1 Assessment of potential transthyretin amyloid cardiomyopathy cases in the

2 Brazilian public health system using a Machine Learning Model

3 Short title: Assessment of potential transthyretin amyloid cardiomyopathy cases in Brazil

- 4 using Machine Learning
- 5 Author list: Isabella Zuppo Laper¹; Cecilia Camacho-Hubner²; Rafaela Vansan Ferreira¹;
- 6 Claudenice Leite Bertoli de Souza²; Marcus Vinícius Simões³; Fabio Fernandes⁴; Edileide
- 7 de Barros Correia⁵; Ariane de Jesus Lopes de Abreu¹; Guilherme Silva Julian^{2*}
- 8 Authors affiliation:

¹IQVIA Brazil, ²Pfizer Brazil, ³Cardiologist, Associate Professor of Cardiology at the USP
 School of Medicine in Ribeirão Preto. Coordinator of the Amyloidosis Research Center at
 HC-FMRPUSP, ⁴Cardiologist, Director of the Cardiomyopathies Group at InCor HC-FMU SP. Associate Professor of Cardiology at FMUSP, ⁵Cardiologist, Head of the
 Cardiomyopathies Section and Coordinator of the Amyloidosis Center of Instituto Dante
 Pazzanese de Cardiologia

- 15 *Corresponding author: Guilherme Silva Julian
- 16 E-mail for the *corresponding author: guilherme.julian@pfizer.com
- 17

Author contributions: IZL was responsible for the conceptualization, methodology, validation, visualization, and writing (original draft preparation). RVF was responsible for data conceptualization, formal analysis, methodology, validation, and writing (review and editing). CCH and AJLA were responsible for the conceptualization, supervision, and writing (review and editing). CLBS was responsible for project administration, supervision, and writing (review and editing). MVS, FF, and EBC were responsible for validation and writing (review and editing). GSJ supervised the research and revised the manuscript.

It is made available under a CC-BY 4.0 International license .

25 Abstract

Objectives: To identify and describe the profile of potential transthyretin cardiac amyloidosis
 (ATTR-CM) cases in the Brazilian public health system (SUS), using a predictive machine learning
 (ML) model.

Methods: This was a retrospective descriptive database study that aimed to estimate the frequency 29 of potential ATTR-CM cases in the Brazilian public health system using a supervised ML model, 30 from January 2015 to December 2021. To build the model, a list of ICD-10 codes and procedures 31 32 potentially related with ATTR-CM was created based on literature review and validated by experts. 33 Results: From 2015 to 2021, the ML model classified 262 hereditary ATTR-CM (hATTR-CM) and 1,581 wild-type ATTR-CM (wtATTR-CM) potential cases. Overall, the median age of hATTR-CM 34 and wtATTR-CM patients was 66.8 and 59.9 years, respectively. The ICD-10 codes most presented 35 as hATTR-CM and wtATTR-CM were related to heart failure and arrythmias. Regarding the 36 therapeutic itinerary, 13% and 5% of hATTR-CM and wtATTR-CM received treatment with 37 tafamidis meglumine, respectively, while 0% and 29% of hATTR-CM and wtATTR-CM were 38 39 referred to heart transplant. 40 Conclusion: Our findings may be useful to support the development of health guidelines and policies

to improve diagnosis, treatment, and to cover unmet medical needs of patients with ATTR-CM inBrazil.

43 Keywords: transthyretin amyloid cardiomyopathy; machine learning; predictive model;

44 Brazilian national health system

It is made available under a CC-BY 4.0 International license .

45 INTRODUCTION

Amyloidosis are a group of protein misfolding disorders in which misfolded proteins form 46 47 insoluble amyloid fibrils that deposit in the tissues leading to organ damage and dysfunction 48 (1). Two types of amyloid account for 95% of cardiac amyloidosis: light-chain amyloid (AL) due to immunoglobin light-chain deposition and transthyretin (TTR) cardiac amyloidosis 49 50 (ATTR-CM), which can be due to hereditary mutation (hATTR) or wild-type transthyretin (wtATTR) (1). Hereditary transthyretin cardiac amyloidosis (hATTR-CM) is caused by one 51 of the known heritable (autosomal dominant) mutations in the TTR gene, while wtATTR-52 53 CM (also known as senile or senile systemic amyloid CM) is caused by age-related changes in the wild-type TTR (1). ATTR-CM is an under-recognized cause of heart failure (HF) in 54 older adults. Although ATTR-CM is considered a rare cardiac disease, recent studies have 55 shown a prevalence up to 13% of patients hospitalized with HF and preserved ejection 56 fraction (HFpEF) (2); 16% of patients with aortic stenosis undergoing transcatheter valve 57 58 replacement (2); 7-8% of patients undergoing carpal tunnel release surgery (3); and 17% of older adults with HFpEF in an autopsy series (4). Data on the epidemiology of the disease in 59 Brazil are scarce, especially in the public health setting. 60

The natural history of ATTR-CM includes progressive HF, complicated by arrhythmias and conduction system disease. The clinical course is more variable for those with hATTR compared with wtATTR (1). The hereditary form of the disease usually manifests itself after the age of 47, with a median survival ranging from 2 to 6 years after diagnosis (depending on genotype) for untreated patients (1,5–7) due to its low penetrance. On the other hand, wtATTR-CM is a disease that predominately affects men >60 years of age, with a median survival ranging from 3.5 to 5 years after diagnosis in untreated patients (depending on the

It is made available under a CC-BY 4.0 International license .

stage of the disease) (1,5-7). Diagnostic delays, which remain common in the current 68 treatment landscape, are associated with particularly poor prognosis (8). The diagnosis of 69 ATTR-CM is challenging for several reasons, including the similarity of symptoms with HF, 70 a prevalent and common disease, especially among older adults, and the unfamiliarity of 71 clinicians with the disease and its appropriate diagnostic algorithm (1). Misdiagnosis is 72 common in ATTR-CM, contributing to diagnostic delays and risking both further disease 73 74 progression and treatment with ineffective and potentially harmful therapies (9). Management of cardiac amyloidosis is complex and specific for the type of amyloidosis that 75 affects the patient. In Brazil, the only treatment approved for ATTR-CM is tafamidis, a TTR 76 77 stabilizer that binds the thyroxine-binding sites of TTR with high affinity and selectivity, slowing dissociation of TTR tetramers into monomers, therefore inhibiting aggregation. 78 Given the misdiagnosis and significant morbidity of ATTR-CM and availability of treatment 79 with TTR stabilization, it is essential to identify those ATTR-CM patients who are potentially 80 under-recognized. Machine learning (ML) models based on medical claims data for the 81 prediction of diseases and phenotypes have been described in the medical literature with 82

increasing frequency (10–14). In this way, this study aimed to identify and describe the
profile of potential ATTR-CM in the Brazilian public health system (SUS), using a predictive
machine learning model.

86 **METHODS**

87 Study design

This was a database retrospective study that aimed to estimate the frequency of potential ATTR-CM cases in the Brazilian public health system using a machine learning model. The

It is made available under a CC-BY 4.0 International license .

90	period of the analysis was from January 1, 2015, until December 30, 2021, in the database.	
91	We conducted the analysis using a supervised machine learning model. The supervised model	
92	uses training datasets that contain information on the desired output (label; true outcome),	
93	i.e., the model learns from labelled training data how to predict the desired outcome. In this	
94	study, labelled data defined "reference ATTR-CM cases" and "not ATTR-CM" cases, based	
95	on criteria set by the investigators. Then, the model predicted among those cases labelled as	
96	"not ATTR-CM" which could be under-recognized ATTR-CM cases (ATTR-CM-like cases)	
97	(Supplementary Error! Reference source not found.). The "reference" cases were those	
98	most likely to have a confirmed ATTR-CM diagnosis, while the "like" cases were those most	
99	likely to be under-recognized ATTR-CM cases.	
100	The ML approach was performed as follows:	
101	• "ATTR-CM-reference" cases were defined as:	
102	• Reference wild-type ATTR-CM (wtATTR-CM): patients aged \geq 50 years old, with	
103	at least one claim with wtATTR-related ICD-10 codes (Error! Reference source	
104	not found.), <u>AND</u> at least one claim with one of the following cardiac-related ICD-	
105	10 codes: I50.0, I50.1, I50.9, I11.0, I42.0, I42.1, I42.2, I35.0, I44.1, I44.2, I42.5.	
106	(Error! Reference source not found.).	
107	\circ Reference hATTR-CM: patients aged \geq 18 years old, with at least one claim with	
108	hATTR-related ICD-10 codes (Error! Reference source not found.), <u>AND</u> at least	
109	one claim with one of the following cardiac-related ICD-10 codes: I50.0, I50.1,	
110	I50.9, I11.0, I42.0, I42.1, I42.2, I35.0, I44.1, I44.2, I42.5 (Error! Reference source	
111	not found.).	

It is made available under a CC-BY 4.0 International license .

112	• "ATTR-CM-like" cases were those not defined as ATTR-CM in the first step of the ML
113	approach (i.e., defined as "not ATTR-CM cases") but classified as ATTR-CM by the
114	algorithm. For those patients, the criteria set for classification were:
115	• wtATTR-CM:
116	 Patients with at least one claim with any cardiac-related ICD-10 code (Error!
117	Reference source not found.) AND at least one claim of the secondary
118	procedures AND at least one mandatory procedure claim (Supplementary Table
119	1).
120	 Patients with at least one claim with wtATTR-related ICD-10 codes (Error!
121	Reference source not found.) AND at least one mandatory OR secondary
122	procedure (Supplementary Table 1).
123	• hATTR-CM: patients with at least one claim with hATTR-related ICD-10 codes
124	(Error! Reference source not found.) AND at least one mandatory OR one
125	secondary procedure (Supplementary Table 1).

126**Table 1.** Final International Classification of Diseases (ICD-10) code list for identifying127potential ATTR-CM cases in DATASUS

Hereditary ATTH	R-CM
E85.0	Non-neuropathic heredofamilial amyloidosis
E85.1	Neuropathic heredofamilial amyloidosis
E85.2	Heredofamilial amyloidosis, unspecified
Wild-type ATTR	-CM
E85	Amyloidosis
E85.3	Secondary systemic amyloidosis
E85.4	Organ-limited amyloidosis
E85.8	Other amyloidosis
E85.9	Amyloidosis, unspecified
Cardiac-related	
I50.0	Congestive heart failure
I50.1	Left ventricular failure, unspecified

It is made available under a CC-BY 4.0 International license .

150.9	Heart failure, unspecified
I51.7	Cardiomegaly
I11.0	Hypertensive heart disease with heart failure (congestive)
135.0	Aortic valve stenosis
I42.0	Dilated cardiomyopathy
I42.1	Hypertrophic obstructive cardiomyopathy
I42.2	Other hypertrophic cardiomyopathies
I42.5	Other restrictive cardiomyopathy
I44.0	First degree atrioventricular block
I44.1	Second degree atrioventricular block
I44.2	Total atrioventricular block
I44.7	Unspecified left bundle branch block
I47.2	Ventricular tachycardia
I48.0	Flutter and atrial fibrillation
Q25.3	Aortic stenosis
G56.0	Carpal tunnel syndrome
N18.0	Chronic kidney disease
N18.8	Other chronic kidney disease
N18.9	Chronic kidney disease, unspecified

128 Data sources and feature selection

This study was based on outpatient and inpatient administrative data from DATASUS, the 129 Informatics Department of SUS, body responsible for collecting, processing, and 130 disseminating healthcare data in Brazil (15). Two datasets were considered: the Inpatient 131 Information System (SIH [Sistema de Informações Hospitalares]) and Outpatient 132 Information System (SIA [Sistema de Informações Ambulatoriais]). SIH and SIA are 133 administrative databases for reimbursement purposes (16,17). Due to its administrative 134 nature, SIH and SIA do not contain clinical data (e.g., signs and symptoms). Thus, cause of 135 admission (as per International Classification of Diseases (ICD) code) and procedures 136 performed during the hospitalization were used as predictor variables. Additionally, data 137 related to patient's age, state of residence, hospitalization, and outpatient visits date, 138 diagnosis at entry (ICD based), procedures prescribed and performed, and in-hospital length 139

It is made available under a CC-BY 4.0 International license .

