
Inter-Rater Agreement for the Annotation of
Neurologic Concepts in Electronic Health
Records
Chelsea Oommen 1, Quentin Howlett-Prieto 1, Michael D. Carrithers 1 and
Daniel B. Hier 1,2,∗

1Department of Neurology and Rehabilitation, University of Illinois at Chicago,
Chicago IL USA
2Department of Electrical and Computer Engineering, Missouri University of
Science and Technology, Rolla, MO USA
Correspondence*:
Daniel B. Hier
hierd@mst.edu

ABSTRACT

The extraction of patient signs and symptoms recorded as free text in electronic health
records is critical for precision medicine. Once extracted, signs and symptoms can be made
computable by mapping to clinical concepts in an ontology. Extracting clinical concepts
from free text is tedious and time-consuming. Prior studies have suggested that inter-rater
agreement for clinical concept extraction is low. We have examined inter-rater agreement
for annotating neurologic concepts in clinical notes from electronic health records. After
training on the annotation process, the annotation tool, and the supporting neuro-ontology,
three raters annotated 15 clinical notes in three rounds. Inter-rater agreement between the
three annotators was high for text span and category label. A machine annotator based on
a convolutional neural network had a high level of agreement with the human annotators,
but one that was lower than human inter-rater agreement. We conclude that high levels of
agreement between human annotators are possible with appropriate training and annotation
tools. Furthermore, more training examples combined with improvements in neural networks
and natural language processing should make machine annotators capable of high throughput
automated clinical concept extraction with high levels of agreement with human annotators.
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INTRODUCTION

Extracting medical concepts from electronic health records is key to precision medicine [15]. The signs
and symptoms of patients (part of the patient phenotype) are generally recorded as free text in progress
notes, admission notes, and discharge summaries [22]. Clinical phenotyping of patients involves the
conversion of free text into clinical concepts from an ontology [3, 31]. This is a two-step process that
involves identifying appropriate text spans in narratives and then mapping the text spans to target
concepts in an ontology [1, 12].

patient movements were ataxic⇒ ataxia⇒ UMLS CUI: C0004134
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free text⇒ clinical concept⇒ machine readable code

In this example, an annotator highlights the term ataxic, then maps it to the concept ataxia, and the
UMLS CUI C0004134 [6]. This is a slow and error-prone process for human annotators. Agreement
between human raters for annotation in clinical text is often low. A study conducted on the agreement
for SNOMED CT codes between coders from three professional coding companies yielded about 50
percent agreement for exact matches with slightly higher agreement when adjusted for near matches
[4]. Another study of SNOMED CT coding of ophthalmology notes yielded low levels of inter-rater
agreement ranging from 33 to 64 percent [20]. Identified sources of disagreement between coders
included human errors (lack of applicable medical knowledge, lack of recognition of abbreviations for
concepts, and general carelessness), annotation guideline flaws (under specified and unclear guidelines),
ontology flaws (polysemy of coded concepts), interface term issues (inconsistent categorization
of clinical jargon), and language issues (interpretation difficulties due to use of ellipsis, anaphora,
paraphrasing, and other linguistic concepts) [24].

The goal of high throughput phenotyping is to use natural language processing (NLP) to automate the
annotation process [19]. Approaches to high throughput clinical concept extraction have included rule-
based systems, traditional machine learning algorithms, deep learning algorithms, and hybrid methods
that combine algorithms [12]. Rule-based systems such as cTAKES and MetaMap generally have
accuracy and recall between 0.38 and 0.66 [1, 10, 17]. Neural networks are being used for concept
recognition with increasing success. Arbabi et al. developed a convolutional neural network that matches
input phrases to concepts in the Human Phenotype Ontology with high accuracy [5]. Other deep learning
approaches, including neural networks based on bidirectional encoder representations from transformers
(BERT), show promise for automated clinical concept extraction [12, 1, 33]. In this paper, we examine
inter-rater agreement for text-span identification of neurological concepts in notes from electronic health
records. In addition to the agreement between human annotators, we examine the agreement between
human annotators and a machine annotator based on a convolutional neural network.

