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Abstract 

All of Us is a biorepository aiming to advance biomedical research by providing various types of 

data in diverse human populations. Here we present a demonstration project validating the 

program’s genomic data in 98,622 participants. We sought to replicate known genetic 

associations for three diseases (atrial fibrillation [AF], coronary artery disease, type 2 diabetes 

[T2D]) and two quantitative traits (height and low-density lipoprotein [LDL]) by conducting 

common and rare variant analyses. We identified one known risk locus for AF, five loci for T2D, 

143 loci for height, and nine loci for LDL. In gene-based burden tests for rare loss-of-function 

variants, we replicated associations between TTN and AF, GIGYF1 and T2D, ADAMTS17, 

ACAN, NPR2 and height, APOB, LDLR, PCSK9 and LDL. Our results are consistent with 

previous literature, indicating that the All of Us program is a reliable resource for advancing the 

understanding of complex diseases in diverse human populations. 
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Main text 

The All of Us Research Program (All of Us) is a prospective cohort study launched in 2018 with 

the goal of improving population-based research and advancing understanding of human disease. 

To this end, All of Us plans to enroll at least 1 million individuals living in the United States and 

collect large-scale electronic health record (EHR) data, laboratory and physical measurements, 

survey responses, and genomic data.1 As of March 2022, All of Us has released whole-genome 

sequencing data for 98,622 participants and genotype array data for 165,208 participants. All 

enrolled individuals have provided written informed consent to the program. In order to validate 

the quality of the genomic data, All of Us launched demonstration projects aimed at replicating 

well-established genetic findings within the All of Us dataset. Approval to use the dataset for the 

specified demonstration projects was obtained from the All of Us Institutional Review Board. 

To date, large-scale genome-wide association studies (GWAS) have identified hundreds 

of risk loci across the human genome for cardiometabolic traits.2–6 In the present study, we 

analyzed common and rare variants from whole-genome sequencing data in the C2021Q3R6 

database version of 98,622 participants. The goal of the current project was to ensure the validity 

of the All of Us dataset, by replicating established genetic associations for five cardiometabolic 

traits, including atrial fibrillation (AF), coronary artery disease (CAD), type 2 diabetes (T2D), 

height, and low-density lipoprotein (LDL). 

 We modified a previously described phenotype algorithm7 comprising International 

Classification of Diseases (ICD) codes, self-reported personal medical history, and procedure 

and operation codes to define AF in the All of Us dataset. For CAD and T2D, we used published 

phenotype algorithms obtained from the Electronic Medical Records and Genomics (eMERGE) 

network, which have been implemented in All of Us’ phenotype library.8,9 Height and LDL were 
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extracted from the program’s physical measurements and EHR data, respectively. Detailed 

phenotyping strategies were included in Supplemental Methods and Table S1. After removing 

participants who did not pass the sample quality control (QC) procedures (Supplemental 

Methods), we identified 98,564 participants with a mean age of 51.31 (SD 16.87) at enrollment. 

Of those, 38,263 (38.82%) were male, and 50,213 (50.94%) were not genetically determined to 

be of European descent. Characteristics of participants are presented in Table 1. After applying 

the phenotype algorithms to the All of Us database, we defined 5,120 (5.19%) AF, 3,544 (3.60%) 

CAD, and 8,557 (8.68%) T2D patients. Furthermore, we identified 34,538 (35.04%) samples 

with LDL measurements ascertained from the EHR and 94,842 (96.22%) samples with the All of 

Us measured height available. Using these data, we tested associations between genetic variants 

and phenotypes, and compared our results to previously published GWAS by estimating genetic 

correlation. 

 For common variants (minor allele frequency [MAF] > 1%), we used a whole-genome 

regression approach implemented in the REGENIE10 software to test the association between 

each phenotype and individual single nucleotide variants (SNVs) assuming an additive genetic 

model, adjusting for age (enrollment age for disease phenotypes, measurement age for 

continuous traits), sex, and top 20 principal components of ancestry. For binary traits, we also 

accounted for case-control imbalance using the saddle point approximation (SPA) method11 

implemented in REGENIE. We identified one genome-wide significant (P < 5×10-8) risk locus 

(defined as 500kb upstream and downstream of the lead SNV) for AF (Table 2, Figure 1a, and 