140 of stay (days) were also extracted.

141	To build the model, a preliminary ICD-10 code list that could be potentially related to ATTR-
142	CM (i.e., ICD-10 codes most presented or related to ATTR-CM) was created based on
143	literature review. This list was certified by a group of ATTR-CM Brazilians experts and the
144	final list with the ICD codes generated is presented at Error! Reference source not found.
145	Different types of procedures were also selected based on the literature review (18,19). Codes
146	and procedures reference names were collected from the Management System of Procedures,
147	Medications and OPM of the Unified Health System (SIGTAP), which are the standard
148	procedures approved within SUS (20). A list of the selected procedures was then validated
149	by ATTR-CM experts (Supplementary Table 2).

150 Study population

For the wtATTR-CM cohort, were considered patients aged \geq 50 years at index date (date of first procedure claim related to the ICDs selected as potentially associated with wtATTR-CM); with wtATTR-CM-related ICD-10 codes and any of the cardiac-related ICD-10 codes listed in **Error! Reference source not found.** during the study period. And for the hATTR-CM cohort, were included patients aged \geq 18 years at index date, with hATTR-CM-related ICD-10 codes during the study period.

Patients diagnosed with blood cancers, end-stage renal disease and cerebral amyloid
angiopathy (ICD-10 codes C83.0, C83.3, C85.1, C90.0, C90.1, C88.8, C90.2, C90.3, C88.0,
D47.2, D89.1, E88.0, N18.6 and I68.0) were excluded, minimizing the potential for our
prediction model to overlap with other diseases and forms of cardiac amyloidosis. Also, as a

It is made available under a CC-BY 4.0 International license .

quality step, patients with inconsistent data (e.g., negative age) or with \geq 50% of missing data in the databases were excluded from analysis.

163 This is a modelling study using secondary data from public information sources. In 164 accordance with the study country regulation, studies using open access and anonymized 165 databases do not require patient informed consent nor ethics committee approval (21).

166 Linkage methods

Some outpatient databases have unique patient encrypted code (key identifier), while some 167 other outpatient and inpatient databases do not have it. Because of the lack of patient match 168 169 key, a probabilistic record linkage method was used to allow longitudinal assessment using SIH and SIA, following multiple steps with different combination of patient information 170 from both databases, such as date of birth, city and ZIP code (22). Before each step, a data 171 172 cleaning was performed to keep only good quality claims for linkage. About 5% of all patient records were discharged from analysis due to low quality information. This approach, 173 however, enables an assessment of each patient's longitudinal record and thus allowed us to 174 evaluate their journey across the system. 175

176 Statistical methods

For the ML model approach, the selected data was separated in train, validation, and test datasets (Supplementary **Error! Reference source not found.**). During the training step, the model learned the patterns of the used data. The validation step, then, was used to decide the most suitable algorithm and the test was the final validation of the model. A supervised learning algorithm was fitted in the training set to learn the pattern of ATTR-CM and not

ATTR-CM cases. We tested three different supervised algorithms (logistic regression, 182 Support Vector Machine, XGBoost, and Random Forest), so we could choose the one with 183 the best performance. A K-fold cross validation was performed to get the best model 184 parameters and control overfitting. After evaluating the result of the best model in the 185 validation set, it was also evaluated in the test set, to make sure this was the best model. The 186 machine learning model approach is represented in Supplementary Error! Reference source 187 188 not found. Data analysis was performed considering numerical and categorical variables. The continuous variables were described as measures of central tendency (mean, median) 189 and spread, including the range, quartiles, absolute deviation, variance, and standard 190 191 deviation, as applicable. The categorical variables were described as counts and percentages. The age variable was calculated based on the difference between the date of birth and the 192 first ICD-10 code of interest reported (index date). The age was described as a continuous 193 194 variable, including the mean, standard deviation, median and interguartile ranges; and by age groups (absolute number and proportion per category). The demographic variables were 195 described as categorical variables, with absolute frequencies and percentage, as well as the 196 frequency of the selected ATTR-CM-related ICD-10 codes. The proportion of ATTR-CM-197 reference and ATTR-CM-like cases among potential ATTR-CM cases in SUS was described 198 199 by ATTR-CM type (hereditary and wild-type) per year. The model performance metrics were also evaluated, considering its accuracy, sensitivity, and specificity. Time of follow-up was 200 calculated based on the difference between date of first claim of ICD-10 code of interest and 201 202 the last date of patient information available at database. The annual hospitalization rate was described as the number of ATTR-CM-related hospitalizations per 100.000 inhabitants per 203 each study year. The therapeutic itinerary was presented as the number and proportion of 204

It is made available under a CC-BY 4.0 International license .

patients with record of tafamidis, heart transplant or liver transplant during the study period. 205

The resource utilization per patient was summarized as the mean (SD) and median (IQR) 206 number of hospital admissions and outpatient visits per each patient; and the resource 207 utilization per patient per year (PPPY) was calculated as the median (95%CI) number of 208 procedures divided by each patient's follow-up time in years, according to the formula: 209

210
$$PPPY = \frac{Nvisits}{FUP of each patient (in years)}$$

211 RESULTS

212 Study dataset construction and classification of the ATTR-CM cases

A total of 1,508,468 individuals with claims for the selected ICD-10 codes were identified in 213 214 the database from 2015 to 2021. From those, 2,107 (0.14%) were excluded due to blood 215 cancer, end-stage renal disease or cerebral amyloid angiopathy. Thus, 1,506,361 individuals 216 were considered to start the construction of the hATTR-CM and wtATTR-CM cohorts

217 (Error! Reference source not found.).

218 Of the 1,506,361 individuals in the initial cohort, 860 were aged \geq 18 years old and had at least one claim with hATTR ICD-10 codes, composing the hATTR-CM initial dataset. Of 219 220 these, 477 hATTR-CM cases were identified from 2015 to 2021, of which 213 were classified as reference-hATTR-CM and 264 were classified as potential hATTR-CM cases in the first 221 step of the ML model (Error! Reference source not found.). Finally, among those cases 222 classified as potential hATTR-CM cases in the first step of the algorithm, 49 (10.27%) were 223 classified as hATTR-CM-like cases and 215 (45.07%) were classified by the ML model as 224 non hATTR-CM cases (Table 2). That is, the model classified a total of 265 potential 225

It is made available under a CC-BY 4.0 International license .

hATTR-CM patients (reference and like cases). The prevalence of hATTR-CM among 226 hATTR patients was 24.8%, considering the 213 reference patients and the 860 individuals 227 in the initial hATTR cohort. 228 Considering the construction of the wtATTR-CM cohort, 938,385 individuals were aged \geq 229 50 years old and had at least one claim with wtATTR-CM ICD-10 codes or at least one claim 230 with cardiac-related ICD-10 codes, being therefore included in the wtATTR-CM initial 231 232 cohort. Of these, 203 were classified as reference-wtATTR-CM and 6,177 were classified as potential wtATTR-CM cases in the first step of the ML model (Error! Reference source 233 **not found.**). In the final step of the ML model, of the 6,177 cases classified as potential in 234 235 the first step, 1,378 (21.6%) were classified as wtATTR-CM-like cases and 4,799 (75.22%) as non wtATTR-CM cases (Table 2). That is, the model classified a total of 1,581 potential 236 wtATTR-CM patients (reference and like cases). The prevalence of wtATTR-CM cases was 237 21.6 cases per 100.000 patients > 50 years old with cardiac-related ICD-10 codes. 238 considering the 203 reference patients and the 938,385 individuals in the initial wtATTR-239 CM cohort. It is important to notice that this prevalence is based on an initial cohort of 240 patients with cardiac failure and related diseases, and not on the overall Brazilian population. 241

Fig 1. Sample size construction flowchart

Table 2. Proportion of ATTR-CM-reference and ATTR-CM-like cases in SUS according to the ML model classification from 2015 to
 244 2021

	Total	2015	2016	2017	2018	2019	2020	2021
Hereditary ATTR-CM	477	39	40	35	23	117	109	114
Classification, N (%)								
	213	20	23 (57.5%)	10	13	44	56	47
hATTR-CM-reference	(44.65%)	(51.28%)		(28.57%)	(56.52%)	(37.61%)	(51.38%)	(41.23%)
	49	3	5	4 (11.43%)	0	16	18	3
hATTR-CM-like	(10.27%)	(7.69%)	(12.5%)		(0%)	(13.68%)	(16.51%)	(2.63%)
	215	16	12	21	10	57	35	64
Non-hATTR-CM	(45.07%)	(41.03%)	(30%)	(60%)	(43.48%)	(48.72%)	(32.11%)	(56.14%)
Wild-type ATTR-CM	6380	2152	1117	999	774	593	342	403
Classification, N (%)								
	203	107	20 (1.79%)	24	20 (2.58%)	17 (2.87%)	9	6
wtATTR-CM-reference	(3.18%)	(4.97%)	,	(2.4%)			(2.63%)	(1.49%)
	1378	578	264	194	140	94	60	48
wtATTR-CM-like	(21.6%)	(26.86%)	(23.63%)	(19.42%)	(18.09%)	(15.85%)	(17.54%)	(11.91%)
	4799	1467	833	781	614	482	273	349
Non-wtATTR-CM	(75.22%)	(68.17%)	(74.57%)	(78.18%)	(79.33%)	(81.28%)	(79.82%)	(86.6%)

245 hATTR-CM: hereditary transthyretin amyloid cardiomyopathy; wtATTR-CM: wild-type transthyretin amyloid cardiomyopathy

It is made available under a CC-BY 4.0 International license .

246 Machine Learning model performance

- 247 The final validated model was applied to both hATTR-CM and wtATTR-CM datasets. The
- 248 model classified the ATTR-CM cases as reference, potential or not ATTR-CM. For hATTR-
- 249 CM cohort, the final validated model predicted 95.35% of hATTR-CM cases and 75.47% of
- not hATTR-CM cases and had an accuracy of 84.35% (Table 3). For the wtATTR-CM cohort
- 251 (n=6,380), the final validated model predicted 84.62% of wtATTR-CM cases and 77.85% of
- not wtATTR-CM cases and had an accuracy of 78.06% (Table 3).
- 253 **Table 3.** Model performance in final test

Hereditary ATTR-CM	
Accuracy	84.38%
Sensitivity	95.35%
Specificity	75.47%
Wild-type ATTR-CM	
Accuracy	78.06%
Sensitivity	84.62%
Specificity	77.85%

Accuracy: the proportion of correct classifications that a trained machine learning model achieves, i.e., the number of correct predictions divided by the total number of predictions across all classes; Sensitivity: measures the proportion of true positives that are correctly identified by the model; Specificity: measures the proportion of true negatives that are correctly identified by the model.

258 Demographic characteristics of ATTR-CM-reference and ATTR-CM-like patients

259	Overall, median age of hATTR-CM patients was 66.8 years (interquartile range [IQR]
260	50.5-70.3). In the reference group, median age was 66.8 (IQR 52.8-74.1)
261	years, while in hATTR-CM-like group it was 65.9 (IQR 42.2-71.0). Most
262	patients were over 60 years old over all groups, but a higher proportion of
263	the age group from 30 to 49 years was observed in hATTR-CM-like. There
264	were most males in general (58.8%), as in the reference hATTR-CM
265	(58.2%) and hATTR-CM-like (61.2%) groups (

It is made available under a CC-BY 4.0 International license .