METHODS

Annotation tool

Prodigy (Explosion AI, Berlin, Germany) was used to annotate neurologic concepts in the EHR
physician notes. Prodigy runs under python in the terminal mode of macOS, Windows, or Linux. It
creates a web interface locally (Figures 1a and 1b). Annotations are stored in an SQLite database and
are exportable as JSONL files. Prodigy integrates with the spaCy natural language processing toolkit
(Explosion AI) and can train neural networks for named entity recognition and text classification.

The kappa statistic was used to assess agreement between the three annotators and the neural network.
The kappa statistic corrects observed rater agreement for chance rater agreement. It ranges from -1 to 1,
where 1 is complete agreement, 0 is a chance agreement, and -1 indicates less-than-chance agreement.
Values of kappa of 0.6 to 0.79 are considered substantial agreement, values between 0.8 and 0.90 are
considered strong agreement, and values over 0.90 are considered near perfect agreement [23, 8].

Rater training and instructions

Three annotators participated in the research. Annotator 1 (A1) was a senior neurologist, Annotator
2 (A2) was a pre-medical student majoring in neuroscience, and Annotator 3 (A3) was a third-year
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medical student. Raters first reviewed concepts in the neuro-ontology of neurological concepts [16]
and then were instructed to find all neurological concepts in the neurology notes. Signs and symptoms
(ataxia, fatigue, weakness, memory loss, etc.) were annotated but not disease entities (Alzheimer’s
disease, multiple sclerosis, etc.) Raters annotated the neurologic concepts and ignored laterality and
other modifiers (e.g., arm pain for right arm pain, back pain for severe back pain, etc.) In addition,
annotators tagged each text span with an category label (see Figure 1a and 1b). Category labels included
unigrams (one-word concepts such as ataxia), bigrams (two-word concepts such as double vision),
trigrams (three-word concepts such as low back pain), tetragrams (four-word concepts such as relative
afferent pupil defect), extended (text span annotations longer than four words), compound (multiple
concepts in one text span such as brisk ankle and knee reflex), and tabular (concepts represented in
tabular or columnar format, usually showed right and left body sides).

The machine annotator

The machine annotator (NN) was a neural network that was trained to recognize text spans containing
neurology concepts in the electronic health record physician notes. The NN was the default spaCy
named entity recognition model based on a four-layer convolutional neural network (CNN) that looked
at four words on either side of each token using tok2vec with an initial learning rate 1 ∗ e−3. NN was
trained on 11,000 manually annotated sentences derived from neurology textbooks, online neurological
disease descriptions, and electronic health record notes.

Annotations

Five patient EHR notes were annotated for each of the three rounds. The annotation of EHR clinical
notes for research purposes was approved by the Institutional Review Board of the University of Illinois.
Informed patient consent for use of clinical notes was obtained from all subjects through the UIC
Biobank Project. Three human annotators (A1, A2, and A3) and the machine annotator (NN) annotated
each note. After each round, the annotators met and reviewed any annotation disagreements. EHR notes
varied in length. The number of concepts to annotate for Round 1 was 117, for Round 2 was 129, and for
Round 3 was 114. The annotations of each annotator were stored in an SQLite database and exported as
a JSON file for scoring for inter-rater agreement in python. Text spans were mapped to concepts in the
neuro-ontology [16] utilizing a lookup table with 3,500 target phrases and the similarity method from
spaCy [2] (pp. 152-154). Univariate analysis of variance and Cohen’s kappa statistics were calculated
with SPSS (IBM, version 28).

RESULTS

Annotators identified neurological concepts in physician notes from electronic health records. Each
annotator identified the text span associated with the neurological concept and assigned a category label
to each annotation (e.g., unigram, bigram, trigram, etc.) Inter-rater agreement was calculated between
the three human annotators and between the machine annotator (NN).

