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Abstract 

Tacrolimus is the cornerstone of immunosuppressive therapy after pediatric liver 
transplantation. However, reliance on the physician’s experience for dose titration, 
coupled with tacrolimus’s narrow therapeutic window and inter and intra-patient 
variability, often results in frequent under or over-dosing with detrimental patient 
outcomes. Existing predictive dose personalization models are not readily feasible for 
clinical implementation, as they require multiple measurements each day while the 
standard frequency is once daily. We developed CURATE.AI, a small-data artificial 
intelligence-derived platform, as a clinical decision support system to personalize 
doses using the patient’s own data obtained once a day. Retrospective dose 
personalization with CURATE.AI on 16 patients’ data demonstrated potential to enable 
patients to stay in the therapeutic range longer and reach the therapeutic range 
significantly earlier. Our findings support the testing of CURATE.AI in a prospective 
controlled trial as an aid for the physician’s decision on tacrolimus dose 
personalization after pediatric liver transplantation. 

 

1. Introduction 

Liver transplantation (LT) is an established treatment for children with decompensated 
liver disease, liver-based metabolic disorders, acute liver failure, and unresectable 
primary liver malignancy1. Continued improvements in surgical techniques, peri-
operative care and immunosuppression over the last 40 years have enabled a 5-year 
survival rate of over 85% in pediatric LT1,2. These resulted in the shift of focus to 
improving the morbidity associated with immunosuppression regimens1, particularly in 
minimizing the risks of acute or chronic liver rejection1 and toxicity risks such as 
nephrotoxicity and neurotoxicity in the long term3. 

Post-transplant immunosuppression is critical for minimizing the risk of acute or 
chronic graft rejection1, there is morbidity associated with immunosuppression in the 
long-term; including impact on growth, nephrotoxicity and neurotoxicity 5.  Tacrolimus 
is the most common immunosuppressive agent utilised in pediatric LT 6,7. The current 
standard-of-care (SOC) for post-transplant immunosuppression is personalized 
empirical tacrolimus dose adjustments based on tacrolimus trough levels (TTL). The 
personalized dose adjustments are guided as per the experience of the transplant 
physician4. Furthermore, tacrolimus has a narrow therapeutic window and has inter- 
and intra-subject pharmacokinetic variability5. As a result, SOC dosing results in 
frequent deviations from the target therapeutic range 6, with the risk of clinically 
significant adverse effects due to under or over-immunosuppression. With a greater 
cumulative exposure to immunosuppressive agents that occurs throughout their 
lifetime, thereby increasing the risk of associated morbidity7, there is a dire need for 
an optimal immunosuppression in pediatric LT.   

Most technological advancements for personalized post-transplantation dosing of 
tacrolimus are for adult liver and kidney transplant patients. Current personalized 
dosing models for pediatric transplant are based on the area under the curve (AUC) 
of concentration-time plots which require multiple concentration-time points across the 
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dosing interval i.e. increased frequency of data collection (blood testing) throughout 
the day when compared to SOC8,9, which may not be practical. A study that explored 
using 13 machine learning models for personalized predictions of TTL for infant liver 
transplant patients identified that those models required 3 to 7 parameters ranging 
from graft to recipient weight ratio to specific genotypes and level of albumin in the 
blood, which can be resource-intensive10. As such, for pediatric LT, there remains a 
need for a solution that is simple, practically applicable with minimal or no additional 
resources and parameters. 

CURATE.AI is a mechanism-independent and indication-agnostic artificial intelligence 
(AI)-derived dose optimization platform that only uses an individual patient’s data of 
drug dose and phenotypic treatment response to calibrate a personalized response 
profile. It identifies then recommends an optimal dose based on the individual’s 
personalised profile to achieve the target treatment response for the patient. The 
profile of phenotypic responses across a dose range is represented as a smooth 
second-order surface. This second-order relationship was previously identified 
through neural network analysis11, and subsequently experimentally validated for 
various indications12-14. Of note, lower order polynomials of the first order or higher 
order polynomials may also be applicable depending on the intervention and disease. 
Implementing this platform is markedly simple without the need for neural network 
analysis and with high clinical actionability. The CURATE.AI platform has already been 
validated for tacrolimus dose optimization of post-liver transplant immunosuppression 
to maintain target TTL in adult patients15,16. CURATE.AI is currently studied in several 
clinical trials, including dose optimization trials for tacrolimus in adult liver and kidney 
transplants and to treat solid and hematological cancers (NCT03527238, 
NCT04522284, NCT05175235, NCT05381038, NCT04522284, NCT04848935, 
NCT03759093, NCT04357691). Its usage has also been explored in hypertension 
management (NCT04769141, NCT05376683) and in tandem with a digital 
intervention13,17,18.  