266 Table 4).

267	The median age of wtATTR-CM patients was overall 59.9 years (IQR 55.1-66.3). In
268	the wtATTR-CM reference group, median age was 65.9 (IQR 58.4-73.8)
269	years, while in wtATTR-CM-like group it was 59.2 (IQR 54.8-65.2),
270	demonstrating an opportunity to properly diagnose these potential patients
271	while they're in a less advanced age. Most patients were under 70 years old
272	over all groups, and the wtATTR-CM group had the higher proportion of
273	individuals from 50 to 59 years old (49.1%). Males were the majority
274	overall (62.1%), as well as in the hATTR-CM reference (58.6%) and
275	hATTR-CM-like (62.6%) groups (

It is made available under a CC-BY 4.0 International license .

276 Table 4).

		hATTR-CM		wtATTR-CM			
	Total	hATTR-CM reference	hATTR-CM- like	Total	wtATTR-CM reference	wtATTR-CM- like	
	262	213	49	1581	203	1378	
Age at index date							
Mean ± SD Median (min -	61.6 ± 16.1	62.1 ± 15.9	59.4 ± 17.2	61.5 ± 8.3 59.9 (50.0 -	66.7 ± 10.2 65.9 (50.3 -	60.7 ± 7.6	
max)	66.8 (19.3 - 89.3)	66.8 (19.3 - 89.3)	65.9 (22.6 - 88.8)	102.1)	102.1)	59.2 (50.0 - 91.8)	
IQR	50.5 - 73.0	52.8 - 74.1	42.2 - 71.0	55.1 - 66.3	58.4 - 73.8	54.8 - 65.2	
Age group, N (%)							
18 to 29 years	10 (3.82%)	8 (3.76%)	2 (4.08%)	-	-	-	
30 to 39 years	24 (9.16%)	17 (7.98%)	7 (14.29%)	-	-	-	
40 to 49 years	30 (11.45%)	23 (10.8%)	7 (14.29%)	-	-	-	
50 to 59 years	30 (11.45%)	26 (12.21%)	4 (8.16%)	730 (46.17%)	53 (26.11%)	677 (49.13%)	
60 to 69 years	65 (24.81%)	52 (24.41%)	13 (26.53%)	570 (36.05%)	71 (34.98%)	499 (36.21%)	
70 to 79 years	74 (28.24%)	62 (29.11%)	12 (24.49%)	222 (14.04%)	53 (26.11%)	169 (12.26%)	
\geq 80 years	29 (11.07%)	25 (11.74%)	4 (8.16%)	59 (3.73%)	26 (12.81%)	33 (2.39%)	
Total available information	262	213	49	1581	203	1378	
Gender N (%)							
Female	108 (41.22%)	89 (41.78%)	19 (38.78%)	600 (37.95%)	84 (41.38%)	516 (37.45%)	
Male	154 (58.78%)	124 (58.22%)	30 (61.22%)	981 (62.05%)	119 (58.62%)	862 (62.55%)	

277 **Table 4.** ATTR-CM patients demographic characteristics

278 hATTR-CM: hereditary transthyretin amyloid cardiomyopathy; wtATTR-CM: wild-type transthyretin amyloid cardiomyopathy; IQR: interquartile range; SD: standard deviation

It is made available under a CC-BY 4.0 International license .

279	Regarding the distribution of cases by state of residence, considering all patients
280	(n=262) and the hATTR-CM reference cohort (n=213), most patients lived
281	in São Paulo (31.5% and 26.5%, respectively), Minas Gerais (17.7% and
282	19.9%), Bahia (9.6% and 10.4%), Paraná (7.7% and 8.5%), and Rio de
283	Janeiro (6.9% and 7.1%, respectively). For hATTR-CM-like cohort
284	(n=49), higher proportions of patients were observed in São Paulo (53.1%),
285	Distrito Federal (10.2%), Minas Gerais (8.2%), Bahia (6.1%) and Rio de
286	Janeiro (6.1%) (

It is made available under a CC-BY 4.0 International license .

287 Table 5).

288	For wtATTR-CM cohort, considering all patients (n=1,581), most patients lived in São
289	Paulo (40.2%), Minas Gerais (10.8%), Bahia (8.1%), and Pernambuco
290	(7.2%)Error! Reference source not found The same trend was observed
291	in wtATTR-CM-like group, with most patients living in São Paulo
292	(40.5%), Minas Gerais (10.0%), Bahia (8.43%), and Pernambuco (7.46%).
293	For wtATTR-CM reference cohort (n=203), higher proportions of patients
294	were observed in São Paulo (38.3%), Minas Gerais (15.9%), Bahia (6.0%),
295	and Rio Grande do Sul (6.0%) (

It is made available under a CC-BY 4.0 International license .

296 Table 5).

		hATTR-CM		wtATTR-CM			
		hATTR-CM			wtATTR-CM	wtATTR-CM	
	Total	reference	hATTR-CM-like	Total	reference	like	
	262	213	49	1581	203	1378	
Acre	0 (0%)	0 (0%)	0 (0%)	1 (0.06%)	1 (0.5%)	0 (0%)	
Alagoas	1 (0.38%)	1 (0.47%)	0 (0%)	14 (0.91%)	3 (1.49%)	11 (0.82%)	
Amapá	0 (0%)	0 (0%)	0 (0%)	1 (0.06%)	0 (0%)	1 (0.07%)	
Amazonas	1 (0.38%)	1 (0.47%)	0 (0%)	6 (0.39%)	2 (1%)	4 (0.3%)	
Bahia	25 (9.62%)	22 (10.43%)	3 (6.12%)	125 (8.11%)	12 (5.97%)	113 (8.43%)	
Ceará	4 (1.54%)	4 (1.9%)	0 (0%)	42 (2.73%)	4 (1.99%)	38 (2.84%)	
Distrito Federal	8 (3.08%)	3 (1.42%)	5 (10.2%)	32 (2.08%)	2 (1%)	30 (2.24%)	
Espírito Santo	6 (2.31%)	6 (2.84%)	0 (0%)	30 (1.95%)	2 (1%)	28 (2.09%)	
Goiás	16 (6.15%)	14 (6.64%)	2 (4.08%)	32 (2.08%)	11 (5.47%)	21 (1.57%)	
Maranhão	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
Mato Grosso	1 (0.38%)	1 (0.47%)	0 (0%)	7 (0.45%)	0 (0%)	7 (0.52%)	
Mato Grosso do Sul	5 (1.92%)	3 (1.42%)	2 (4.08%)	9 (0.58%)	2 (1%)	7 (0.52%)	
Minas Gerais	46 (17.69%)	42 (19.91%)	4 (8.16%)	166 (10.77%)	32 (15.92%)	134 (10%)	
Pará	1 (0.38%)	1 (0.47%)	0 (0%)	1 (0.06%)	1 (0.5%)	0 (0%)	
Paraíba	3 (1.15%)	3 (1.42%)	0 (0%)	14 (0.91%)	1 (0.5%)	13 (0.97%)	
Paraná	20 (7.69%)	18 (8.53%)	2 (4.08%)	84 (5.45%)	11 (5.47%)	73 (5.45%)	
Pernambuco	4 (1.54%)	3 (1.42%)	1 (2.04%)	111 (7.2%)	11 (5.47%)	100 (7.46%)	
Piauí	1 (0.38%)	1 (0.47%)	0 (0%)	5 (0.32%)	1 (0.5%)	4 (0.3%)	
Rio de Janeiro	18 (6.92%)	15 (7.11%)	3 (6.12%)	46 (2.99%)	8 (3.98%)	38 (2.84%)	
Rio Grande do Norte	3 (1.15%)	3 (1.42%)	0 (0%)	8 (0.52%)	1 (0.5%)	7 (0.52%)	
Rio Grande do Sul	5 (1.92%)	5 (2.37%)	0 (0%)	75 (4.87%)	12 (5.97%)	63 (4.7%)	
Rondônia	2 (0.77%)	2 (0.95%)	0 (0%)	4 (0.26%)	1 (0.5%)	3 (0.22%)	
Roraima	0 (0%)	0 (0%)	0 (0%)	1 (0.06%)	0 (0%)	1 (0.07%)	
Santa Catarina	5 (1.92%)	4 (1.9%)	1 (2.04%)	51 (3.31%)	6 (2.99%)	45 (3.36%)	
São Paulo	82 (31.54%)	56 (26.54%)	26 (53.06%)	620 (40.23%)	77 (38.31%)	543 (40.52%)	
Sergipe	3 (1.15%)	3 (1.42%)	0 (0%)	53 (3.44%)	0 (0%)	53 (3.96%)	
Tocantins	0 (0%)	0 (0%)	0 (0%)	3 (0.19%)	0 (0%)	3 (0.22%)	
Unknown	2	2	0	40	2	38	

Table 5. Distribution of ATTR-CM cases, from 2014 to 2021, according to the state of residence

298 hATTR-CM: hereditary transthyretin amyloid cardiomyopathy; wtATTR-CM: wild-type transthyretin amyloid cardiomyopathy.

It is made available under a CC-BY 4.0 International license .

299 Proportion of ICD-10 codes most presented as ATTR-CM-like cases in DATASUS

300 The ICD-10 codes most presented as hATTR-CM in the overall cohort (n=262) were I50.0 301 Congestive Heart Failure (59.5%), I50.9 Heart Failure, unspecified (41.9%), N18.9 chronic 302 kidney disease, unspecified (27.5%), I44.2 Total atrioventricular block (18.3%), and I48.0 Flutter and atrial fibrillation (16.4%) (Fig 2). Considering only the hATTR-CM reference 303 304 cohort (n=213), most prevalent ICD-10 codes were I50.0 Congestive Heart Failure (73.2%), 305 I50.9 Heart Failure, unspecified (51.6%), N18.9 chronic kidney disease, unspecified (30.5%), 306 I44.2 Total atrioventricular block (22.5%), and I48.0 Flutter and atrial fibrillation (19.3%). 307 For hATTR-CM-like cohort, on the other side, most common cardiac-related ICD-10 codes 308 were N18.9 chronic kidney disease, unspecified (18.4%), N18.8 Other chronic kidney disease (12.2%), I47.2 Ventricular tachycardia (8.2%), and G56.0 Carpal tunnel syndrome (6.1%) 309 (Fig 2). 310

311 Fig 2. Cardiac-related ICD-10 codes most frequent in hATTR-CM patients

For the wtATTR-CM cohort, heart failure and arrythmias were the ICD-10 codes most 312 presented in the overall cohort (n=1,581), with I50.0 Congestive Heart Failure (78.7%), I50.9 313 Heart Failure, unspecified (54.5%), 144.2 Total atrioventricular block (19.4%), 142.0 Dilated 314 cardiomyopathy (18.4%), and N18.9 chronic kidney disease, unspecified (17.7%) (Fig 3). 315 316 Considering only the wtATTR-CM reference cohort (n=203), most prevalent ICD-10 codes were I50.0 Congestive Heart Failure (63.1%), I50.9 Heart Failure, unspecified (59.6%), I44.2 317 Total atrioventricular block (26.6%), and N18.9 chronic kidney disease, unspecified 318 319 (26.6%%). For wtATTR-CM-like cohort (n=1,378) most common cardiac-related ICD-10 codes were I50.0 Congestive heart failure (81.0%), I50.9 Heart failure, unspecified (53.8%), 320

- 321 I42.0 Dilated cardiomyopathy (19.7%), I44.2 Total atrioventricular block (18.4%), and
- N18.9 chronic kidney disease, unspecified (16.3%) (Fig 3).
- 323 Fig 3. Cardiac-related ICD-10 codes most frequent in wtATTR-CM patients

