Digital health technologies and machine learning augment patient reported outcomes to remotely characterise rheumatoid arthritis
View ORCID ProfileAndrew P. Creagh, Valentin Hamy, Hang Yuan, Gert Mertes, Ryan Tomlinson, Wen-Hung Chen, Rachel Williams, Christopher Llop, Christopher Yee, Mei Sheng Duh, Aiden Doherty, Luis Garcia-Gancedo, David A. Clifton
doi: https://doi.org/10.1101/2022.11.18.22282305
Andrew P. Creagh
1Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
2Big Data Institute, University of Oxford, UK
Valentin Hamy
3Value Evidence and Outcomes (VEO), GSK, UK
Hang Yuan
2Big Data Institute, University of Oxford, UK
4Nuffield Department of Population Health, University of Oxford, UK
Gert Mertes
1Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
2Big Data Institute, University of Oxford, UK
4Nuffield Department of Population Health, University of Oxford, UK
Ryan Tomlinson
5Value Evidence and Outcomes (VEO), GSK, US
Wen-Hung Chen
5Value Evidence and Outcomes (VEO), GSK, US
Rachel Williams
5Value Evidence and Outcomes (VEO), GSK, US
Christopher Llop
6Analysis Group (AG), Boston, MA, USA
Christopher Yee
6Analysis Group (AG), Boston, MA, USA
Mei Sheng Duh
6Analysis Group (AG), Boston, MA, USA
Aiden Doherty
2Big Data Institute, University of Oxford, UK
4Nuffield Department of Population Health, University of Oxford, UK
Luis Garcia-Gancedo
3Value Evidence and Outcomes (VEO), GSK, UK
David A. Clifton
1Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
Article usage
Posted November 18, 2022.
Digital health technologies and machine learning augment patient reported outcomes to remotely characterise rheumatoid arthritis
Andrew P. Creagh, Valentin Hamy, Hang Yuan, Gert Mertes, Ryan Tomlinson, Wen-Hung Chen, Rachel Williams, Christopher Llop, Christopher Yee, Mei Sheng Duh, Aiden Doherty, Luis Garcia-Gancedo, David A. Clifton
medRxiv 2022.11.18.22282305; doi: https://doi.org/10.1101/2022.11.18.22282305
Digital health technologies and machine learning augment patient reported outcomes to remotely characterise rheumatoid arthritis
Andrew P. Creagh, Valentin Hamy, Hang Yuan, Gert Mertes, Ryan Tomlinson, Wen-Hung Chen, Rachel Williams, Christopher Llop, Christopher Yee, Mei Sheng Duh, Aiden Doherty, Luis Garcia-Gancedo, David A. Clifton
medRxiv 2022.11.18.22282305; doi: https://doi.org/10.1101/2022.11.18.22282305
Subject Area
Subject Areas
- Addiction Medicine (350)
- Allergy and Immunology (674)
- Anesthesia (181)
- Cardiovascular Medicine (2666)
- Dermatology (225)
- Emergency Medicine (404)
- Epidemiology (12278)
- Forensic Medicine (10)
- Gastroenterology (766)
- Genetic and Genomic Medicine (4132)
- Geriatric Medicine (387)
- Health Economics (682)
- Health Informatics (2677)
- Health Policy (1008)
- Hematology (364)
- HIV/AIDS (855)
- Medical Education (400)
- Medical Ethics (109)
- Nephrology (443)
- Neurology (3920)
- Nursing (212)
- Nutrition (583)
- Oncology (2056)
- Ophthalmology (591)
- Orthopedics (242)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1121)
- Primary Care Research (458)
- Public and Global Health (6556)
- Radiology and Imaging (1411)
- Respiratory Medicine (874)
- Rheumatology (413)
- Sports Medicine (344)
- Surgery (453)
- Toxicology (54)
- Transplantation (187)
- Urology (167)