This study is purposed to lay the foundational work for a larger prospective study to 
determine the impact of personalized tacrolimus dosing in pediatric liver transplant 
patients. In this retrospective optimization study, CURATE.AI’s applicability in pediatric 
liver transplant is evaluated first by establishing a linear tacrolimus dose-response 
relationship for 16 pediatric liver transplant patients. CURATE.AI’s performance was 
evaluated with both technical and clinically relevant performance metrics. 
CURATE.AI’s potential clinical actionability was explored by simulating patient 
journeys and assessing if potential dose recommendations could achieve the 
therapeutic range earlier and increase the time in the therapeutic range.  

2. Methods 

2.1 Study design and data collection 

This retrospective study analyzed de-identified data of 16 pediatric liver transplant 
patients that were collected from existing medical records at the National University 
Hospital in Singapore, the only pediatric liver transplant centre in Singapore. Data 
were obtained during the period from 1 January 2011 to 31 December 2020, as 
approved by the Centralized Institutional Review Board (CIRB reference: 
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2019/2040). Inclusion criteria were pediatric (between ages 1 – 16) living donor, liver 
transplant patients on their Index admission for transplant. Exclusion criteria were: 
re-transplant cases, cases with mortality, and cases with complex clinical scenarios 
that required re-exploration within the Index admission because of the multiple 
confounders.  

2.2 Data processing 

CURATE.AI required two components to be supplied into the platform as inputs: the 
administered tacrolimus dose in mg (dose), and the corresponding TTL in ng/ml 
(response), to curate a personalized profile for each patient.  While the used records 
showed the doses had been administered twice a day (BID), the dose input for 
CURATE.AI was the effective 24-hour dose and the corresponding TTL response 
measured the next day, right before the morning dose. Days with two measurements 
of TTL (taken in the morning and evening) instead of one, which is the standard 
frequency, were excluded. Further, measurement equipment was unable to provide 
resolution for TTL less than 2 ng/ml. Hence, TTL measurements < 2 ng/ml were 
assessed to be inaccurate and thus excluded. Doses recorded from the day of 
discharge onwards were assessed to be unreliable, as confirmation of the doses 
administered was not possible, and thus excluded. This study used data points, also 
known as dose-response pairs, over the set of consecutive days for each patient for 
the analysis by CURATE.AI. Dose ranges were categorized as low (< 2 mg), medium 
(2 mg to < 4 mg), and high (> 4 mg). 

2.3 CURATE.AI 

The flow of the analysis with CURATE.AI is illustrated in Fig. 1. Linear regression was 
used to model the relationship between the tacrolimus dose and the corresponding 
TTL (response) and forms the individualized profile of the patient. Only 2 dose-
response pairs were required for the linear regression to provide an individualized 
profile. Where the profile intersected with the therapeutic range, defined as between 
and inclusive of 8 and 10 ng/ml for every patient, doses in multiples of 0.5 mg (the 
smallest tacrolimus capsule available19) were identified, representing the potential 
doses that the patient might have benefitted from with CURATE.AI-assisted dosing. 
When there are multiple possible doses that fulfil the requirements, the lowest dose 
was considered as the CURATE.AI recommendation. The profile, which consisted of 
2 dose-response pairs from 2 dosing events, was used to predict the TTL of the next 
dosing event. The difference between the observed TTL and the predicted TTL was 
defined as the prediction error.  

Only 2 dose-response pairs were used as a calibration to provide a dose 
recommendation for the next dosing event. The choice of the 2 pairs requires using a 
rolling window approach, defined as using a window of a specified size of 2 that rolls 
through the data, 1 unit a time for each profile generation. This means that dose 
recommendation can only start after 2 dose-response pairs are obtained, requiring at 
least 2 days with unique doses and the corresponding TTL.  
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Fig. 1: Retrospective analysis of pediatric liver transplant data.  Data from pediatric liver transplant 
patients were collected for the duration of 30 days post-transplant and were retrospectively analyzed. 
SOC dosing relies on the unaided decisions by the physicians, with challenges to reaching the 
therapeutic range fast and staying within it. CURATE.AI-assisted dosing aims to enable the TTL to 
reach the therapeutic range earlier and stay in the therapeutic range longer. The enlarged section below 
depicts an example of a dose-response relationship, also known as the individualized profile, based on 
the 2nd and 3rd day post-transplant. CURATE.AI-assisted dose recommendation for the 4th day is based 
on the intersection between the profile and the therapeutic range. A prediction of the TTL after the next 
dosing event was made based on the patient’s CURATE.AI profile, and the prediction error was defined 
as the difference between the observed and predicted TTL. 