Figure S2) upstream of PITX2, an established susceptibility locus for AF.2 Pitx2 is critical for 

specification of cardiac symmetry, myocardial sleeve development in the pulmonary veins, and 

suppression of a default sinus node in the left atrium.12,13 We did not observe any inflation in the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.23.22282687doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282687
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

present AF GWAS (genomic inflation factor [λgc]=1.05, LDSC intercept=1.03, [s.e. 0.01]). The 

genetic correlation between the All of Us GWAS and a prior AF GWAS14 was 1.02 (s.e. 0.29), 

estimated using LD score regression (LDSC).15 No genome-wide significant signals were 

identified for CAD (Figure S1). We, however, noted that the most significant locus was at 

chromosome 9 (lead SNV=rs10811656, OR=1.14 [1.08-1.19], P-value=6.48×10-7) near 

CDKN2B-AS1, which has been reported to be associated with CAD in prior studies.16 The All of 

Us CAD GWAS did not demonstrate any inflation (λgc=1.04, LDSC intercept=1.03 [s.e. 0.01]) 

and has a genetic correlation of 0.89 (s.e. 0.39) with a previous CAD GWAS.16 For T2D, we 

identified five genome-wide significant loci (Table 2, Figure 1b, and Figure S3) near HFE, 

CDKN2B, TCF7L2, CCND2, and FTO. HFE has been linked to glycated hemoglobin (HbA1c) 

levels in a previous report.17 CDKN2B, TCF7L2, CCND2, and FTO have been reported to be 

associated with T2D.18–20 Minimal genomic inflation was observed (λgc=1.11) in the current 

GWAS, which was likely due to polygenicity rather than population stratification, as indicated 

by its LDSC intercept (1.03, s.e. 0.01). The genetic correlation between the All of Us GWAS and 

a prior T2D GWAS18 was 0.77 (s.e. 0.10).  

We applied rank-based inverse normal transformation (INT) to body height and LDL 

cholesterol prior to association testing. Using data from 94,842 participants, we identified 143 

genome-wide significant loci in the height GWAS. Additionally, we identified 10 secondary 

independent SNVs at these loci in a conditional analysis using the GCTA software21 (Figure 1c). 

The genetic correlation between the All of Us GWAS and a previously published height GWAS6 

was 0.96 (s.e. 0.02). Although the genomic inflation factor of the All of Us GWAS was relatively 

high (λgc=1.33), it was likely due to polygenicity as implicated by its LDSC intercept (1.06, s.e. 

0.02) and as height is a highly polygenic trait.22 For LDL cholesterol, we identified seven 
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genome-wide significant loci (Table 2, Figure 1d, and Figure S4) in 34,538 participants 

implicating PCSK9, CELSR2, APOB, HMGCR, LPA, LDLR, and APOE gene regions. Three 

additional independent SNVs were identified in a conditional analysis, implicating TDRD15, 

APOE, and APOC1P1/APOC4 (Table 2). Genetic variants at the gene encoding proprotein 

convertase subtilisin/kexin type 9 (PCSK9), the gene encoding cadherin EGF LAG seven-pass 

G-type receptor 2 (CELSR2), the apolipoprotein B and E genes (APOB and APOE), the gene 

encoding 3-Hydroxy-3-Methylglutaryl-CoA reductase (HMGCR), the LDL receptor gene 

(LDLR), and the gene encoding tudor domain containing 15 (TDRD15) have been consistently 

associated with LDL cholesterol levels.23–26 We did not observe any inflation in the current 

GWAS (λgc=1.02, LDSC intercept=1.01 [s.e. 0.01]). The genetic correlation between the All of 

Us LDL GWAS and a prior GWAS of LDL27 was 0.99 (s.e. 0.26). We compared the summary 

statistics of the lead common genetic variants identified in the present study to those from the 

corresponding reference GWAS in Table S2. 

We then sought to replicate known rare variant (MAF < 0.1% and Population Maximum 

MAF < 0.1%) associations, including those between TTN and AF, LPL and CAD, GIGYF1 and 

T2D, ADAMTS10, ADAMTS17, ACAN, NPR2 and height, APOB, LDLR, PCSK9 and LDL.28 We 

first counted the number of sequenced participants who were carriers of high-confidence loss-of-

function (LoF) variants of these genes. LoF variants predicted by Loss-of-Function Transcript 

Effect Estimator (LOFTEE)29 can disrupt the function of protein-coding genes and thus may 

have functional impacts on phenotypes that are associated with these genes. Genes with < 20 

carriers were removed from the analysis per All of Us’ Data and Dissemination Policy 

[https://www.researchallofus.org/data-tools/data-access/]. We performed gene-based burden tests 

as implemented in REGENIE,10 adjusting for age (enrollment age for disease phenotypes, 
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measurement age for continuous traits), sex, top 20 principal components of ancestry, and case-

control imbalance using the SPA method for binary traits. We observed significant associations 

in the All of Us data release for each of the previously reported genes and phenotypes (Figure 2). 