Unadjusted agreement on the text span task was 88.9% ± 3.2 between the human annotators and was
83.9% ± 4.6 between the human annotators and the machine annotator (human-human mean was higher,
one-way ANOVA, df=1, p = 0.016). Unadjusted agreement on the category label task was 87.7% ± 4.4
between human annotators and was 84.6% ± 5.5 between the human annotators and the machine annotator
(means did not differ, one-way ANOVA, df=1, p= 0.212).
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Cohen’s kappa statistic (κ) was high for both the text span task (0.715 to 0.893) and the category label
task (0.72 to 0.89) (Figures 2a and 2b). On the text span identification task (Figure 3a) κ was higher for
the human-human pairs (0.85 ± 0.05) than the human-machine pairs (0.76 ± 0.06). On the category label
task, κ (Figure 3b) was similar between the human-human pairs (0.83 ± 0.05) and the human-machine
pairs (0.82 ± 0.06). κ for the text span task (Figure 4a) or the category label task (Figure 4b did not differ
by round (one way ANOVA, df=2, p >0.05).

Figure 1a. Annotator screen for a patient with
multiple sclerosis. The patient complains of
imbalance, leg weakness, and pain, and these
concepts have been annotated. Imbalance and
pain are labeled as unigrams; leg weakness is
labeled a bigram. Annotators were trained to
ignore laterality (e.g., right leg weakness.)

Figure 1b. Annotator screen for neurological
concepts for a patient with multiple sclerosis. The
patient denies problems with vision, sensation,
bladder, bowel, gait, or falls. The annotators are
trained not to annotate negated concepts. The NN
had no specific negation rule but learned not to tag
negated concepts through training examples.

Figure 2a. Boxplots for the kappa statistic for
inter-rater agreement for text spans for the
neurological concepts. Univariate analysis of
variance showed that mean inter-rater agreement
differed by rating pair (one-way ANOVA, df=5, p
= 0.021). Post hoc comparisons by the Bonferroni
method showed that pair A1-A2 outperformed pair
NN-A2.

Figure 2b. Boxplots for the kappa statistic for
inter-rater agreement for category labels for the
neurological concepts. Univariate analysis of
variance showed that mean kappa for category
label agreement did not differ by rating pair (one-
way ANOVA, p = 0.165, df=5).

DISCUSSION

Signs and symptoms are an important component of a patient’s phenotype. Extracting these phenotypic
features from electronic health records and converting them to machine-readable codes makes them
computable [18]. These computable phenotypes are critical to precision medicine initiatives [14, 28, 9].
Agrawal et al. [1] have conceptualized clinical entity extraction as a two-step process of text span
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Figure 3a. Kappa statistic for agreement between
human-human and human-machine raters for text
span. Groups differed, one-way ANOVA, df=1, p =
0.004.

Figure 3b. Kappa statistic for agreement between
human-human and human-machine raters for
category label. Groups did not differ, one way
ANOVA, df=1, p = 0.589

Figure 4a. Kappa statistic for inter-rater
agreement for text span by round. Groups do
not differ, one-way ANOVA, df=2, p = 0.30.

Figure 4b. Kappa statistic for inter-rater
agreement for category label by round. Groups
do not differ, one-way ANOVA, df=2, p = 0.31.

recognition followed by clinical entity normalization. Text span recognition is the identification of
clinical concepts in the free text; entity normalization is the mapping of this text to clinical concepts
in an ontology such as UMLS [6]. We have focused on an inter-rater agreement for text span annotation.
For entity normalization, we depended on a look-up table that mapped text spans to concepts in neuro-
ontology. We found high inter-rater agreement among the human annotators (approximately 89%) with
a lower agreement between the human annotators and the machine annotator (approximately 84%). The
kappa statistic for human-human rater agreement was between 0.77 and 0.91, and the kappa statistic
for the human-machine agreement was between 0.69 and 0.87 (Figure 3a). We consider the inter-rater
agreement between the human raters (0.77 to 0.91) as good, especially when contrasted with the inter-
rater agreement between trained neurologists eliciting patient signs and symptoms [30, 13]. For trained
neurologists eliciting signs and symptoms such as weakness, sensory loss, ataxia, aphasia, dysarthria,
and drowsiness, the κ statistics range from 0.40 to 0.70 [30, 13].