2.4 Performance Metrics 

CURATE.AI’s performance was evaluated based on technical performance metrics 
widely used in literature to evaluate predictive models. Additionally, clinically relevant 
performance metrics were devised to characterize the potential clinical actionability of 
CURATE.AI as a CDSS.   

The technical performance metrics were based on prediction errors, defined as the 
differences between the observed TTL and the TTL value predicted by CURATE.AI. 
Specifically, the technical performance metrics used were prediction error, absolute 
prediction error, and root mean squared error (RMSE). CURATE.AI’s absolute 
prediction error was compared to the prediction errors from the machine learning 
models by Song et al10, as it also predicted TTLs.  

For clinically relevant performance metrics, contextual information on pediatric liver 
transplant immunosuppression were considered in devising the metrics. Specifically, 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.24.22282708doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.24.22282708
http://creativecommons.org/licenses/by-nd/4.0/


the clinically acceptable prediction error was defined as between and inclusive of -1.5 
and 2 ng/ml, based on the clinically acceptable range of TTL of 6.5 to 12 ng/ml, and in 
consideration of the therapeutic range of between and inclusive of 8 and 10 ng/ml 
(Supplementary Material Fig. S2). The percentage of predictions within clinically 
acceptable prediction error was computed. The predictions outside of the clinically 
acceptable prediction error were categorized as overpredictions and underpredictions, 
defined as less than -1.5 ng/ml and greater than 2 ng/ml, respectively. The 
percentages of overpredictions and underpredictions were computed. The numbers of 
predictions that satisfy the following 5 assessment criteria were computed in steps 
illustrated in a flow chart (Fig. 4). The first 2 criteria focused on CURATE.AI’s 
prediction of TTL with the administered doses, and the next 3 criteria focused on 
CURATE.AI’s dose recommendations’ ability to achieve the therapeutic range. The 
criteria were: 1) CURATE.AI profile reliability (considered reliable if CURATE.AI 
correctly predicted that TTL would fall within the therapeutic range, pre-defined as 
between and inclusive of 8 and 10 ng/ml, or non-therapeutic range), 2) CURATE.AI 
prediction accuracy (considered accurate if CURATE.AI predictions were within the 
range of clinically acceptable prediction error, pre-defined as between and inclusive of 
-1.5 and 2 ng/ml), 3) whether the CURATE.AI-recommended dose differed from the 
dose administered, 4) whether the observed TTL was outside of the therapeutic range, 
and 5) dose actionability of the CURATE.AI-recommended dose (considered 
actionable if CURATE.AI dose recommendations were 8 mg or below). 

2 representative patient cases were investigated to identify potential scenarios in 
which using CURATE.AI could be beneficial. The projected effects of utilizing 
CURATE.AI on each day of the treatment were explored, and the effects of 
CURATE.AI were categorized into 3 groups, namely: ‘no effect’, ‘improve’, or ‘worsen’ 
the time in therapeutic range. The effects are based on the 5 assessment criteria listed 
previously (Supplementary Material Fig. S1). The projected percentage of days 
within the therapeutic range, the number of days required to first achieve the 
therapeutic range, and the percentage of patients that could achieve the therapeutic 
range in the first week were computed for the modelled scenarios with CURATE.AI-
assisted dosing and compared with SOC dosing. 

Statistical analysis 

The normality of the data distribution was tested with the Shapiro-Wilk test. Continuous 
variables were represented as mean ± standard deviation (S.D.) or median 
(interquartile range (IQR)), depending on the normality of the data type. Wilcoxon 
signed-rank test was used to compare the medians of two non-parametric groups. 
Bartlett’s test was used to check for equal variance between two unrelated parametric 
groups. An unpaired t-test was used to compare the means of two unrelated 
parametric groups with equal variance. Paired t-test was used to compare the means 
of two related parametric groups. The statistical significance was defined as p < 0.05. 