324 Annual ATTR-CM hospitalization rate

- 325 Higher hospitalization rates were observed in the hATTR-CM reference compared to
- hATTR-CM-like group. The years with the higher hospitalization rates were 2017 and 2018,
- for hATTR-CM reference, and 2017, 2019 and 2020 for hATTR-CM-like cohort (Fig 4).
- **Fig 4.** Annual hATTR-CM hospitalization rate from 2015 to 2021
- 329 The opposite was observed for wtATTR-CM-like patients, which had a higher rate of
- 330 hospitalization throughout the study period compared to wtATTR-CM reference patients.
- The years with the higher hospitalization rates were 2017 and 2018, for the wtATTR-CM
- reference, and 2015 and 2018 for wtATTR-CM-like cohort (Fig 5).
- **Fig 5.** Annual wtATTR-CM hospitalization rate from 2015 to 2021

334 ATTR-CM therapeutic itinerary and healthcare resource utilization within SUS

335 Inpatient setting

Overall, hospitalizations were more frequent among hATTR-CM reference patients 336 compared to hATTR-CM-like. For the entire cohort (n=262), 217 (82.8%) 337 patients had at least one record of hospitalization. The proportion of 338 hospitalized patients decreased comparing hATTR-CM reference (94.4%) 339 340 to hATTR-CM-like (32.7%). Median hospitalization rate per patient was 4.0 (IQR 2.0-8.0) for all patients, with similar trend in hATTR-CM 341 reference (median [IQR 2.0-9.0]) and decreased in hATTR-CM-like 342 (median 1.0 [IQR 1.0-2.2]). Median hospitalization rate per patient per 343 344 year (PPPY) was 1.5 (IQR 1.0-2.2) for all patients. However, analysis by

It is made available under a CC-BY 4.0 International license .

345	type of hATTR-CM revealed that hATTR-CM-like had a PPPY
346	hospitalization rate 50% higher than hATTR-CM reference (1.50 [IQR
347	1.0-2.2] and 1.0 [1.0-1.6], respectively). The median number of days in
348	hospital per patient (total days of hospitalization during follow up) was 6.0
349	(IQR 3.0-12.0) for all patients, with a decreasing trend comparing hATTR-
350	CM reference (6.0 days [IQR 3.0-12.0]) to hATTR-CM-like (4.0 days [IQR
351	1.0-10.5] (

It is made available under a CC-BY 4.0 International license .

352 Table 6).

353 *Outpatient setting*

354	In the outpatient setting, hATTR-CM-like patients had more outpatient visits
355	compared to hATTR-CM reference. For the entire cohort (n=262), 244
356	(93.1%) patients had at least one record of outpatient visit related to the
357	hATTR. The proportion of patients with record of outpatient visits was
358	higher in hATTR-CM-like (98.0%) compared to hATTR-CM reference
359	(92.0%). Median number of outpatient visits per patient was 8.0 (IQR 2.8-
360	20) for all patients. Median number of outpatient visits PPPY was 5.0 (IQR
361	2.0-8.0) for all patients. However, analysis by disease type revealed that
362	hATTR-CM reference had less outpatient visits PPPY compared to
363	hATTR-CM-like (5.0 [IQR 2.0-7.5] and 6.3 [IQR 1.0-8.7], respectively) (

It is made available under a CC-BY 4.0 International license .

364 Table 6).

365 Therapeutic Itinerary

For the entire cohort (n=262), 35 (13.4%) patients had at least one claim for tafamidis 366 meglumine, of which 31 (14,6%) were in the hATTR-CM reference group, 367 and 4 (8.2%) were in the hATTR-CM-like group. There was no record of 368 heart or liver transplant in the hATTR-CM cohort. The median number of 369 treatment claims per hATTR-CM patient during the study period was 3.0 370 371 (IQR 1.5-11), varying from 3.0 (IQR 1.5-11) in the hATTR-CM reference cohort to 5.5 (IQR 1.8-9.8) in the hATTR-CM-like cohort. Median number 372 of treatment claims PPPY was 2.0 (IQR 1.5-5.5) for all patients and for 373 hATTR-CM reference cohort. The hATTR-CM-like group had a median 374 number of treatment claims PPPY of 4.0 (IQR1.8-6.8) (375

It is made available under a CC-BY 4.0 International license .

376 Table 6).

377 *Procedure metrics*

- 378 The patterns of procedures claims were identical across disease types and for the
- 379 entire cohort. Median number of procedures claims during the study
- 380 period was 1.0 (IQR 1.0-1.0) and median PPPY was 1.0 (IQR 1.0-1.0). It
- 381 was considered only claims of procedures defined for this study and
- 382 related to the selected study ICD-10 codes (

It is made available under a CC-BY 4.0 International license .

383 Table 6).

- 384 Wild type ATTR-CM
- 385 *Inpatient setting*

386	Overall, hospitalizations were similar across wtATTR-CM reference and wtATTR-
387	CM-like patients. For the entire cohort (n=1,581), 1,532 (96.9%) patients
388	had at least one record of hospitalization. The proportion of hospitalized
389	patients was very similar between wtATTR-CM reference (96.6%) and
390	wtATTR-CM-like (96.9%). Median hospitalization rate per patient was 4.0
391	(IQR 2.0-8.0) for all patients, with similar trend in wtATTR-CM reference
392	and wtATTR-CM-like. Median hospitalization rate PPPY was 1.8 (IQR
393	1.0-2.5) for all patients. Analysis by type of wtATTR-CM revealed that
394	wtATTR-CM-like and wtATTR-CM refence had a PPPY hospitalization
395	rate almost identical (1.70 [IQR 1.0-2.2] and 1.8 [1.0-2.5], respectively).
396	The median number of days in hospital per patient (total days of
397	hospitalization during follow up) was 6.0 (IQR 3.0-12.0) for all patients, 5.0
398	(IQR 2.0-10.0) for wtATTR-CM reference and 7.0 (IQR 3.0-14.0) for
399	wtATTR-CM-like (

It is made available under a CC-BY 4.0 International license .

400 Table 6).

401 *Outpatient setting*

In the outpatient setting, outpatient visits seem similar across disease types. For the 402 entire cohort (n=1,581), 1,344 (85.0%) patients had at least one record of 403 outpatient visit related to the wtATTR-CM. The proportion of patients 404 with record of outpatient visits was higher in wtATTR-CM reference 405 (87.2%) compared to wtATTR-CM-like (84.7%). Overall, the median 406 number of outpatient visits per patient was 2.0 (IQR 1.0-4.0) for all 407 patients. Median number of outpatient visits PPPY was 1.0 (IQR 1.0-2.0) 408 for all patients and across disease types (409

It is made available under a CC-BY 4.0 International license .

410 Table 6).

411 *Therapeutic itinerary*

412	For the entire cohort (n=1,518), 80 (5.1%) patients had at least one claim for tafamidis
413	meglumine, of which 6 (3.0%) were in the wtATTR-CM reference group,
414	and 74 (5.4%) were in the wtATTR-CM-like group. Overall, 28.9% of the
415	wtATTR-CM cohort had record of heart transplant. Analysis by disease
416	type revealed that from these, 1 (0.5%) was in the wtATTR-CM reference
417	group and 456 (33.1%) were in the wtATTR-CM-like group. The median
418	number of ATTR-CM-related treatment claims during the study period
419	was 3.0 (IQR 2.0-6.0) for the entire cohort, with similar trends between
420	wtATTR-CM reference and wtATTR-CM-like. Median number of
421	treatment claims PPPY was 1.5 (IQR 1.0-2.1) for all patients, varying from
422	1.4 (IQR 1.0-2.0) in the wtATTR-CM reference cohort to 1.7 (IQR 1.0-2.2)
423	in the hATTR-CM-like group (

It is made available under a CC-BY 4.0 International license .

424 Table 6).

425 *Procedure metrics*

- 426 The patterns of procedures claims were very similar across disease types and for the
- 427 entire cohort. Median number of procedures claims during the study
- 428 period was 1.0 (IQR 1.0-2.0) and median PPPY was 1.0 (IQR 1.0-1.0).
- 429 Were considered only claims of procedures defined for this study and
- 430 related to the selected study ICD-10 codes (

It is made available under a CC-BY 4.0 International license .

431 Table 6).

		hATTR-CM			wtATTR-CM	
	Total	hATTR-CM	hATTR-CM-	Total	wtATTR-CM	wtATTR-CM-
		reference	like		reference	like
	262	213	49	1581	203	1378
Inpatient setting ¹						
Hospital admissions (n)	1711	1677	34	11724	1532	10192
Mean (SD) per patient	7.9 (15.3)	8.3 (15.8)	2.1 (1.9)	7.7 (13.5)	7.8 (13.6)	7.6 (13.5)
Median (IQR) per patient	4 (2 - 8)	4 (2 - 9.0)	1 (1 - 2.2)	4 (2 - 8)	4 (2 - 7)	4 (2 - 8)
Median (IQR) PPPY	1.5 (1.0 - 2.2)	1.5 (1.0 - 2.2)	1.0 (1.0 - 1.6)	1.8 (1.0 - 2.5)	1.7 (1.0 - 2.2)	1.8 (1.0 - 2.5)
Patients with at least one admission, n (%)	217 (82.82%)	201 (94.37%)	16 (32.65%)	1532 (96.9%)	196 (96.55%)	1336 (96.95%)
Total length of stay, days						
Mean (SD)	9.5 (11.4)	9.5 (11.3)	9.9 (16.2)	10.5 (13.3)	8.5 (10.8)	10.7 (13.6)
Median (IQR)	6.0 (3.0 - 12.0)	6.0 (3.0 - 12.0)	4.0 (1.0 - 10.5)	6.0 (3.0 - 13.0)	5.0 (2.0 - 10.0)	7.0 (3.0 - 14.0)
<i>Outpatient setting</i> ¹						
Outpatient visits (n)	2752	2128	624	6321	886	5435
Mean (SD) per patient	11.3 (10.3)	10.9 (10.1)	13.0 (10.9)	4.7 (12.1)	5.0 (8.8)	4.7 (12.5)
Median (IQR) per patient	8 (2.8 - 20)	7 (3 - 17.5)	14 (2 - 24.2)	2 (1 - 4)	2 (1 - 4)	2 (1 - 4)
Median (IQR) PPPY	5.0 (2.0 - 8.0)	5.0 (2.0 - 7.5)	6.3 (1.0 - 8.7)	1.0 (1.0 - 2.0)	1.0 (1.0 - 2.0)	1.0 (1.0 - 2.0)
Patients with at least one outpatient visit, n (%)	259	196	63	1344	177	1167
Treatment metrics						
Treatment claims ²						
Mean (SD) per patient	5.5 (4.6)	5.5 (4.6)	6.0 (5.4)	6.4 (10.9)	5.3 (7.4)	6.5 (11.2)
Median (IQR) per patient	3 (1.5 - 11)	3.0 (1.5 - 11.0)	5.5 (1.8 - 9.8)	3 (2 - 6)	3 (1 - 6)	3 (2 - 6)
Median (IQR) PPPY	2.0 (1.2 - 5.5)	2.0 (1.2 - 5.5)	4.0 (1.8 - 6.8)	1.5 (1.0 - 2.1)	1.4 (1.0 - 2.0)	1.7 (1.0 - 2.2)
Patients with at least one claim for tafamidis, n (%)	35 (13.36%)	31 (14.55%)	4 (8.16%)	80 (5.06%)	6 (2.96%)	74 (5.37%)

Table 6. Treatment patterns and healthcare resources utilization of ATTR-CM patients, from 2015 to 2021, per ATTR-CM type

Patients with at least one claim for heart transplant, n (%)	0 (0%)	0 (0%)	0 (0%)	457 (28.91%)	1 (0.49%)	456 (33.09%)
Patients with at least one claim for liver transplant, n (%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Patients with claim for both heart and liver transplant, n (%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Procedure's metrics						
Procedures claims ³						
Mean (SD) per patient	1 (0.0)	1 (0.0)	1 (0.0)	2.0 (1.9)	1.9 (1.9)	2.0 (2.0)
Median (IQR) per patient	1 (1 - 1)	1 (1 - 1)	1 (1 - 1)	1 (1 - 2)	1 (1 - 2)	1 (1 - 2)
Median (IQR) PPPY	1 (1 - 1)	1 (1 - 1)	1 (1 - 1)	1.0 (1.0 - 1.0)	1.0 (1.0 - 1.0)	1.0 (1.0 - 1.0)

hATTR-CM: hereditary transthyretin amyloid cardiomyopathy; wtATTR-CM: wild-type transthyretin amyloid cardiomyopathy; IQR: interquartile range; PPPY: per patient per year; SD: standard deviation.