We did not find a training effect for the human annotators across rounds (Figure 4a and 4b). Although
the annotators met after each round and discussed discrepancies in their annotations, inter-rater
agreement did not improve significantly between rounds. This suggests that there may be a ceiling
for inter-rater agreement for text span annotation with a kappa of 0.80 to 0.90 and that higher levels
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of agreement may not be possible due to the difficulty of the task and random factors that cannot be
addressed by additional training or experience. This ceiling effect for the human inter-rater agreement
has implications for the potential for higher rates of inter-rater agreement between humans and machines
(Figure 3b). Mean inter-rater agreement for text span was higher for the human-human pairs (κ =
0.85) than the human-machine pairs (κ = 0.76). Additional training examples are likely to improve
the performance of the machine annotator on the text span and category label tasks. Furthermore,
other neural networks may outperform the convolutional neural network (CNN), which is the baseline
for Prodigy. We have preliminary information that a neural network based on bidirectional encoder
representations from transformers (BERT) can improve performance on the text span task by 5 to 10%
(unpublished results). Others have found that deep learning approaches based on BERT outperform
approaches based on CNN for concept identification and extraction tasks [33]. We think a ceiling effect
for inter-rater agreement, whether human-human or human-machine, near a κ of 0.90 is likely.

Given the heavy documentation burden on physicians and physician burn-out attributed to electronic
health records, physician documentation of signs and symptoms is likely to continue as free text.
Structured documentation of signs and symptoms as an alternative to free text is too burdensome in
the current environment [32, 7, 21, 29, 25, 11]. A medium-sized medical center with a daily inpatient
census of 300 and a daily outpatient census of 2,000 generates at least 5,000 clinical notes daily or over
1.5 million notes annually (unpublished estimates based on two academic medical centers). The sheer
volume of clinical notes in electronic health records makes the manual annotation of clinical concepts
impractical. Extracting signs and symptoms for precision medicine initiatives will depend on advances
in natural language processing and natural language understanding.

Although high throughput phenotyping of electronic health records by manual methods is impractical,
[19], the manual annotation of free text in electronic health records can be used to train neural networks
for phenotyping. Neural networks can also speed up the manual annotation process. The annotator
Prodigy [26, 27] has an annotation mode called ner.correct, which uses a trained neural network to
accelerate the manual annotation of clinical concepts.

With suitable training and guidelines, high levels of inter-rater agreement between human annotators
for clinical concepts are feasible. Restricting the annotation to a limited domain (e.g., neurological
concepts) and restricted ontology (e.g., neuro-ontology) simplifies the manual annotation process.
Although the inter-rater agreement between human and machine annotators was lower than between
human annotators, advances in natural language processing should bring inter-rater agreement between
machines and humans closer and make high throughput phenotyping of electronic health records
feasible.

This work has limitations. The sample of clinical notes was small (five patient notes per annotation
round). A larger sample of notes would have been desirable. The annotation process was restricted to
neurological signs and symptoms in neurology notes. The target ontology was a limited neuro-ontology
with 1600 concepts [16]. We evaluated only one machine annotator based on a convolutional neural
network. Other neural networks are likely to perform better. Our results on an inter-rater agreement
might not generalize to other medical domains and other ontologies. Although we had three raters for
this study, we did not designate any of them as the “gold standard”, and we elected to calculate inter-
rater agreement for each pair of raters separately. In our opinion, agreement at the 90% level between
human raters should be considered high. Likewise, machine annotators that can reach a 90% agreement
with human annotators should be considered accurate.
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