3. Result 

3.1 Patient population 
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The characteristics of the 16 pediatric liver transplant patients whose de-identified 
data were included in this study are listed in Table 1.  

Table 1. Patient characteristics. 

Characteristics, Units  Pediatric liver transplant patients  
(N = 16) 

Gender Male, 13 

Female, 3 

Age, years 2 (0.98 – 8.25)* 

Body mass index, kg/m2 17.45 (16.03 – 18.55)* 

Ethnicity Chinese, 15 

Malay, 1 

Number of days with blood draw 
results 

20 (13 – 22)* 

Child-Pugh score B8 (A6 – C10)* 

* Median (IQR). Values for the Child-Pugh Score are calculated based on the numeric.   

Inter-individual heterogeneity was observed in the longitudinal data (Fig. 2). Out of all 
16 patients, 15 (93.75%) patients achieved the therapeutic range at least for 1 day. 
Patients who achieved the therapeutic range did so at varied dose ranges. Out of the 
15 patients that achieved the therapeutic range at least for 1 day, 2 (13.33%) patients 
achieved the therapeutic range at low doses only, 3 (20.00%) patients at medium 
doses only, 1 (6.67%) patient at high doses only, 4 (26.67%) patients at both low and 
medium doses, 3 (20.00%) patients at both medium and high doses, and 1 (6.67%) 
patient across all dose ranges. The patients deviated from the therapeutic range most 
of the time and stayed within the therapeutic range for a mean of 23.94 ± 15.29 % of 
days. The patients first achieved the therapeutic range within a median of 7.00 (IQR 
4.50 – 8.00) days. Out of the 15 patients that achieved therapeutic range for at least 
1 day, 10 (66.67%) patients achieved the therapeutic range within the first week. The 
mean TTL was 8.79 ± 3.26 ng/ml (n = 287 TTL) and the mean dose was 2.63 ± 1.49 
mg (n = 276 doses), corresponding to a mean of 0.21 ± 0.16 mg/kg/day. 
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Fig. 2: TTL over time of each patient. The grey region represents the therapeutic range of between 
and inclusive of 8 and 10 ng/ml. Blue and orange markers represent TTL outside and within the 
therapeutic range, respectively. Dose ranges are categorized as low (less than 2 mg, circle markers), 
medium (2 to less than 4 mg, square markers), and high (4 mg and higher doses, cross markers), 
respectively. Unavailable doses refer to missing or unreliable (from the day of discharge onwards) 
doses, and data points without TTL are not reflected here. Inter-individual heterogeneity was 
observed in terms of the dose ranges in which patients achieved the therapeutic range, the duration 
that patients stayed within the therapeutic range, and the number of days taken to first achieve the 
therapeutic range.  

 
The flow of data inclusion for CURATE.AI analysis is illustrated in Fig. 3. The data of 
all 16 patients passed the first stage screening requirement of minimally 2 uniquely 
modulated doses and available corresponding TTL. 3 patients’ data were excluded in 
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the second stage of data screening due to too few predictions, defined as less than 3 
predictions. 13 patients met the criteria of the 2 screening stages and were included 
for subsequent retrospective CURATE.AI applications and analysis up to Section 3.4. 

   
Fig. 3: Flow of patient data inclusion for CURATE.AI analysis. 

 
 
3.2 Evaluation of CURATE.AI performance 

3.2.1 Technical performance 

CURATE.AI demonstrated satisfactory predictive performance with a low mean 
prediction error of 0.19 ± 2.75 ng/ml (n = 121 predictions) and an acceptable median 
absolute prediction error of 1.80 (IQR 0.80 – 2.80) ng/ml which is comparable to the 
mean absolute prediction error (mean: 2.01 ng/ml, mean + S.D.: 3.35 ng/ml, mean - 
S.D.: 0.85 ng/ml) of the best-performing machine learning model by Song et al that 
predict TTLs for infant liver transplant patients. The RMSE was 2.75 ng/ml for all 
predictions (n = 121 predictions).   

 

3.2.2 Clinically relevant performance 

CURATE.AI achieved 47.11 % (n = 121) of the predictions within the pre-defined 
clinically acceptable prediction error, pre-defined as between -1.5 and +2 ng/ml. 
Overpredictions and underpredictions that exceeded the clinically acceptable 
prediction error, pre-defined as less than -1.5 ng/ml and greater than 2 ng/ml 
respectively, comprised 28.10 % and 24.79 % (n = 121) of the predictions respectively. 