¹ Only inpatient or outpatient claims with the ICD-10 codes selected for the study (ATTR-CM-related or cardiac-related).

² Any treatment claim with the ICD-10 codes selected for the study (claims restricted to the selected ICD-10 codes). Treatment claims to be considered are: 06.04.54.006-0 tafamidis 20 mg, 05.05.02.004-1 Heart transplant, 05.05.02.005-0 Liver transplant (deceived donor), 05.05.02.006-8 Liver transplant (alive donor), 03.03.06.003-4 Treatment of hypertrophic heart disease, 03.03.06.023-9 Treatment of myocardiopathies, 03.03.06.002-6 Treatment of arrhythmias, 03.03.06.021-2 Heart failure treatment

³ Any procedure claim with the ICD-10 codes selected for the study (claims restricted to the selected ICD-10 codes). Procedures claims to be considered are: 02.01.01.014-3 Heart biopsy, 02.08.05.002-7 Bone scintigraphy (full body), 02.08.05.001-9 Scintigraphy of joints and/or extremities and/or bone, 02.08.05.003-5 Bone scintigraphy with or without blood flow (full body), 02.07.02.001-9 Heart/aorta magnetic resonance, 04.03.02.012-3 Surgical treatment of carpal tunnel syndrome, 04.08.02.030-0 Tenosynovectomy in upper limb, 02.11.02.003-6 Electrocardiogram, 02.05.01.003-2 Transthoracic echocardiography, 02.05.01.002-4 Transesophageal echocardiography, 02.01.01.037-2 Skin and soft parts biopsy, 02.02.03.120-9 Troponin dosage, 02.02.03.128-4 Dosage BNP and NT-proBNP, 04.06.01.061-7 Endocavitary cardiac pacemaker implant, 04.06.01.065-0 Transvenous heart pacemaker implant, 04.06.01.064-1 Epimyocardial dual chamber pacemaker implant, 04.06.01.065-0 Transvenous dual chamber pacemaker implant, 04.06.01.066-8 Epimyocardial single chamber pacemaker implant, 04.06.01.067-6 Transvenous single chamber pacemaker implant, 04.06.01.069-2 Valve prosthesis implant

It is made available under a CC-BY 4.0 International license .

434 ATTR-CM-related procedures

Overall, most performed procedures in the hATTR-CM cohort were tafamidis meglumine 435 (13.4%), specialized medical visits (5.0%), transthoracic echocardiogram (4.6%), and pre-436 transplant procedures (3.8%). For hATTR-CM reference cohort, most performed procedures 437 were tafamidis meglumine (14.6%), pre-transplant procedures (4.2%), and transthoracic 438 echocardiogram (3.8%). Considering specifically the hATTR-CM-like group, most 439 performed procedures were specialized medical visits (14.3%), transthoracic echocardiogram 440 (8.2%), magnetic resonance of the heart (6.1%), cardiac catheterization (6.1%), and 441 442 gabapentin (4.1%) (Fig 6 and Supplementary Error! Reference source not found.3). Fig 6. Most frequent procedures in hATTR-CM reference and hATTR-CM-like cohorts from 443 2015 to 2021 444 In the wtATTR-CM cohort, the most performed procedures were tafamidis meglumine 445 (13.4%), specialized medical visits (5.0%), transthoracic echocardiogram (4.6%), and pre-446 transplant procedures (3.8%). For hATTR-CM reference cohort, most performed procedures 447 were tafamidis meglumine (14.6%), pre-transplant procedures (4.2%), and transthoracic 448 echocardiogram (3.8%). Considering specifically the hATTR-CM-like group, most 449 performed procedures were specialized medical visits (14.3%), transthoracic echocardiogram 450

- 451 (8.2%), magnetic resonance of the heart (6.1%), cardiac catheterization (6.1%), and 452 gabapentin (4.1%) (Fig 7 and Supplementary Table 4).
- Fig 7. Most frequent procedures in wtATTR-CM reference and wtATTR-CM-like cohorts
 from 2015 to 2021

It is made available under a CC-BY 4.0 International license .

455 **DISCUSSION**

This study used a validated ML model to identify potential ATTR-CM cases in Brazilian 456 National Health System (SUS). The results allowed to characterize demographically the 457 ATTR-CM patients and to assess the proportion of ATTR-CM-reference and ATTR-CM-458 like cases among potential ATTR-CM cases. In addition, the study results showed the ICD-459 10 codes most presented as ATTR-CM-like cases in DATASUS, the annual hospitalization 460 rate, the treatment patterns of ATTR-CM and ATTR-CM-like cases under SUS treatment 461 and, finally, the average HCRU of ATTR-CM-reference and ATTR-CM-like cases. To the 462 463 best of our knowledge, this is the first time that a ML model is used to assess potential ATTR-CM cases in the Brazilian national health system. 464 Overall, our final validated ML model had a good performance for classifying ATTR-CM 465 cases from a retrospective analysis approach, in line with other predictive studies using ML 466 models (10.14.18). The accuracy was 78.06% for wtATTR-CM and 84.4% for hATTR-CM. 467 We identified possible under-recognized ATTR-CM cases from the data available in 468 DATASUS. According to the final classification of the ML model, 10.3% of hATTR-CM 469 patients and 21.6% of wtATTR-CM patients (potential ATTR-CM cases) may have been 470 under-recognized between 2015 and 2021. The delay in the diagnoses and the misdiagnoses 471 of ATTR is often reported in literature (18,23,24). The reasons for diagnostic delay are 472 multifactorial and include symptom overlap with other conditions, low disease awareness, 473 474 the historical need for invasive diagnosis, and until recently the lack of a disease-modifying treatment (23). A previous study also identified under-recognized ATTR-CM cases in 4 475 different databases from USA, using ML model (18). The authors highlighted the importance 476

It is made available under a CC-BY 4.0 International license .

of ML model as a tool to help in the early diagnostic, resulting in a good prognostic of thedisease (18).

A smaller proportion of under-recognized cases was identified in the hATTR-CM cohort 479 compared to wtATTR-CM, probably because this cohort was built over a more restrict 480 population, that is, patients with hereditary amyloidosis ICD-10 codes. On the other hand, in 481 the wtATTR-CM cohort there was a higher proportion of underdiagnosed patients. While 482 483 only 203 patients were classified as reference by the ML model, 1,581 patients were classified as wtATTR-CM-like cases, which may be indicative of a higher prevalence of the 484 disease among older adults than expected. Previous studies have demonstrated that the 485 486 clinical overlap between wtATTR-CM and other heart failure aetiologies is high (18,23,25), what can explain our finding. 487

Diagnosing ATTR-CM can be difficult, mainly for the wild-type, as cardiac symptoms are consistent with more common types of heart failure and the extra-cardiac manifestations are heterogeneous and nonspecific (23). In one study developed in Spain, 30% of the patients with ATTR-CM had previously been misdiagnosed with other cardiac diseases such as: hypertensive heart disease, hypertrophic cardiomyopathy and ischemic heart disease (25). In our study, the ICD-10 codes most related with ATTR-CM presented a similar profile to these findings.

Some patients with hATTR-CM may have a mixed phenotype, with cardiac and neurological manifestations. In our study, the prevalence of cardiac manifestations among hATTR patients was 24.8%, which is in line with the literature (26). Previous studies have demonstrated that in patients with mixed phenotype the diagnostic delay is shorter than in patients with only cardiac manifestations (23,27). The early diagnosis can result in a better disease prognosis

It is made available under a CC-BY 4.0 International license .

and in an adequate treatment, since a disease-modifying treatment is available for ATTR-

501 CM treatment in Brazil.

Regarding the geographic distribution of the patients, a higher concentration was observed in the South and Southeast regions in this study, probably because these are the Brazilian regions with the higher number of specialized hospitals and clinics (28,29). Access to medical care in Brazil is widely influenced by the concentration of services in large urban centres (30). The territorial extension of Brazil makes it even more important and challenging to provide a highly coordinated multi-layered healthcare system (30). Therefore, it was expected a higher proportion of patients referred to more developed regions.

509 Concerning the therapeutic itinerary, tafamidis meglumine is the only specific drug treatment available in SUS for ATTR-CM treatment. In addition to tafamidis meglumine, heart 510 511 transplantation is also available, however, due to its invasive characteristic it is considered only in extreme cases (15). For the hATTR-CM patients, 13% received treatment with 512 tafamidis meglumine and there was no record of heart transplant, while for wtATTR-CM 513 patients only 5% were treated with tafamidis meglumine and 29% were referred to a heart 514 transplantation. This data call attention, one more time, for the importance of an early 515 diagnosis in the disease progression. wtATTR-CM patients, once early diagnosed, could have 516 517 received the drug treatment, avoiding the heart transplantation (19,24). It is important to note that for hATTR-CM patients, although they were expected to have heart and liver 518 transplantation (31,32), it was not identified in the study period. However, procedures related 519 520 to the management of post-transplant patient and the use of tacrolimus, a drug used to prevent transplant organ rejection, appeared among the most common procedures i.e., these patients 521 may have had transplantation before 2015 and were performing the maintenance during the 522 study period. Another consideration refers to low number of heart and liver transplant in the 523

It is made available under a CC-BY 4.0 International license .

study period and the introduction of tafamidis meglumine in SUS in 2016, which could be
related, as previously demonstrated in a 20-year retrospective study of the Familial
Amyloidosis Polyneuropathy World Transplant Registry (31).

The hospitalization rate and the resource utilization also evidence unmet medical needs. 527 especially for wild-type patients; although a formal comparison was not performed, the 528 hospitalization rate was much higher in the ATTR-CM-like group than in the ATTR-CM-529 reference group. These patients may have more hospitalizations records because lack of 530 correct diagnosis and, consequently, lack of proper disease management. A previous study 531 demonstrated that the use tafamidis meglumine was associated with a lower rate of 532 533 hospitalization as well as a shorter length of stay per hospitalization among all treated patients, mainly when the treatment was initiated in patients at early disease stage (33). 534

Moreover, reductions in hospitalization rates might occur due to several factors (34). In 2020 and 2021, however, these factors were compounded by the effect of the pandemic caused by the novel coronavirus (34). In Brazil, the entire healthcare system was impacted, not only by the demand for care of COVID-19 cases, but also by the isolation and social distancing measures that compromised people's access to healthcare services (34). In this study, we identified a reduction in hospitalization rates for both wtATTR-CM and hATTR-CM cohorts, probably related to the isolation and social distancing arising from COVID-19 pandemic.

