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ABSTRACT

The electrocardiogram (ECG) is an almost universally accessible diagnostic tool for heart disease.
An ECG is measured by using an electrocardiograph, and today’s electrocardiographs use built-in
software to interpret the ECGs automatically after they are recorded. However, these algorithms show
limited performance, and therefore clinicians usually have to manually interpret the ECG, regardless
of whether an algorithm has interpreted the ECG or not. Manual interpretation of the ECG can
be time-consuming and require specific skills. Therefore, a better algorithm is clearly needed to
make correct ECG interpretations more accessible and time efficient. Algorithms based on artificial
intelligence have shown promising performance in many fields, including ECG interpretation, over
the last few years and might represent an alternative to manual ECG interpretation.

In this study, we used a dataset with 88253 12-lead ECGs from multiple databases, annotated with
SNOMED-CT codes by medical experts. We employed a supervised convolutional neural network
with an Inception architecture to classify 30 of the most frequent annotated diagnoses in the dataset.
Each patient could have more than one diagnosis, which makes this a multi-label classification.
We compared the Inception model’s performance while applying different preprocessing methods
on the ECGs and different model settings during 10-folded cross-validation. We compared the
model’s classification performance using binary cross-entropy (BCE) loss and double soft F1 loss.
Furthermore, we compared the classification performance when downsampling the original sampling
rate of the input ECG. Finally, we trained 30 interpretable linear models to provide class activation
maps to explain the relative importance of each sample in the ECG with respect to the 30 diagnoses
considered in this study.

Due to the heavily imbalanced class distribution in our dataset, we placed the most emphasis on the
F1 score when evaluating the performance of the models. Our results show that the best performance
in terms of F1-score was seen when the Inception model used double soft F1 as the loss function
and ECGs downsampled to 75Hz. This model achieved an F1 score of 0.420 ± 0.017, accuracy
= 0.954± 0.002, and an AUROC score of 0.832± 0.019. An aggregation of the generated saliency
maps, achieved using Local Interpretable Model-Agnostic Explanations (LIME), showed that the
Inception model paid the most attention to the limb leads and the augmented leads and less importance
to the precordial leads.

One of the more significant contributions that emerge from this study is the use of aggregated
saliency maps to obtain ECG lead importance for different diagnoses. In addition, we emphasized
the relevance of evaluating different loss functions, and in this specific case, we found double soft
F1 loss to be slightly better than BCE. Finally, we found it somewhat surprising that downsampling
the ECG led to higher performance compared to the original 500Hz sampling rate. These findings
contribute in several ways to our understanding of the artificial intelligence-based interpretation of
ECGs, but further studies should be carried out to validate these findings in other datasets from other
patient cohorts.
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1 Introduction

Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Numbers from World Health Organiza-
tion estimate that 17.9 million people died from CVD in 2016 which represented 31% of all global deaths that year [1].
Early detection of patients with a risk of CVD could potentially reduce the severity of the disease and also decrease the
number of persons who die from CVD.

Electrocardiography is a non-invasive and widely used method to record electrocardiograms (ECG), which has enabled
clinicians to interpret, diagnose and prognosticate heart disease since the beginning of the 20th century [2]. The ECG is
the result of a measurement of the electrical activity of the heart by recording the voltage potential from electrodes
placed on the patient’s skin. Electrocardiography is generally easier to set up and more cost-effective compared to other
diagnostic methods such as echocardiogram and magnetic resonance imaging of the heart. On the other hand, one of
the challenges is that the ECG can be difficult to interpret correctly. Correct interpretation can be time-consuming and
require a high degree of expertise [3].

In the 1950s it became possible to convert analog ECG signals to digital format and this led to the development of
digital interpretation algorithms in the 1960s [4]. Today, most of the modern and clinically used electrocardiographs
are equipped with built-in interpretation software. The software interprets the ECG and prints interpretive texts that
may indicate different pathologies. Studies show that there are several limitations to the automatic interpretation
algorithms [5, 4]. The errors, done by the automatic interpretation algorithms, imply that doctors have to read over the
ECGs to ensure that the diagnosis is correct. This is time-consuming for the doctors and leads to high interpretation
variability. Thus, there is a need for developing a better ECG interpretation algorithm, since this may lead to less
time-consuming interpretation for the doctors, less variability in the interpretation and better diagnostic performance
which may lead to earlier detection and treatment of patients with CVD.