 All CURATE.AI predictions were further assessed for the potential of improving 
patients’ responses (Fig. 4). An actionable and accurate CURATE.AI profile was 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.24.22282708doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.24.22282708
http://creativecommons.org/licenses/by-nd/4.0/


generated for 37.19% (n = 121) of the days, indicating that CURATE.AI had the 
potential to identify doses for those dosing events to achieve the therapeutic range. 
The use of CURATE.AI to augment dosing decisions, in turn, could lead to achieving 
a similar or higher percentage of days within the therapeutic range, as compared to 
the observed TTL in the data collected.  

Out of the days in which the reliable and accurate CURATE.AI profiles were 
generated, the CURATE.AI dose recommendations were further assessed for dose 
actionability (pre-defined as a maximum of 8 mg) of the recommended dose, whether 
the recommended dose differed from the dose administered, and whether the 
observed TTL was within the non-therapeutic range. CURATE.AI-assisted dosing 
could have potentially achieved the therapeutic range on 23.14% of the days (n = 121). 
Additionally, the difference between the doses recommended by CURATE.AI and the 
doses administered, defined as the doses administered subtracted from doses 
recommended by CURATE.AI, amounted to a median of 0.50 (IQR -0.50 – 1.50) mg. 
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Fig. 4: Assessment of predictions for augmenting or supporting dosing.  
 
3.3 Case series 

We investigated 2 representative patient’s care which followed different dosing 
strategies to demonstrate clinical use cases where CURATE.AI may be beneficial. 

Case 1: CURATE.AI may lead to achieving the therapeutic range earlier 

Patient 5 received a wide range of tacrolimus doses from 0.5 to 5.0 mg. Patient 5 
achieved the therapeutic range only on Days 8, 13, and 24 (Fig 5a), out of the 27 days 
with available data.   

For this patient, CURATE.AI successfully generated a profile from the 2 dose-
response pairs from Days 2 and 3 (Fig. 5b). Based on the generated profile, 
CURATE.AI would have recommended 2.0 mg of tacrolimus (instead of the 1.5 mg 
dose administered) (Fig 5b) which had the potential to lead to achieving the 
therapeutic range 4 days earlier, on Day 4 instead of Day 8 (Fig. 5a). Following that 
first CURATE.AI-guided dosing event, the new data pair would have been 
incorporated back into the profile to ensure the profile evolves with the patient state 
and new dose recommendations can be generated over time. Based on the fact that 
a reliable CURATE.AI profile was obtained for 15 out of next 23 days with complete 
data for this patient, and CURATE.AI suggested different doses than the administered 
doses on 10 of the days, it is plausible that using CURATE.AI would not only have led 
the TTL to achieving the therapeutic range faster but also a higher percentage of days 
when the therapeutic range was achieved. 
 
CURATE.AI was able to generate actionable profiles and dose recommendations for 
15 days out of the next 23 days where doses were administered, where CURATE.AI 
suggested different doses than the administered doses on 10 of the days.  

  

 
Fig. 5: Patient 5’s treatment journey with and without CURATE.AI. The grey region in both graphs 
represents the region within the therapeutic range, defined as between and inclusive of 8 and 10 ng/ml. 
a TTL achieved during SOC dosing (yellow circle markers without fill), TTL within the therapeutic range 
during SOC dosing (yellow circle markers with fill), projected TTL with CURATE.AI-assisted dosing 
(purple triangle markers without fill), projected TTL within the therapeutic range with CURATE.AI-
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assisted dosing (purple triangle markers with fill) are indicated. TTL on Days 21 and 22 were missing 
from the data collected. b Doses given on Days 1 and 2, leading to TTL on Days 2 and 3, are depicted 
in yellow circle markers without fill. The yellow points are numbered by the days on which the 
corresponding TTL was observed. CURATE.AI’s dose recommendation of 2.0 mg would potentially 
enable achieving the therapeutic range on Day 4. 

Case 2: CURATE.AI’s dynamic adjustment may enable sustained TTL within the 
therapeutic range 

Patient 4 received 3 mg of tacrolimus on Day 1, which led to TTL outside of the 
therapeutic range on Day 2. Subsequently, the patient received 4 mg on Day 2, which 
again led to TTL outside of the therapeutic range on Day 3. Afterwards, the patient 
received 6 mg for 11 consecutive days. The patient’s TTL only achieved the 
therapeutic range on Day 10, after 7 consecutive days of 6 mg, and fell out of the 
therapeutic range on Days 11 and 12 when 6 mg was administered (TTL was 
unavailable on Day 13 when 6 mg was administered), and achieved the therapeutic 
range again on Day 14 when 6 mg was administered.  