The major limitation of retrospective data is that the data are often incomplete, and this study depended on the quality and filling of non-mandatory data, which is intrinsic to retrospective database studies (35). Also, due to the administrative characteristics of the databases that were used, few clinical information was available, therefore the only specific predictive variables for identifying ATTR-CM-related cases in the model were ICD-10 code and

It is made available under a CC-BY 4.0 International license .

procedures performed. Another important limitation is that DATASUS uses the International 547 Classification of Diseases (10th version), which does not have a code for ATTR-CM, so we 548 conducted the study based on the assumption of using a set of parameters validated by experts 549 and key opinion leaders (including ICD-10 code and clinical procedures performed) for 550 predicting ATTR-CM cases. 551 To reduce the probability of including patients with diseases different from ATTR-CM, we 552 have defined very specific mandatory procedures for classifying ATTR-CM and ATTR-CM-553 like cases. This might have an impact in the number of patients identified by the model for a 554 few reasons. 555 Firstly, these are more expensive and specialized procedures. In the context of the Brazilian 556 public health system, it is expected that there are barriers to access these type of procedures 557 (36). Therefore, it is supposed that there is a lower number of patients undergoing these 558 procedures, which might have been reflected in the model results. 559 Secondly, we believe that the suspicion of amyloidosis in patients with heart failure is likely 560 to be restricted to large centres (e.g., teaching hospitals, specialized clinics), as many 561 physicians may not be familiar with ATTR-CM management (1), which can result in fewer 562 patients who underwent diagnostic confirmation procedures. 563 564 Blind spots in machine learning can reflect the worst societal biases, with a risk of unintended or unknown accuracies in minority subgroups, and there are concerns over the potential for 565 amplifying biases present in the data collected, which might lead to discriminatory bias (37). 566

567 CONCLUSION

The outcomes found in this study supported the identification of potential ATTR-CM cases
 in DATASUS using a validated ML model, reflecting the public health system in Brazil. We

It is made available under a CC-BY 4.0 International license .

570	were able to characterize this population demographically, clinically (considering their ICD-
571	10 codes and procedures performed), and to identify the HCRU related to ATTR-CM
572	management. Our findings may be useful to support the development of health guidelines
573	and policies to improve diagnosis, treatment and to cover unmet medical needs of patients
574	with ATTR-CM in Brazil.

- 575 Acknowledgements: The authors also thank Lucas Sozzi de Jesus and Lays Leonel for their
- 576 medical writing support, and Ramon Pereira in the revision of the analysis.
- 577 **Declaration of interests:** IZL, RVF and AJLA are full-time employees at IQVIA Brazil.
- 578 CCH, CLBS and GSJ are full-time employees at Pfizer Brazil.
- 579 Funding: This study was funded by Pfizer Brazil.
- 580 **Financial disclosure:** The author(s) received no specific funding for this work.

It is made available under a CC-BY 4.0 International license .

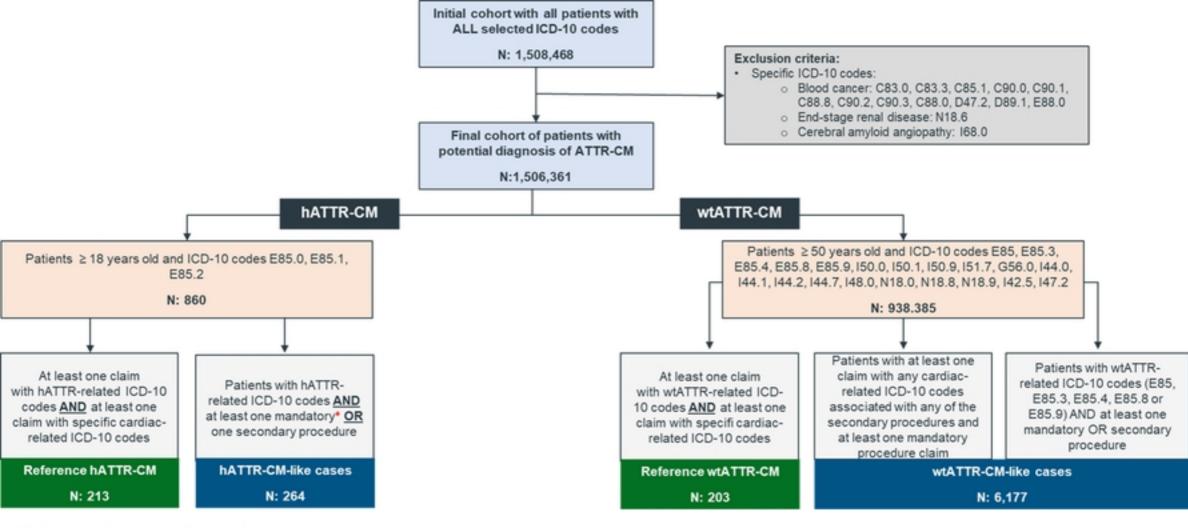
581 **REFERENCES**

Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS. Transthyretin Amyloid 582 1. Cardiomyopathy: JACC State-of-the-Art Review. J Am Coll Cardiol [Internet]. 2019 583 584 Jun;73(22):2872–91. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0735109719347291 585 2. Castano A, Narotsky DL, Hamid N, Khalique OK, Morgenstern R, DeLuca A, et al. 586 587 Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur 588 Heart J. 2017;38(38):2879-87. 589 3. Sperry BW, Reves BA, Ikram A, Donnelly JP, Phelan D, Jaber WA, et al. 590 Tenosynovial and Cardiac Amyloidosis in Patients Undergoing Carpal Tunnel 591 Release. J Am Coll Cardiol. 2018;72(17):2040-50. 592 Mohammed SF, Mirzovev SA, Edwards WD, Dogan A, Grogan DR, Dunlay SM, et 593 4. 594 al. Left ventricular amyloid deposition inpatients with heart failure and preserved ejection fraction. JACC Hear Fail. 2014;2(2):113–22. 595 596 5. Lane T, Fontana M, Martinez-Naharro A, Quarta CC, Whelan CJ, Petrie A, et al. 597 Natural History, Quality of Life, and Outcome in Cardiac Transthyretin Amyloidosis. Circulation. 2019 Jul;140(1):16–26. 598 Ruberg FL, Maurer MS, Judge DP, Zeldenrust S, Skinner M, Kim AY, et al. 599 6. Prospective evaluation of the morbidity and mortality of wild-type and V122I 600 mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis 601 Cardiac Study (TRACS). Am Heart J. 2012 Aug;164(2):222-228.e1. 602 7. 603 Rowczenio D, Quarta CC, Fontana M, Whelan CJ, Martinez-Naharro A, Trojer H, et 604 al. Analysis of the TTR gene in the investigation of amyloidosis: A 25-year single UK center experience. Hum Mutat. 2019 Jan;40(1):90-6. 605 8. Kittleson MM, Maurer MS, Ambardekar AV, Bullock-Palmer RP, Chang PP, Eisen 606 HJ, et al. Cardiac Amyloidosis: Evolving Diagnosis and Management: A Scientific 607 Statement From the American Heart Association. Circulation. 2020 Jul;142(1):e7-608 22. 609

610	9.	Witteles RM, Bokhari S, Damy T, Elliott PM, Falk RH, Fine NM, et al. Screening
611		for Transthyretin Amyloid Cardiomyopathy in Everyday Practice. JACC Hear Fail
612		[Internet]. 2019 Aug;7(8):709–16. Available from:
613		https://linkinghub.elsevier.com/retrieve/pii/S2213177919302720
614	10.	Ellis RJ, Wang Z, Genes N, Ma'ayan A. Predicting opioid dependence from
615		electronic health records with machine learning. BioData Min [Internet]. 2019 Dec
616		29;12(1):3. Available from:
617		https://biodatamining.biomedcentral.com/articles/10.1186/s13040-019-0193-0
618	11.	Deodhar A, Rozycki M, Garges C, Shukla O, Arndt T, Grabowsky T, et al. Use of
619		machine learning techniques in the development and refinement of a predictive
620		model for early diagnosis of ankylosing spondylitis. Clin Rheumatol [Internet]. 2020
621		Apr 1;39(4):975-82. Available from: http://link.springer.com/10.1007/s10067-019-
622		04553-x
623	12.	An S, Malhotra K, Dilley C, Han-Burgess E, Valdez JN, Robertson J, et al.
624		Predicting drug-resistant epilepsy — A machine learning approach based on
625		administrative claims data. Epilepsy Behav [Internet]. 2018 Dec;89:118-25.
626		Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525505018305912
627	13.	Uspenskaya-Cadoz O, Alamuri C, Wang L, Yang M, Khinda S, Nigmatullina Y, et
628		al. MACHINE LEARNING ALGORITHM HELPS IDENTIFY NONDIAGNOSED
629		PRODROMAL ALZHEIMER'S DISEASE PATIENTS IN THE GENERAL
630		POPULATION. J Prev Alzheimer's Dis [Internet]. 2019;1–7. Available from:
631		https://link.springer.com/article/10.14283/jpad.2019.10
632	14.	Nori VS, Hane CA, Martin DC, Kravetz AD, Sanghavi DM. Identifying incident
633		dementia by applying machine learning to a very large administrative claims dataset.
634		Chen K, editor. PLoS One [Internet]. 2019 Jul 5;14(7):e0203246. Available from:
635		https://dx.plos.org/10.1371/journal.pone.0203246
636	15.	Brasil. Ministério da Saúde. DATASUS. Informatics Department of SUS. [Internet].
637		2022. Available from: https://datasus.saude.gov.br/
638	16.	IBGE. Comitê de Estatísticas Sociais. Sistema de Informações Hospitalares do SUS

It is made available under a CC-BY 4.0 International license .

639 640 641		- SIH/SUS. [Internet]. 2022. Available from: https://ces.ibge.gov.br/base-de- dados/metadados/ministerio-da-saude/sistema-de-informacoes-hospitalares-do-sus- sih-sus.html
642 643 644 645	17.	IBGE. Comitê de Estatísticas Sociais. Sistema de Informações Ambulatoriais do SUS – SIA/SUS [Internet]. 2022. Available from: https://ces.ibge.gov.br/base-de- dados/metadados/ministerio-da-saude/sistema-de-informacoes-ambulatoriais-do-sus- sia-sus.html
646 647 648 649	18.	Huda A, Castaño A, Niyogi A, Schumacher J, Stewart M, Bruno M, et al. A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy. Nat Commun [Internet]. 2021 Dec 11;12(1):2725. Available from: http://www.nature.com/articles/s41467-021-22876-9
650 651 652	19.	Simões M V., Fernandes F, Marcondes-Braga FG, Scheinberg P, Correia E de B, Rohde LEP, et al. Posicionamento sobre Diagnóstico e Tratamento da Amiloidose Cardíaca – 2021. Arq Bras Cardiol. 2021;117(3):561–98.
653 654 655	20.	Brasil. Ministério da Saúde. Portaria GM/MS nº 2.848, de 06 de novembro de 2007. Publica a Tabela de Procedimentos, Medicamentos,Órteses, Próteses e Materiais Especiais - OPM do Sistema Único de Saúde. 2007.
656 657	21.	Brasil. Conselho Nacional de Saúde. Resolução nº 510, de 07 de Abril de 2016. Brasília. Brasil. 2016.
658 659 660	22.	Campos D, Rosim R, Duva A, Ballalai A. Brazilian Healthcare Record Linkage (BRHC-RLK)-A Record Linkage Methodology For Brazilian Medical Claims Datasets (DATASUS). Value Heal. 2017;20(5):A321.
661 662 663 664	23.	Rozenbaum MH, Large S, Bhambri R, Stewart M, Whelan J, van Doornewaard A, et al. Impact of Delayed Diagnosis and Misdiagnosis for Patients with Transthyretin Amyloid Cardiomyopathy (ATTR-CM): A Targeted Literature Review. Cardiol Ther. 2021 Jun;10(1):141–59.
665 666 667	24.	Garcia-Pavia P, Rapezzi C, Adler Y, Arad M, Basso C, Brucato A, et al. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2021 Apr;42(16):1554–

