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Abstract
Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For
this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI
features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full
heterogeneity of the disease. Biopsies are required to obtain a pathological diagnosis and are predominantly
taken from the tumor core, which often has different traits to the surrounding invasive tumor that typically leads
to recurrent disease. One approach to solving this issue is to characterize the spatial heterogeneity of
molecular, genetic, and cellular features of glioma through the intraoperative collection of multiple
image-localized biopsy samples paired with multi-parametric MRIs. We have adopted this approach and are
currently actively enrolling patients for our ‘Image-Based Mapping of Brain Tumors’ study. Patients are eligible
for this research study (IRB #16-002424) if they are 18 years or older and undergoing surgical intervention for
a brain lesion. Once identified, candidate patients receive dynamic susceptibility contrast (DSC) perfusion MRI
and diffusion tensor imaging (DTI), in addition to standard sequences (T1, T1Gd, T2, T2-FLAIR) at their
presurgical scan. During surgery, sample anatomical locations are tracked using neuronavigation. The
collected specimens from this research study are used to capture the intra-tumoral heterogeneity across brain
tumors including quantification of genetic aberrations through whole-exome and RNA sequencing as well as
other tissue analysis techniques. To date, these data (made available through a public portal) have been used
to generate, test and validate predictive regional maps of the spatial distribution of tumor cell density and/or
treatment-related key genetic marker status to identify biopsy and/or treatment targets based on insight from
the entire tumor makeup. This type of methodology, when delivered within clinically feasible time frames, has
the potential to further inform medical decision-making by improving surgical intervention, radiation, and
targeted drug therapy for patients with glioma.



Introduction
Brain tumors are uniquely challenging due to the limited access intrinsic to their location delaying progress in
understanding and developing effective treatments. For example, the most aggressive primary brain cancer,
glioblastoma (GBM), is particularly well known for its short median survival from diagnosis, and once systemic
cancers reach the stage of brain metastases, patients typically experience very poor outcomes [1–3]. Surgery
remains one of the most notable treatments for all brain tumors. In some cases, the benefits go past debulking,
as surgery also provides an opportunity to collect tissue and elucidate genetic, transcriptomic and
environmental factors that may act as treatment targets or prognostic markers. However, capturing the full
heterogeneity within brain tumors remains impossible given the eloquent brain tissue in which these tumors
live. The protocol introduced is intended to lead to a large dataset of image localized biopsies that will be able
to answer some of these key questions surrounding the heterogeneity of brain tumors.

The landscape of each brain tumor is ever changing, and there are limited opportunities for tissue collection, so
it is vital that these limited surgical sampling opportunities are capitalized on. Diffusely invasive gliomas are
particularly challenging in this regard as there are always tumor cells left behind in the brain following any
surgical intervention. GBM, the most aggressive form of glioma, is the most common primary brain malignancy
among adults [4]. Despite aggressive medical intervention consisting of maximal surgical resection followed by
concurrent chemoradiation and adjuvant temozolomide, this disease remains uniformly fatal, with a median
survival rate of 14-16 months in patients with newly-diagnosed GBM [5,6] and 5-7 months in patients with
recurrent GBM [7]. This poor prognosis is often a result of a major hallmark of GBM: profound intratumoral
heterogeneity that contributes to treatment resistance and tumor recurrence. The presence of metastatic brain
lesions also corresponds to a poor prognosis. These lesions have common alterations compared to their
primary counterparts [8]. However, there is also some evidence pointing towards diversity within and between
metastatic brain lesions [9,10]. We collect metastatic tumor tissue to understand this heterogeneity and also
determine how the different metastatic tissue features may present on imaging.

Given the nexus of known intratumoral heterogeneity and the limitations of access to brain tumor tissue, there
is an urgent need to leverage imaging to better inform our understanding of the biology at play across patients
and within each patient’s tumor. For example, the molecular composition of tumors is important, as different
tumor cell subpopulations within and between patients can have different treatment sensitivities and
implications for survival. For instance, IDH1/IDH2 and MGMT are prognostic markers of survival for gliomas
[5,6]. Notably, mutation in IDH is thought to be uniform throughout a patient tumor [11,12], while MGMT status
can vary with treatment status and location [13–15]. Other genetic alterations can arise, with multiple
phenotypes present within the same tumor. For instance, the epidermal growth factor receptor (EGFR) gene
can differ significantly in different regions of the tumor [16–19]. Similarly, EGFR-targeted therapies have mixed
responses in patients [20,21]. Bulk transcriptional studies of GBM, derived from The Cancer Genome Atlas
data, have revealed tumor subtypes that are associated with specific genetic alterations and patient survival
[22,23]. These subtypes have been recapitulated on the level of individual cells, and profound genomic and
phenotypic variability has been identified within individual patients [24–27]. These heterogeneities in key
markers suggest that, although sufficient for diagnosis, clinical samples likely do not represent the full genetic
and transcriptomic complexity of each tumor. It is important to have an accurate representation of the tumor
throughout the clinical course of care, but opportunities for tissue collection are limited. This lack of tissue
access has led to a heavy reliance on imaging to assess important clinical benchmarks such as surgical
outcome, tumor size, and treatment response.