For this patient, CURATE.AI successfully generated profiles for dose 
recommendations for Day 3 onwards. Fig. 6a illustrated the profiles generated for 
dose recommendations from Days 5 to 9 based on dose inputs of 4 mg on Day 3 and 
the day before the day of recommendation and the corresponding TTL. The slopes of 
the profiles varied in steepness over time with the same dose inputs of 4 mg and 6 
mg, suggesting longitudinal variability in TTL response to tacrolimus dose. The 
dynamic TTL responses from the static and repeated doses over consecutive days 
suggest that the patient’s state was changing, and repeatedly administering the same 
dose over consecutive days was not an optimal dosing strategy. With dose titrations 
recommended by CURATE.AI (Fig. 6b), the patient’s TTL plausibly could have 
achieved the therapeutic range more often, and potentially sustain being in the 
therapeutic range more often throughout the treatment (Fig. 6a). The projected TTLs, 
defined as the estimated TTLs if CURATE.AI’s actionable dose recommendations 
were administered, ranged from 8.55 to 14.00 ng/ml with CURATE.AI-assisted dosing 
for Days 5 to 9, compared to the observed TTLs of 11.2 to 14.00 ng/ml which were all 
outside of the therapeutic range (Fig. 6c).  
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Fig. 6: Patient 4, CURATE.AI dose modulations to achieve and sustain the therapeutic range.  a 
TTL achieved during SOC dosing (yellow circle markers without fill), TTL within the therapeutic range 
during SOC dosing (yellow circle markers with fill), projected TTL with CURATE.AI-assisted dosing 
(purple triangle markers without fill), projected TTL within the therapeutic range with CURATE.AI-
assisted dosing (purple triangle markers with fill) are indicated. TTL on Day 13 was missing from the 
data collected. b profiles generated for dose recommendations from Days 5 to 9 based on dose inputs 
of 4 mg on Day 3 and the day before the day of recommendation and the corresponding TTL profiles 
generated for dose recommendations from Days 5 to 9 based on dose inputs of 4 mg on Day 3 and the 
day before the day of recommendation and the corresponding TTL. Dose recommendations are 
indicated within the range of the purple brace. The actionable doses recommended (in multiples of 0.5 
mg) are indicated under the purple brace. c Doses administered over Days 5 to 9 (yellow circle markers) 
and the recommended doses by CURATE.AI (purple triangle markers) are indicated. d TTL 
corresponding to Days 5 to 9 (yellow circle markers) and the projected TTL with CURATE.AI dose 
recommendations (purple triangle markers) are indicated. The grey region spans the therapeutic range. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.24.22282708doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.24.22282708
http://creativecommons.org/licenses/by-nd/4.0/


3.4 CURATE.AI’s effect and inter-individual differences  

Retrospective dose optimization was simulated using the data of all 16 patients (Fig. 
7a). Out of a total of 276 days across data from all 16 patients, the observed TTL 
moved from outside to within the therapeutic range for 10.14% of the days; the 
observed TTL in the therapeutic range fell out of the therapeutic range for 5.43% of 
the days; and the observed TTL stayed within or outside the therapeutic range for 
84.42% of the days. The criteria for determining the effect of CURATE.AI can be found 
in Supplementary Material Fig. S1. Notably, the simulation results demonstrated 
improvement in the patients’ treatment responses across the whole timespan of the 
treatment. 

Furthermore, CURATE.AI had the potential to improve the patient outcomes (Fig. 7b-
d). Out of all 16 patients, 6 (37.5%) patients might have achieved the therapeutic range 
earlier with CURATE.AI-assisted dosing and no change on the rest. The projected 
median number of days for each patient’s TTL to reach the therapeutic range with 
CURATE.AI-assisted dosing was 4.00 (IQR 4.00 – 6.00) days (N = 15 patients), which 
was significantly earlier (p = 0.03) than compared to the effects of SOC dosing (7 days, 
IQR 4.50 – 8.00 days, N = 15 patients) (Fig. 7b). Out of the 15 patients that achieved 
the therapeutic range for at least 1 day, 12 (80%) patients’ TTL reached the therapeutic 
range within the first week with CURATE.AI-assisted dosing, which is more than 
recorded after SOC dosing (66.67%) (Fig. 7c).  