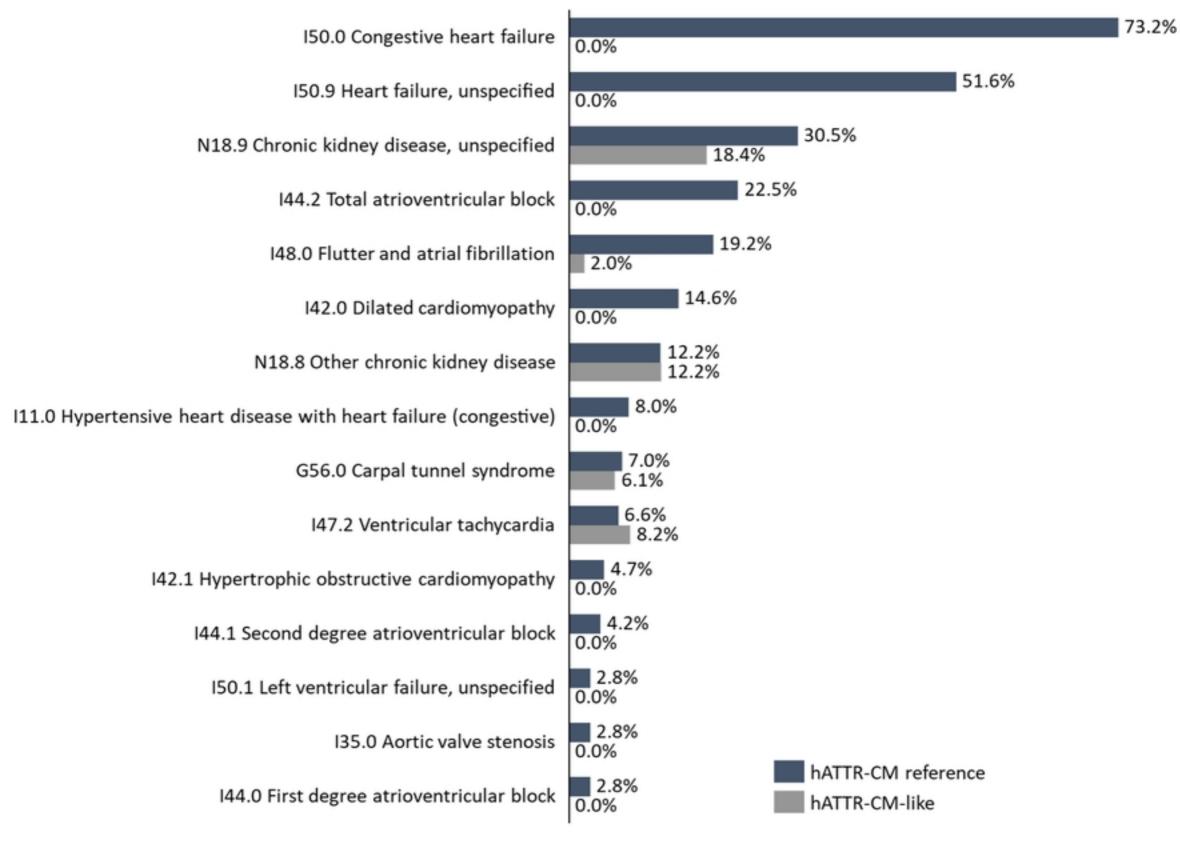

It is made available under a CC-BY 4.0 International license .

668		68.
669	25.	González-López E, López-Sainz Á, Garcia-Pavia P. Diagnosis and Treatment of
670		Transthyretin Cardiac Amyloidosis. Progress and Hope. Rev Española Cardiol
671		(English Ed.
672	26.	Cruz MW, Pinto MV, Pinto LF, Gervais R, Dias M, Perez C, et al. Baseline disease
673		characteristics in brazilian patients enrolled in transthyretin amyloidosis outcome
674		survey (THAOS). Arq Neuropsiquiatr. 2019;77(2):96-100.
675	27.	Bishop E, Brown EE, Fajardo J, Barouch LA, Judge DP, Halushka MK. Seven
676		factors predict a delayed diagnosis of cardiac amyloidosis.
677		https://doi.org/101080/1350612920181498782. 2018 Jul;25(3):174-9.
678	28.	da Mota Almeida Peroni F, Lindelow M, Oliveira De Souza D, Sjoblom M.
679		Realizing the right to health in Brazil's Unified Health System through the lens of
680		breast and cervical cancer. Int J Equity Health [Internet]. 2019 Dec 3;18(1):39.
681		Available from: https://equityhealthj.biomedcentral.com/articles/10.1186/s12939-
682		019-0938-x
683	29.	Pan American Health Organization/World Health Organization (PAHO/WHO).
684		Brazil Health System and Services Profile. Monitoring and Analysis of Health
685		Systems Change/Reform. 2009.
686	30.	Fonseca B de P, Albuquerque PC, Saldanha R de F, Zicker F. Geographic
687		accessibility to cancer treatment in Brazil: A network analysis. Lancet Reg Heal -
688		Am [Internet]. 2022 Mar;7:100153. Available from:
689		https://linkinghub.elsevier.com/retrieve/pii/S2667193X21001496
690	31.	Ericzon BG, Wilczek HE, Larsson M, Wijayatunga P, Stangou A, Pena JR, et al.
691		Liver Transplantation for Hereditary Transthyretin Amyloidosis: After 20 Years Still
692		the Best Therapeutic Alternative? Transplantation. 2015 Sep;99(9):1847-54.
693	32.	Bittencourt PL, Couto CA, Farias AQ, Marchiori P, Bosco Massarollo PC, Mies S.
694		Results of liver transplantation for familial amyloid polyneuropathy type I in Brazil.
695		Liver Transplant. 2002;8(1):34–9.
696	33.	Rozenbaum MH, Tran D, Bhambri R, Nativi-Nicolau J, Edu NJ. Annual

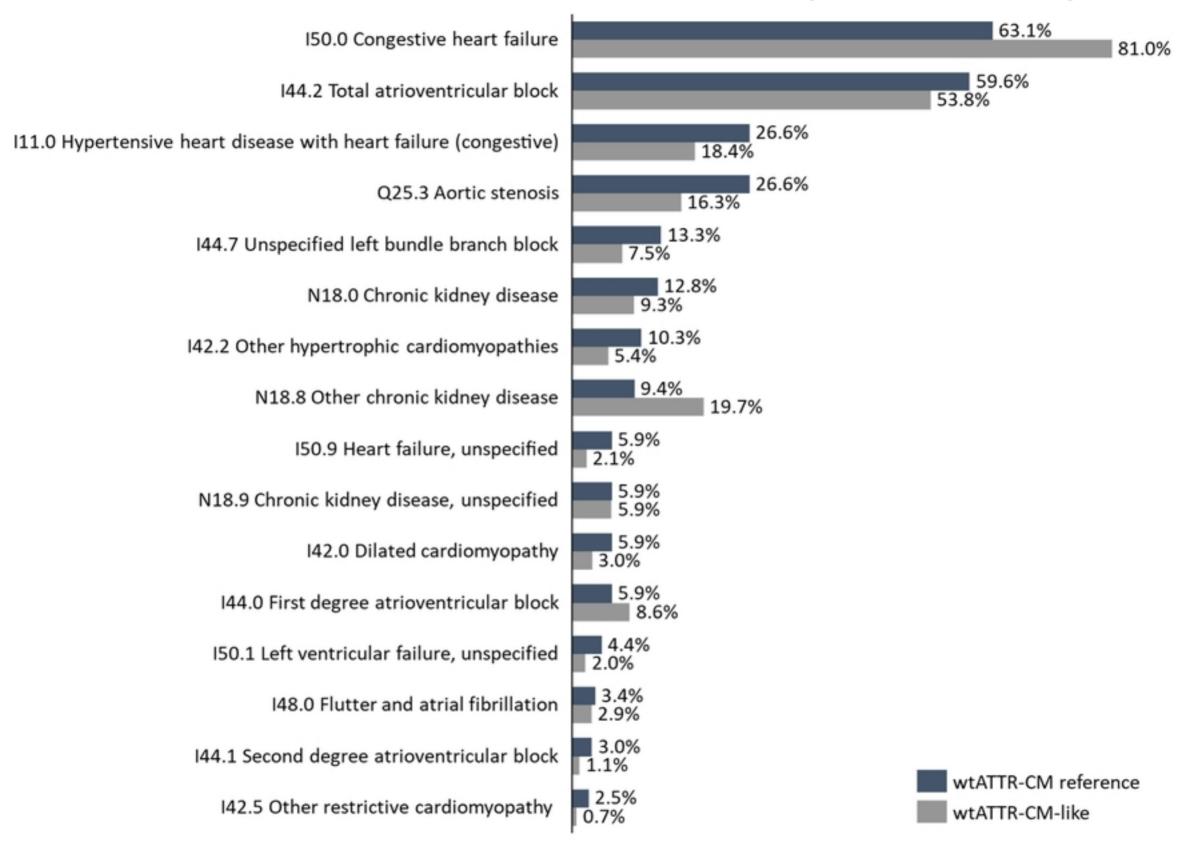
It is made available under a CC-BY 4.0 International license .

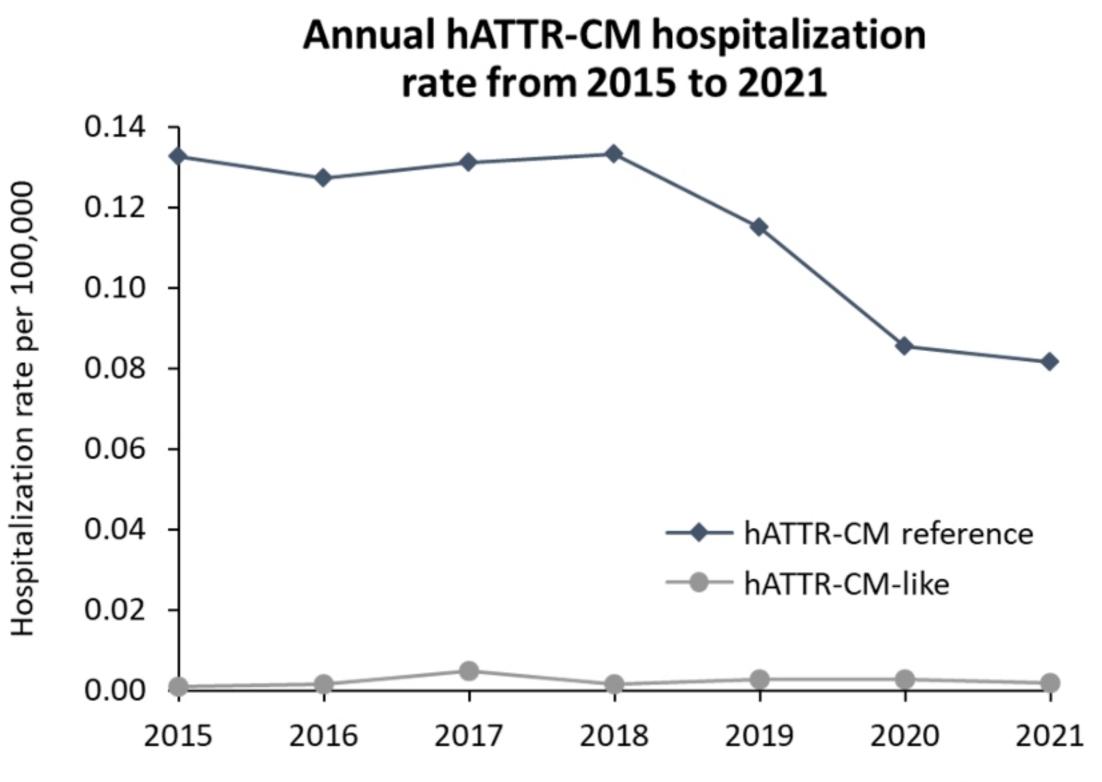
697		Cardiovascular-Related Hospitalization Days Avoided with Tafamidis in Patients
698		with Transthyretin Amyloid Cardiomyopathy. Am J Cardiovasc Drugs 2022 224.
699		2022 Mar;22(4):445–50.
700	34.	Guimarães RA, Policena GM, Paula H da SC de, Pedroso CF, Pinheiro RS, Itria A,
701		et al. Analysis of the impact of coronavirus disease 19 on hospitalization rates for
702		chronic non-communicable diseases in Brazil. Schwartzman K, editor. PLoS One
703		[Internet]. 2022 Mar 24;17(3):e0265458. Available from:
704		https://dx.plos.org/10.1371/journal.pone.0265458
705	35.	Motheral B, Brooks J, Clark MA, Crown WH, Davey P, Hutchins D, et al. A
706		Checklist for Retrospective Database Studies-Report of the ISPOR Task Force on
707		Retrospective Databases. Value Heal [Internet]. 2003 Mar;6(2):90-7. Available
708		from: https://linkinghub.elsevier.com/retrieve/pii/S1098301510601374
709	36.	Sousa F de OS, Medeiros KR de, Gurgel Júnior GD, Albuquerque PC de. Do
710		normativo à realidade do Sistema Único de Saúde: revelando barreiras de acesso na
711		rede de cuidados assistenciais. Cien Saude Colet [Internet]. 2014 Apr;19(4):1283-
712		93. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-
713		81232014000401283&lng=pt&tlng=pt
714	37.	Pot M, Kieusseyan N, Prainsack B. Not all biases are bad: equitable and inequitable
715		biases in machine learning and radiology. Insights Imaging [Internet]. 2021 Dec
716		10;12(1):13. Available from:
717		https://insightsimaging.springeropen.com/articles/10.1186/s13244-020-00955-7