In the past decades, several new important trends have converged and may potentially be ushering in a new age with
significance to ECG interpretation. Firstly, ECGs are now increasingly stored in digital format, allowing computerized
analysis of massive data sets. Secondly, personal sensors such as training monitors and smartwatches (e.g., Apple
Watch, Withings Watch, Samsung Galaxy Watch) now include simple ECG recording abilities, further expanding access
to ECGs and the range of people studied. Finally, artificial intelligence (AI) or more specifically deep learning (DL) has
shown remarkable abilities in classifying signal data [6], and more specifically also ECG data [7, 8, 9, 10, 11, 12, 13].

Despite the good performance of the DL-based ECG interpretation models, the doctors are still responsible for the
diagnosis, and such models should then be considered as decision support tools, but the complexity in DL models
makes the decision inaccessible to humans, often referred to as the black box phenomenon [14]. This has led to the
development of another sub-field within AI, explainable AI (XAI) [15], with the aim of making the model decision
more human-interpretable. XAI methods such as Gradient class activation map (GradCAM) [16], LIME [17] and
SHAP [18] have already been used to get class activation maps, showing which part of the raw ECG waveform was
most important for the DL model’s prediction. The majority of these studies have focused on explaining single-label
classification models [19, 20, 21, 22], while only a few have explained multi-label classification models [23, 24]. In one
study, the researchers discovered novel disease-specific ECG features in Phospholamban (PLN) mutation carriers [19],
but for many other diseases, the DL model will likely rely on very subtle patterns and combinations of features from
different leads, and even though these get highlighted and displayed to the doctors in the class activation map, it might
be hard for them to understand or verify the relationship between the features used by the DL-model.

This study builds on the George Moody Challenge 2020 [25] and 2021 [26] where the objective was to perform
multi-label classification of cardiovascular diagnoses using the raw ECG waveform. We contributed to the 2020 edition
of the George Moody challenge by combining convolutional neural networks and rule-based algorithms [27] and in the
2021 edition, we used classifier chains based on convolutional neural networks [28]. In the current study, we compare
inception models trained using BCE and double soft F1-loss and show how the sampling frequency of the ECG records
affects the classification performance. Furthermore, we use explainable AI techniques to investigate which of the 12
leads has the highest importance when classifying different diagnoses.

2 Methods and materials

2.1 Data

We used ECG data from seven different open-access databases [26, 25, 29, 30, 31, 32, 33], with a total of 88253
12-lead ECGs in waveform format. All ECGs different from 10 seconds in recording length were excluded, and 81327
ECGs were used for further development and validation as Figure 1 shows. Each ECG was stored in a .mat file and
had a corresponding .hea file containing metadata such as the ECG recording length, sample frequency, the patient’s
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age, gender and diagnosis. There was a total of 133 different experts annotated diagnoses in the dataset, but in this
study, we choose to consider only 30 of them (the same 30 used in George Moody PhysioNet Challenge 2021 [26]).
The prevalence of each of these 30 diagnoses are shown in Table 1. Each patient could have more than one of the
30 diagnoses at the same time, which makes this task a multi-label classification task with more than 3000 different
combinations of diagnoses among the patients in the dataset.

88253 ECG
recordings

6926 ECG
recordings longer

or shorter
than 10 seconds

excluded

81327
10-seconds

ECG recordings

Figure 1: Patients with an ECG recording shorter or longer than 10 seconds were excluded from the development set.
6926 ECGs were excluded and the remaining 81327 ECGs were used to train and validate the model.

Diagnoses Prevalence Diagnoses Prevalence

1st Degree AV block 3291 Premature Atrial Contraction 2827
Atrial Fibrillation 5062 Premature Ventricular Contractions 1259
Atrial Flutter 8509 Prolonged PR Interval 393
Bradycardia 267 Prolonged QT Interval 2152
Bundle Branch Block 511 Q Wave Abnormal 2261
Complete Left Bundle Branch Block 218 Right Axis Deviation 1482
Complete Right Bundle Branch Block 2015 Right Bundle Branch Block 2331
Incomplete Right Bundle Branch Block 2306 Sinus Arrhythmia 4176
Left Anterior Fascicular Block 2665 Sinus Bradycardia 19303
Left Axis Deviation 7952 Sinus Rhythm 30426
Left Bundle Branch Block 1260 Sinus Tachycardia 10261
Low QRS Voltage 1765 Supraventricular Premature Beats 267
Nonspecific Intraventricular Conduction Disorder 2101 T Wave Abnormal 12673
Pacing Rhythm 1694 T Wave Inversion 4340
Poor R Wave Progression 656 Ventricular Premature Beats 731

Table 1: The prevalence of the 30 classified diagnoses after excluding patients with an ECG recording different from 10
seconds.