Out of all the 16 patients, CURATE.AI-assisted dosing was projected to have varied 
effects across patients. CURATE.AI-assisted dosing might enable 9 (56.25%) patients 
to achieve therapeutic range more frequently, 3 (18.75%) patients equally frequent, 
and 4 (25.00%) patients less frequently.  The mean projected percentage of days 
within the therapeutic range with CURATE.AI-assisted dosing was 29.19 ± 11.87 % 
(N = 16 patients) similar (p = 0.10) to SOC dosing of 23.94 ± 15.29 % (N = 16 patients) 
(Fig. 7d).  
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      a) 

  

 b)                 c)               d)   

 
Fig. 7: Projected effects of CURATE.AI. a Results of the retrospective dose optimization simulation 
with CURATE.AI-assisted dosing is presented. The grey region represents the therapeutic range. Blue 
and orange circle markers represent TTL that are projected to remain within and outside of the 
therapeutic range, respectively. Green and red markers represent TTL that are projected to move from 
outside to within the therapeutic range and vice versa, respectively. Dose ranges are categorized as 
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low (< 2 mg, circle markers), medium (2 to < 4 mg, square markers), high (> 4 mg, cross markers), and 
unavailable (plus markers), respectively. Data points without either TTL or dose are not reflected here. 
The results of SOC dosing and projected results with CURATE.AI-assisted dosing are illustrated in b – 
d, where each scatter point represents data from a single patient, and lines linking 2 scatter points 
across bars or boxplots represent linkage between the same patient. b First day in the therapeutic range 
(boxplot represents the minima and maxima, lower and upper quartiles, and the medians, N = 15 
patients). * indicates a statistically significant difference with p = 0.03 < 0.05 estimated with Wilcoxon 
signed-rank test, between the first day in the therapeutic range as observed during SOC dosing and 
predicted with CURATE.AI-assisted dosing. c Percentage of patients (N = 15 patients) who achieved 
the therapeutic range in the first week. d Percentage of days in therapeutic range (bar plot shows the 
mean and standard deviation, N = 16 patients). 
 

4. Discussion 

This retrospective study successfully generated individualized profiles for 13 out of 16 
children using their individual data consisting of the recorded tacrolimus doses and the 
corresponding TTL over 30 days following LT. CURATE.AI demonstrated satisfactory 
performance with both technical and clinically relevant performance metrics. 

Other personalized tacrolimus dosing methods proposed for pediatric liver transplant 
are AUC-based methods1,2 that require resource-intensive high-frequency 
measurements across the dosing interval and face the resource barrier for translation 
into clinical practice. CURATE.AI is less resource-intensive than any of the 13 machine 
learning models compared in the recently published study by Song et al10 for 
personalized dosing for infants with liver transplants, as CURATE.AI requires only 2 
parameters while the machine learning models required 3 to 7 covariates. Despite 
using a fraction of inputs, CURATE.AI achieved comparable technical performance – 
absolute prediction error was comparable to that of the best-performing model 
described in the study (CURATE.AI’s median absolute prediction error of 1.80ng/ml 
compared to the mean absolute prediction error of 2.01ng/ml). 

Furthermore, CURATE.AI has the potential to overcome the issues of heterogeneity 
observed in the patient data. Specifically, based on the patient data, the patients 
achieved the therapeutic range at different dose ranges and/or responded differently 
over time to the same dose (Fig. 5 and 6). The percentage of days within the 
therapeutic range and the number of days to achieve the therapeutic range also 
differed across patients. In response to such challenges, CURATE.AI had the potential 
to identify the optimal doses earlier than SOC, and subsequently adjust the dosing 
profiles over time to provide dynamic dose recommendations to sustain the patients’ 
TTL within the therapeutic range over time (Fig. 7).  

These results suggested that CURATE.AI might be suitable for assisting tacrolimus 
dosing decisions in pediatric liver recipients to enable similar or better TTL which may 
translate to improvement in outcomes. However, it is worth noting that CURATE.AI 
achieved varied results in different patients. Thus, future study is necessary with a 
larger study sample to identify individuals that are the most likely to benefit from 
CURATE.AI-assisted dosing. 