For example, 1 unit increase in the burden of LoF variants within TTN was associated with 2.23 

[1.65, 2.72] (P-value=5.05×10-8) times odds of diagnosing with AF. Likewise, 1 unit increase in 

the burden of LoF variants within GIGYF1 was associated with 9.03 [3.32, 24.53] (P-

value=2.39×10-5) times odds of diagnosing with T2D, and 1 unit increase in the burden of LoF 

variants within APOB was associated with 1.55 [1.23, 1.90] unit decrease in the INT transformed 

LDL level. These associations showed the same directional effects and similar effect sizes 

compared to results from a recently published study using whole-exome sequencing data in the 

UK Biobank28 (Figure 2). 

Our study should be interpreted in the context of the design. First, we analyzed samples 

from all ancestry groups together, which may not fully address population stratification and thus 

may result in inflated test statistics. However, the whole-genome regression approach has been 

shown to account for population structure and relatedness and is an established method for 

analyzing genetic data from diverse populations.10,30 Also, the genomic inflation factors and 

LDSC intercepts reported in the present study did not indicate inflated test statistics. Second, the 

disease phenotypes (AF, CAD, and T2D) were defined using electronic health records and self-

reported data only, which may result in misclassification and thus limit statistical power. 

However, the phenotyping algorithms have been validated in previous studies, and the genetic 

correlation estimates between our GWAS and corresponding previously published large-scale 

GWAS indicated good consistency. Third, we only included high-confidence loss-of-function 

variants in the rare variant analysis, which may not fully represent the associations between 
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genes and phenotypes since other rare variants (e.g., deleterious missense variants) that we did 

not include may have an impact on phenotypic expression. 

In conclusion, we replicated known genetic associations in the current release of the All 

of Us research program, indicating that the dataset is a rich and robust resource for common and 

rare variant genetic discovery. The results of our analyses support the validity of genetic 

discovery in this multi-ancestry sample. As more data become available in the coming releases, 

the use of this dataset will facilitate the advancement of biomedical research in diverse human 

populations.  
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Table 1. Characteristics of participants in the present study 
 

 N=98,564 
Mean (SD) or N (%) 

Age at enrollment 51.31 (16.87) 

Sex (male) 38,263 (38.82%) 

Ancestry (genetically determined)  

European 48,351 (49.06%) 

African 23,048 (23.38%) 

Latino/Admixed American 15,072 (15.29%) 

Other* 8,842 (8.97%) 

East Asian 2,114 (2.14%) 

South Asian 968 (0.98%) 

Middle Eastern 169 (0.17%) 

Race (self-reported)  

White 51,245 (51.99%) 

Black or African American 21,682 (22.00%) 

Asian 3,063 (3.11%) 

More than one population 1,689 (1.71%) 

Middle Eastern or North African 557 (0.57%) 

Native Hawaiian or Other Pacific Islander 86 (0.09%) 

Not available** 20,242 (20.54%) 

Ethnicity (self-reported)  

Not Hispanic or Latino 76,228 (77.34%) 

Hispanic or Latino 19,431 (19.71%) 
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Not available*** 2,905 (2.95%) 

Atrial fibrillation 5,120 (5.19%) 

Coronary artery disease 3,544 (3.60%) 

Type 2 diabetes 8,557 (8.68%) 

 N=34,538 

Low-density lipoprotein (mg/dL) 105.77 (37.27) 

 N=94,842 

Body height (cm) 167.67 (9.86) 

 
*Ancestry - other: not belonging to one of the other ancestries or is an admixture. 

**Race - not available: participants who skipped this survey question or self-reported as “None 

Indicated”, “None of these”, or “I prefer not to answer” were included in this category. 