2.2 Preprocessing

2.2.1 ECG processing

More than 85% of all ECGs in the development set were initially sampled at 500 Hz. All ECGs were resampled to the
same sample frequency. In this study, we compared the model’s performance when the signal was downsampled from
500 to 400, 300, 200, 100, 75, 50 and 25Hz.

2.2.2 Label processing

We one-hot encoded all the 30 diagnoses considered in this study, such that each ECG recording had a corresponding
30-bit long array of ones or zeros. A binary one means that the patient has the given diagnosis and zero means that the
patient does not have the diagnosis.

2.3 CNN architecture

We developed a CNN model inspired by the Inception architecture [34] as shown in Figure 2 using TensorFlow [35].
The input to this model was an array, representing the raw ECG. The array containing the ECG signal can be denoted as:

number of leads × (Recording length (seconds) · sampling frequency)

3



Assessing the Impact of Downsampled ECGs and Alternative Loss Functions in Multi-Label Classification of 12-Lead
ECGs

Glob a l Ave r a ge  Poo lin g

Con v1D

Ba t ch  Nor m a liza t ion

Re LU Act iva t ion

In ce p t ion  Block

De n se

Con v 1D

Ba t ch Nor m a liza t ion

Ze r oPa d d in g1D

Re LU Act iva t ion

Ma x Poo lin g 1D

Ba t ch  Nor m a liza t ion

In ce p t ion  Block
Re LU Act iva t ion

Ba t ch Nor m a liza t ion

Ma xPoo lin g1D

Re LU Act iva t ion

Con v1D

Con v 1D

Con v 1D

Ba t ch Nor m a liza t ion

Ba t ch Nor m a liza t ion

Re LU Act iva t ion

Re LU Act iva t ion

Con v 1D

Con v 1D

Ba t ch Nor m a liza t ion

Ba t ch Nor m a liza t ion

Re LU Act iva t ion

Re LU Act iva t ion

Con ca t e n a t e

Con v1D

Ma x Poo lin g 1D

Figure 2: Inception model architecture. Each block represents a mathematical operation in the convolutional neural
network. The blocks inside the dashed lines represent an Inception block.

The output layer of the model had 30 neurons, corresponding to the 30 scored diagnoses. A Sigmoid activation was
used in the final layer, giving a continuous number between 0 and 1 for each of the 30 diagnoses.

2.4 Loss function

A loss function is used to compute the error of the prediction made by the model during the training phase. The computed
errors are used to adjust the weight coefficient in the model using backpropagation [36]. A previous study claimed
that different variations of F soft loss could be beneficial when performing multi-label classification with imbalanced
classes [37]. In this study, we compared the Inception model using double soft F1 loss and binary cross-entropy loss.

L(y, ỹ) = −(y log ỹ + (1− y)log(1− ỹ)) (1)

Equation 2 shows how double soft F1-loss (LF1 ) is calculated. The small number (+10−16) is added to the denominator
to prevent the function to divide by zero.

t̃p =

n∑
i=1

ŷi · yi

f̃p =

n∑
i=1

ŷi · (1− yi)

f̃n =

n∑
i=1

(1− ŷi) · (1− yi)

t̃n =

n∑
i=1

(1− ŷi) · (1− yi)

LF1
= 1− 2 · t̃p

2 · t̃p+ f̃p+ f̃n+ 10−16
(2)
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An Adam optimizer was used to compute the gradients, based on the loss, which was backpropagated to update the
weights of the artificial neurons in the Inception model [38].

2.5 Training and validation

The model was trained and evaluated on the dataset using 10-fold stratified cross-validation. The data were stratified
based on the prevalence of the diagnoses to ensure similar distribution of diagnoses in both the train and validation fold.
The models were trained for 15 epochs, with a batch size of 30 and a learning rate of 0.001.

The model performance was scored using the area under the curve (AUC) of the receiver operating characteristic (ROC)
curve, F1-score and average accuracy across all classes (hereby just referred to as accuracy). Equation 3 shows how we
compute accuracy by comparing the true label (y) and the predicted label (ŷ) for each ECG recording, ns and then
finding the average accuracy for each class c and finally taking the average across all classes, nc.

accuracy (y, ŷ) =
1

nc

nc−1∑
i=0

1

ns

ns−1∑
j=0

1 · (ŷij = yij) (3)

2.6 Explainability

To find the relative importance of the features in the ECGs, a local interpretive model-agnostic explanation (LIME)
model was trained to fit the input data (ECGs) to the output predictions from the Inception model. A LIME model
is a linear surrogate model which is easier to interpret compared to a deep neural network. One LIME model was
trained and tested for each of the 30 classes. As output, a LIME model provides a class activation map that has an equal
shape to the input. Values close to zero in the class activation map mean low activation, while higher values mean
higher activation. Figure 3 shows an example of one ECG-lead (aVL), visualized in the same plot as the corresponding
activation map for that specific lead. The LIME model is here trained to explain the atrial fibrillation classification from
the Inception model. The dark red lines indicate high activation, while the brighter color indicates lower activation.
This example is what’s called a local explanation because it only explains the model’s behavior on a single input data,
whereas global explanations are used to explain the model’s behavior on the whole population.