 

4.1 CURATE.AI in clinical workflow  
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In current clinical practice, TTL is measured daily; which is aligned with the intended 
workflow of CURATE.AI to use daily acquired dose-response pairs to generate a 
profile rapidly. CURATE.AI requires the unique doses and corresponding TTLs over 
only 2 days to calibrate a personalized profile required to progress to the next step 
and generate the optimal dose recommendations. A rapidly generated personalized 
dosing profile would facilitate achievement of optimal TTL within the first week 
following LT  

This study also took into consideration the clinical workflow of dosing modulation by 
physicians. The initial dose is often based on body weight, and subsequent doses are 
in increments of 0.5 mg based on the minimum capsule size19. Thus, the evaluation of 
CURATE.AI was based on dose recommendations in increments of 0.5 mg which 
would ensure the clinical actionability of CURATE.AI’s dose recommendations. 

CURATE.AI may facilitate dosing in both short-term and long-term management of 
tacrolimus in pediatric LT. CURATE.AI is adaptable to changing target therapeutic 
ranges over the lifespan of the patient, starting from the targeted 8 to 10 ng/ml within 
30 days post-transplant, to modified therapeutic ranges in the long term. This will be 
useful in avoiding graft loss due to immunosuppression-associated complications 
which will be particularly desirable in the case of Singapore, a country with a relatively 
small population, shortage of deceased donor organs, and reliance on living donors 
for pediatric LT 20.  

4.2 Limitations and future directions 

The study demonstrated that CURATE.AI may be useful in facilitating prospective 
management of personalized tacrolimus dosing in pediatric liver transplant patients. 
However, there are several limitations in this study. The patient data used for the 
CURATE.AI retrospective optimization are subsets of the patient data, which were the 
available data over the longest number of consecutive days, and data with only one 
TTL measurement a day. These choices were made to analyse data that were 
considered ideal to minimise variability. Also, the TTL measurements and tacrolimus 
dose administered were not strictly regularly spaced due to practical reasons. 
Moreover, this retrospective study was conducted with data that were not influenced 
by CURATE.AI prospectively. With the assistance of CURATE.AI, the initial doses 
would be varied to enable calibration of a wide range of doses to generate the 
individualized profile and adopting CURATE.AI dose recommendations over the whole 
treatment may result in different sets of doses and responses as compared to the static 
retrospective data evaluated for the effect of CURATE.AI. Thus, the actual effect of 
CURATE.AI could vary from the projected effect with retrospective data as analysed 
in this study. Lastly, the sample size of 16 patients is considered small for application 
to clinical practice. may not be sufficient to conclude that CURATE.AI may be effective 
in prospective management. However, this study aimed to demonstrate CURATE.AI’s 
applicability in personalizing tacrolimus dosing, thus the sample size of 16 patients 
was deemed sufficient for this study. We investigated cases with extreme prediction 
errors but were unable to provide definitive conclusions on the facts that resulted in 
the extreme prediction errors, due to the small sample size of the study, and no 
particular trends were observed. 
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The results from this study including the satisfactory predictive performance of 
CURATE.AI and CURATE.AI’s clinical applicability for personalized tacrolimus dosing 
in pediatric liver transplant patients support further prospective validation. 

The advantages of a prospective trial include allowance for additional measurements 
of TTL with corresponding bespoke dose recommendations by CURATE.AI, a larger 
recruitment that would enable identification of subgroups characteristics that would or 
would not benefit from CURATE.AI, and identification of potential factors that lead to 
extreme prediction errors. 

5. Conclusion 

Appropriate tacrolimus management to achieve and sustain TTLs within the 
therapeutic range is crucial to avoid liver rejection, nephrotoxicity, neurotoxicity, and 
other adverse events1,3. CURATE.AI is an AI-derived, small data platform, that is 
mechanism-independent and disease-agnostic. We have demonstrated a proof-of-
concept retrospective study of using CURATE.AI to support tacrolimus management 
through personalized dosing, with promising performance in both technical and 
clinically relevant metrics. Insights from comparing projected outcomes of 
CURATE.AI-assisted and SOC dosing highlight the potential of TTL reaching the 
therapeutic range earlier, sustaining TTL within the therapeutic range longer, and 
increasing the TTL duration in the therapeutic range. These results set a foundation 
for a consideration of using CURATE.AI to support the prospective management of 
tacrolimus dosing in pediatric liver transplants. Future work will focus on testing 
CURATE.AI in a controlled trial to understand CURATE.AI’s performance using 
technical and clinically relevant performance metrics and explore the integration of 
CURATE.AI into the clinical workflow for prospective management of tacrolimus in 
pediatric liver transplantation.  
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