718

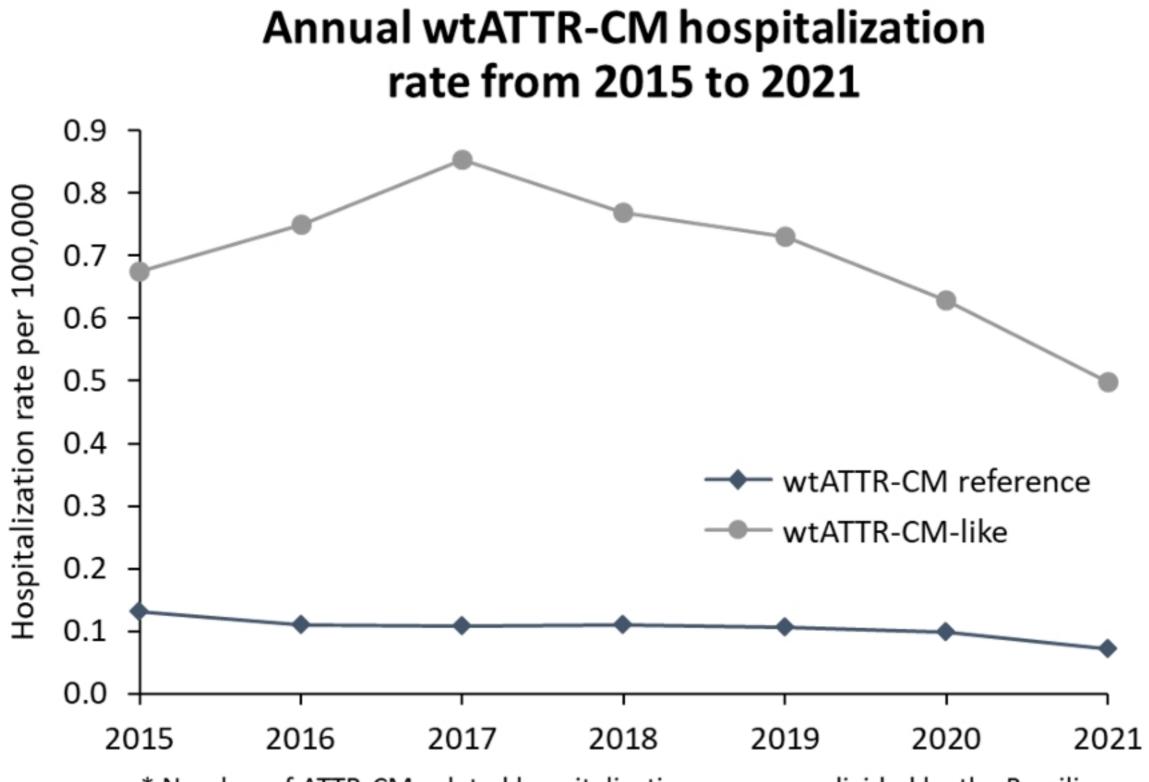

hATTR-related ICD-10 codes: E85.0, E85.1 ou E85.2.

wtATTR-related ICD-10 codes: E85, E85.3, E85.4, E85.8 or E85.9.

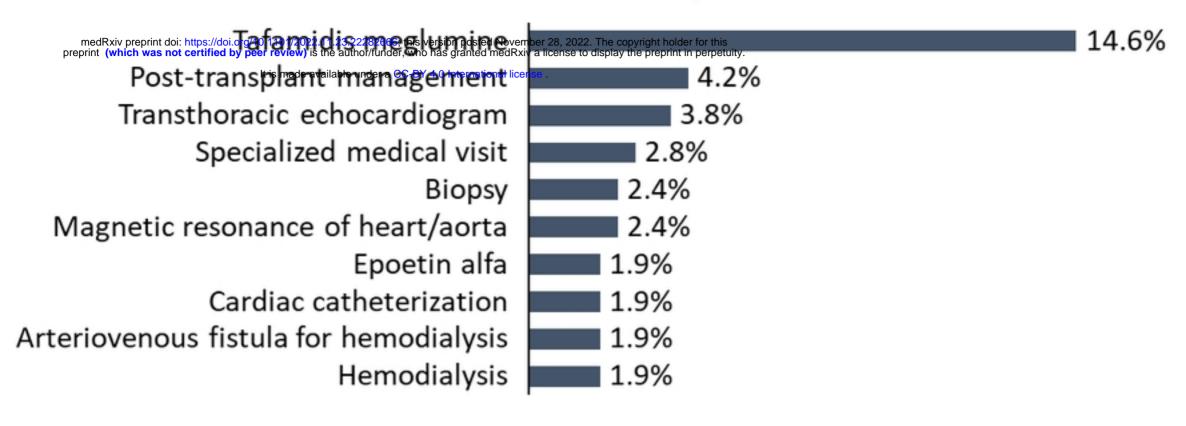

Specific cardiac-related ICD-10 codes: I50.0, I50.1, I50.9, I11.0, I42.0, I42.1, I42.2, I35.0, I44.1, I44.2, I42.5


General cardiac-related ICD-10 codes: I50.0, I50.1, I50.9, I51.7, G56.0, I44.0, I44.1, I44.2, I44.7, I48.0, N18.0, N18.8, N18.9, I42.5, I47.2

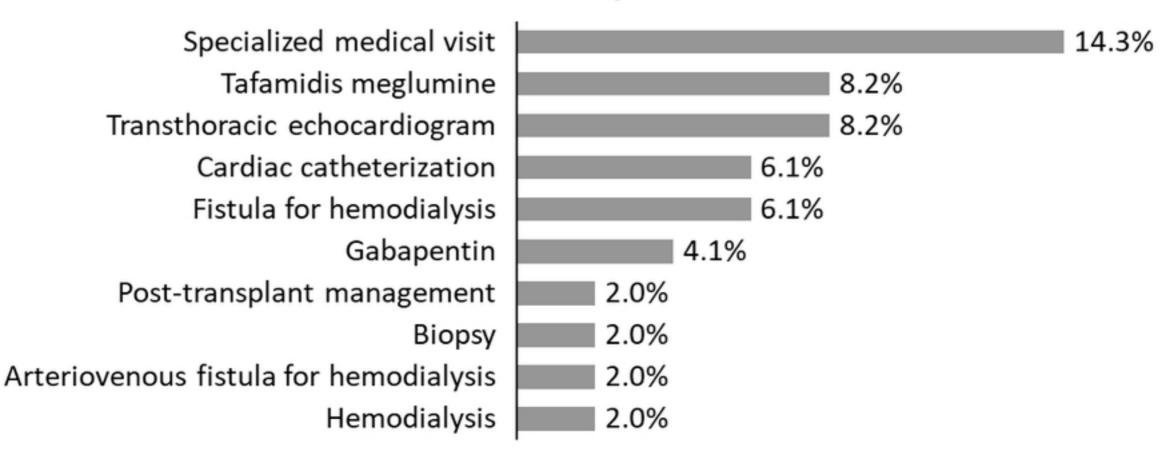
Cardiac-related ICD-10 codes most frequent in hATTR-CM patients



Cardiac-related ICD-10 codes most frequent in wtATTR-CM patients

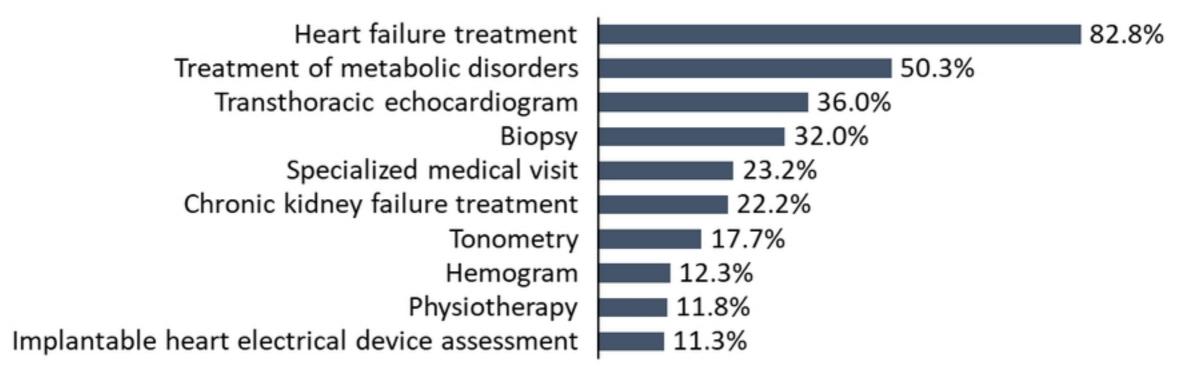


* Number of ATTR-CM-related hospitalizations per year, divided by the Brazilian population in each year x 100,000



* Number of ATTR-CM-related hospitalizations per year, divided by the Brazilian population in each year x 100,000

Most frequent hATTR-CM reference related procedures


Most frequent hATTR-CM-like related procedures

Most frequent wtATTR-CM reference related procedures

medRxiv preprint doi: https://doi.org/10.1101/2022.11.23.22282666; this version posted November 28, 2022. The copyright noticer for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license .

Most frequent wtATTR-CM reference related procedures

Heart failure treatment	95.4%
Transthoracic echocardiogram	53.2%
Specialized medical visit	15.8%
Chronic kidney failure treatment	14.9%
Tonometry	14.8%
Implantable heart electrical device assessment	14.7%
Biopsy	13.6%
Hemogram	10.3%
Post-transplant management	8.9%
Physiotherapy	7.8%