Figure 3: Lead aVL visualized together with its class activation map for a patient correctly classified with atrial
fibrillation with a probability of 0.998. The red vertical lines show the features in the ECG that contributed most
towards the prediction, according to the local interpretable model-agnostic explanation (LIME) model.

2.6.1 Developing the LIME model

We trained a LIME model for each of the 30 classes using the training data from the 10th cross-validation split during
the model development. For each LIME model, 1000 ECGs labeled with the class to explain and 1000 ECGs labeled
with classes different from the one to explain were used to train the LIME model. The trained LIME models were then
applied on the ECGs in the validation split of the 10th cross-validation split. The n-th LIME model was applied on all
ECGs labeled with the n-th class in the validation split.

3 Results

3.1 Loss function

The box plots in Figure 4 compare the performance of the Inception model trained using BCE loss with the Inception
Time model trained using double soft F1-loss. Each box represents the ten values achieved during the 10-folded
cross-validation. Figure 4a shows the achieved accuracy, Figure 4b shows the F1-score and Figure 4c shows the AUROC
score.
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(a) Accuracy score (b) F1 score (c) AUROC score

Figure 4: Classification performance achieved by the Inception model trained on 12-lead ECGs, using binary cross-
entropy loss and double soft F1-loss. The box plots are accumulated scores obtained on the validation folds during
10-folded cross-validation. (a) shows the accuracy scores, (b) shows the F1-scores and (c) shows the AUROC scores.

Due to the heavily imbalanced dataset used in this study, we selected the loss function that achieved the best F1-score,
which was double soft F1-loss.

3.2 Sampling frequency

In order to assess the impact of the ECGs sampling frequency on the classification results, we took eight copies of the
original dataset and resampled the datasets to eight different sample frequencies (25Hz, 50Hz, 75Hz, 100Hz, 200Hz,
300Hz, 400Hz, 500Hz). Eight Inception models, using double soft F1-loss, were trained and validated using 10-fold
CV. All eight models were trained for 15 epochs, with a batch size of 30, using Adam as the optimizer and an initial
learning rate of 0.001. In Figure 5 we compare the cross-validated accuracy, F1-score and AUROC score obtained by
the eight models.

(a) Accuracy score (b) F1-score (c) AUROC score

Figure 5: Classification results performed on the ECGs at different sampling frequencies. Each box represents the
accumulated scores obtained on the validation folds by the Inception model, using double soft F1-loss, during 10-folded
cross-validation. (a) shows the accuracy score, (b) shows the F1-score and (c) shows the AUROC scores.

3.3 Explainability

Finally, an Inception model, with a double soft F1-score as the loss function was trained on ECG signals resampled to
75Hz. The Inception model was trained on the training data from the 10th split of the 10-folded CV and tested on the
validation fold. 30 LIME models were trained and tested for each of the 30 diagnoses. Figure 6 shows a saliency map of
the ECG leads with the highest activation/importance for each of the 30 diagnoses. The saliency map was obtained by
finding the ECG lead with the highest average activation value for each of the 30 diagnoses in the 10th validation fold.
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Figure 6: Aggregated results from the class activation maps provided by the LIME model when interpreting the
predictions from the Inception model that is interpreting the validation data. The x-axis shows the 12 ECG leads and
the y-axis represents the 30 different diagnoses represented in the dataset. Dark colors in the saliency map mean low
activation, while bright means high activation.

4 Discussion

This study demonstrates an Inception-type convolutional neural network doing multi-label classification on an imbal-
anced ECG dataset. Additionally, we also employed an explainable AI technique called LIME in order to find the ECG
lead with the highest class activation for each of the 30 diagnoses considered in this study. To the best of our knowledge,
this is the first time class activation maps have been used to determine ECG lead importance for different diagnoses.

During development of the Inception model, we compared two different loss functions, BCE and double soft F1-loss.
We found that double soft F1-loss gave a significantly better F1-score (Figure 4b), which is considered the most
important metric in a heavily imbalanced dataset such as the one used in this study. It is however somewhat surprising
that the model using BCE loss achieved better accuracy and AUROC score than the model using double soft F1-loss. A
plausible explanation seems to be that the BCE model was good at classifying the major classes, giving a high accuracy
score, and the model using double soft F1-loss was generally good at classifying all 30 classes, giving a high F1-score.

