Simultaneously, although the input data was heterogeneous, 

CT scanners used for this study were from one unique vendor.  Both the lack of scanner and 

patient diversity could limit generalization of our findings. Especially the high specificity 
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achieved by our model could deteriorate if confronted with infectious or lytic endplate 

changes, for example. Additional evaluation and further training of the model is needed to 

validate its clinical effectiveness.   Second, the post-processing we applied to refine the 

preliminary segmentation model (nnU-net) led to inconsistencies. Mainly, it removed the 

most cranial vertebra, even if fully displayed. Consequently, the first cranial vertebra in some 

cases (9 vertebrae from 339) was neither segmented nor assessed by the classification 

model. Also, we excluded 30 cases (approximately 7%) from the training collective because 

of the impossible segmentation using the nnU-net and our post-processing code. This 

selection bias needs to be acknowledged when assessing the network’s diagnostic accuracy 

presented. Third, our model counts the vertebrae from the bottom up starting with L5. This 

implies that cases with anatomical variations or cases not showing L5 might be wrongly 

mapped. For this reason, our report displays the fracture list but also the segmentation mask 

and a snapshot of the spine to ensure proper identification of the injured vertebrae. 

 As a conclusion, it was shown that a flexible vertebral segmentation and fracture 

detection algorithm can be trained over a relatively modest collective size. Standardized 

reporting of fractures could benefit from it by systematically integrating the model’s output 

into the report. Further works should focus on improving the model’s sensitivity and 

segmentation performance, both of which are key to grant added value for the radiologist. 
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