***Ethnicity - not available: participants who skipped this question or selected “None Of These” 

or “Prefer Not To Answer” were included in this category. 
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Table 2. Top associations between phenotypes and common variants 

Phenotypes Genome 
position 
(GRCh38) 

Effect allele 
(Other allele) 

Effect allele 
frequency 

Effect size  
[95% CI] 

P-value Mapped gene Additional 
independent SNVs  
(P-value in 
conditional 
analysis) 

Disease 

Atrial Fibrillation chr4:110743002 A (G) 0.15 1.26 [1.18, 1.34] 2.40×10-13 PITX2 No 

Type 2 Diabetes chr6:26276061 G (T) 0.04 0.79 [0.73, 0.86] 4.22×10-8 HFE No 

 chr9:22136441 C (G) 0.25 1.11 [1.07, 1.16] 3.39×10-8 CDKN2B No 

 chr10:113039134 A (T) 0.25 1.19 [1.15, 1.24] 4.87×10-20 TCF7L2 No 

 chr12:4275678 G (T) 0.01 0.66 [0.57, 0.77] 4.23×10-8 CCND2 No 

 chr16:53773852 G (A) 0.46 1.12 [1.08, 1.16] 1.33×10-11 FTO No 

Quantitative traits 

Low-density 
lipoprotein 

chr1:55055522 T (C) 0.10 -0.09 [-0.11, -0.06] 1.71×10-12 PCSK9 No 

 chr1:109274968 T (G) 0.22 -0.12 [-0.13, -0.10] 3.49×10-38 CELSR2 No 

 chr2:21040767 G (T) 0.83 0.10 [0.08, 0.12] 1.59×10-21 APOB No 
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 chr2:21072960 A (G) 0.31 0.07 [0.06, 0.09] 7.75×10-20 TDRD15 Yes (6.23×10-13) 

 chr5:75360714 C (T) 0.38 0.06 [0.04, 0.07] 1.18×10-12 HMGCR No 

 chr6:160589086 G (A) 0.05 0.12 [0.09, 0.16] 2.94×10-12 LPA No 

 chr19:11085680 A (AC) 0.11 -0.13 [-0.15, -0.10] 3.73×10-27 LDLR No 

 chr19:44908684 C (T) 0.14 0.18 [0.16, 0.20] 9.51×10-62 APOE Yes (6.62×10-39) 

 chr19:44908822 T (C) 0.08 -0.40 [-0.42, -0.37] 2.03×10-181 APOE No 

 chr19:44935906 G (C) 0.23 -0.03 [-0.05, -0.02] 1.46×10-4 APOC1P1, APOC4 Yes (1.02×10-9) 

 
Common variants: variants with a minor allele frequency (MAF) > 1%. Effect size: Odds Ratios (OR) for binary traits, beta for 

quantitative traits. CI: confidence interval. Mapped gene: variants were mapped to either the closest or trait-associated genes located 

within 500kb around the variant. Additional independent SNVs: SNVs that were independently significantly associated with the trait, 

identified in conditional analyses.
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Figure 1. Manhattan plots of genome-wide association studies 
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Chromosomal variant positions are plotted on the x-axis. The -log10(P values) are plotted on the 

y-axis. The genome-wide significance threshold (5×10−8) is indicated by the horizontal dotted 

line. Panels display associations with (a) atrial fibrillation, (b) type 2 diabetes, (c) height, and (d) 

low-density lipoprotein (LDL). Height and LDL were rank-based inverse normal transformed 

prior to association testing (see text).   

 

 

e 

d) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.23.22282687doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282687
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 2. Associations between phenotypes and genes harboring 

rare variants 

Rare variants: rare (minor allele frequency [MAF] < 0.1% and Population Maximum MAF < 

0.1%) loss-of-function variants. AF: atrial fibrillation. T2D: type 2 diabetes. LDL: low-density 

lipoprotein. AoU: the All of Us research program. UKB: UK Biobank. N carriers: number of 

participants who carry at least one rare variant within each gene. Results are presented in forest 

g 
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plots, with effect sizes (odds ratios [OR] for AF and T2D, betas for height and LDL) and 95% 

confidence intervals (95% CI). ORs were plotted on a logarithmic scale. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.23.22282687doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.23.22282687
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Data Availability 

Access to individual-level data in the All of Us research program is available to researchers 

whose institution has signed a data use agreement with All of Us 

(https://www.researchallofus.org/register/). All of Us provides a publicly available data browser 

(https://databrowser.researchallofus.org/) containing aggregate-level participant data for users to 

explore the available data, including genomic variants. Electronic health records (EHR) data, 

used for phenotyping, belongs to the registered tier dataset. Whole-genome sequencing data 

belongs to the controlled tier dataset, which requires additional training to access. 
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