One of the most surprising findings in this study was the improvement in classification performance when downsampling
the original 500 Hz ECGs. As seen in Figure 5 both the accuracy (Figure 5a) and F1-score (Figure 5b) performance
reach their peak around 75Hz. The increase in classification performance using downsampled ECG signals could be a
bit counter-intuitive since one would expect the ECG to lose a lot of important information. A possible explanation for
this is that there is an ideal ratio between convolution kernel size and the features in the ECG, such as P-waves T-waves
and QRS complex. However, we also did some experiments by increasing the kernel size, but this did not give the same
improvement in classification performance as lowering the ECG sampling frequency. Nonetheless, this needs more
research to reach a concusion.

The saliency map in Figure 6 is an aggregation of all class activation maps achieved from the 10th cross-validation fold.
The figure shows that lead II is the lead with the highest overall activation across all diagnoses, and the precordial leads
(V1-V6) generally show low activation. A possible explanation for this is that lead II often has a high signal-to-noise
ratio compared to the other leads. In addition, the majority of diagnoses considered in this study are arrhythmias and
these diagnoses are generally diagnosed by looking at the limb leads by human interpreters also.

4.1 Augmentation

Augmentation has shown promising effects in various image classification tasks [39]. Therefore we hypothesized that
augmentation might have a good effect on signal and ECG classification as well. More specifically, we tried to add
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random noise and baseline wander to the ECG signals. However, these augmentations did not significantly improve the
performance of our models.

The random noise was induced by adding a random number (N ) in the range of the ± standard deviation (σ) of all
values in the current ECG recording, shown in Equation 4.

yin = yi +N(−σ, σ) (4)

Baseline wander was induced to the signal by adding a cosine wave from 0 to 2π and shifting the cosine wave randomly
between 0 and 2π. The amplitude of the signal was randomly set by multiplying a random number (N) drawn from the
distribution of all values in an ECG recording, shown in Equation 5.

yibw = cos(2π
yi
n

+N(0, 2π)) ·N(−σ, σ), i = 0, 1, 2, 3...(n− 1) (5)

Figure 7a shows an example of an unprocessed ECG and Figure 7b shows the same ECG with added random noise
using the method described in Equation 4. Figure 7c shows the ECG in Figure 7a with simulated baseline wander as
described in Equation 5.

(a) Unprocessed ECG

(b) ECG with added random noise

(c) ECG with simulated baseline wander

Figure 7: Comparing an unprocessed ECG (a) with the same ECG with added noise (b) and simulated baseline wander
(c)

4.2 Limitation

One key limitation of the results in this work is that we did not test the model on a separate and independent test set.
The selection of optimal loss function and sampling rate could therefore have resulted in overfitting to the present
dataset. However, the datasets used to train and validate the model are from different hospitals across the world and
is therefore likely to represent a great diversity of patients, but anyway, validation on an external test set is needed to
control the model for potential overfitting that could have occurred in our study.

In order to create the class activation maps and the aggregated lead importance diagram (Figure 6) we used the LIME
framework. One of the limitations of this approach is that the LIME module we used was originally intended to be used
on recurrent neural networks and not convolutional neural networks as done in this study. Secondly, previous research
has stated that methods such as LIME are too generic and should be used with care on waveform data [40]. Comparing
activation maps from LIME with model-specific explanation methods, such as Grad-CAM [16], would therefore be
interesting

4.3 Future perspectives

Future studies should consider other loss functions than binary cross-entropy when training neural network-based
multi-label classification models on imbalanced datasets. Also, one should assess different ECG sampling frequencies
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to get optimal performance. In terms of model explainability, future studies should let medical doctors or cardiologists
verify the ECG activation maps to assess the usefulness of the XAI.

5 Conclusion

The primary aim of this study was to train a multi-label ECG classifier to achieve the best possible performance, given
the unbalanced dataset score. Furthermore, we used this model to obtain class activation maps and based on those we
found the leads that were considered the most important for each diagnosis. We also found that double soft F1-loss
might improve the performance when classifying heavy imbalanced datasets. In addition, we observed that reducing the
sampling frequency of the ECG from 500 Hz to around 75 Hz increased the model performance.

Code availability

The complete source code described in this paper is openly available on GitHub (https://github.com/Bsingstad/
Post-George-Moody-challenge-2020-2021) under a free software license (CC-BY 4.0).
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