Due to its ubiquitous use in the clinic, there has been a long history of using MRI to predict the extent and
biological heterogeneity of brain tumors [28–42]. Although they have shown promise, validating these
predictions has been extremely difficult without access to local tissue samples. Image-localized biopsies, such
as those collected here, have the potential to be used in developing and validating such spatial mathematical
models as well as emboldening newer approaches such as radiomics, where machine-learning models are
trained to connect high throughput quantitative image features to the composition of brain tumor tissue
[17,19,43–48]. Given limited access to brain tumor tissue, typical radiomics studies aim to connect image
features from tumors to global characteristics of the tumors such as malignancy, IDH1 status and grade [49]
whereas image-localized biopsies provide an opportunity to embrace intratumoral heterogeneity. This same
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quantitative approach (image analysis meets tissue analysis meets machine learning) can and has been used
to link local imaging patterns at biopsy sites with the composition of GBM tissue of said biopsies
[17,19,43,47,48]. Given that many clinical decisions in the treatment and monitoring of GBMs are based on
MRI, connecting GBM tissue composition to MRI offers the potential to capture the evolving tumor landscape
and cellular populations noninvasively, leading to more informed clinical decisions to benefit the patient. As we
collect more image-localized biopsies, this dataset becomes more representative of the vast range of possible
tumor compositions and imaging appearances, giving machine learning models the opportunity to become
more robust. Such robust models have the potential to predict important tissue features of GBM through
imaging alone on a patient-specific spatial basis, which would arm clinicians with the knowledge to provide
more nuanced treatment and better stratify patients for clinical trials.

This clinical protocol’s sample collection began in October 2017, and is ongoing. Collection of samples will
continue in efforts to grow statistical power as long as we are able to conduct this research. This protocol has
no impact on consented patients’ clinical care, nor alters anything within the clinical milieu.

Imaging-defined tumor regions drive clinical decisions Currently, maximal safe surgical resection is the clinical
gold standard. However, this is often determined with postoperative magnetic resonance imaging (MRI),
particularly the T1-weighted MRI with gadolinium contrast (T1+C) [50,51]. Tissue sampling creates significant
challenges for studying the clonal diversity of tumors such as GBM. T1+C MRI represents the clinical standard
for neuronavigation and routinely guides surgical biopsies and resection from the MRI enhancing core. In fact,
a clinically defined “gross total resection”, for high grade glioma, is defined as removal of the complete T1+C
abnormality. Unfortunately, biopsies from this contrast-enhancing (CE) tumor region alone fails to address the
diverse molecularly-distinct subpopulations that extend into the surrounding non-enhancing (NE) parenchyma,
which is visible on T2-weighted/Fluid-Attenuated Inversion Recovery (T2W/FLAIR) MRI [17]. These generally
unresected NE tumor regions contribute to tumor recurrence and can have different cellular compositions and
genetic signatures to that of enhancing regions [27,52,53]. Furthermore, T1+C MRI fails to localize cancer in
the surrounding NE tumor region during radiation treatment (RT) planning, as non-tumoral edema typically
appears visually indistinguishable from NE tumor. Most radiation oncologists must apply submaximal doses
across the entire T2W/FLAIR volume, which delivers unnecessary radiation to the normal brain and risks
undertreating NE tumor.

Advanced multiparametric imaging provides deeper insights into tumor biology Imaging techniques, such as
advanced MRI, can quantitatively characterize tumor-induced physiological processes in the NE region of
GBM. Unlike surgical sampling, MRI captures the entire brain organ and thus could provide insight into the
tumor extent even in unresected NE regions and their associated biophysical features that may be detectable
on MRI (Fig 1). On T1+C MRI, enhancement indicates regions of disrupted blood brain barrier (BBB), while
signal demarcates regions of high water content and tumoral edema in T2W/FLAIR. Other advanced MRI
features may reflect tumor cell density on diffusion-weighted imaging (DWI) [54], white matter infiltration on
diffusion tensor imaging (DTI) [55,56], and microvessel morphology on Dynamic Susceptibility-weighted
contrast-enhanced perfusion MRI (DSC-pMRI) [57]. In addition, signal intensity values on structural MRIs are
spatial representations of soft tissue anatomy. The textural patterns of neighboring voxel intensities provide
further insight towards the potential tissue microstructure and phenotypic heterogeneity within the local
microenvironment [58,59]. These complementary MRI features offer potential biomarkers of underlying
genomic and transcriptomic status, and have been previously correlated with molecular profiles of GBM
[17,60–67]. Further, quantification of the interactions amongst molecularly-distinct subpopulations, cellular
subpopulation compositions and/or their diversity in the NE tumor region (often left behind following surgical
interventions) can help improve future treatment strategies (such as adaptive therapy), under the realm of
individualized oncology [68–70].

Fig 1: Multiparametric MRI techniques and contrasts. Listed are the 8 different MRI sequences used in this study,
along with their corresponding physiological representations. T1Gd = T1W signal increase on post-contrast imaging;
FLAIR = Fluid-Attenuated Inversion Recovery; rCBV = Relative cerebral blood volume; DSC-pMRI = Dynamic
susceptibility contrast perfusion MRI; EPI+C = T2*W signal loss (i.e., negative enhancement at ~5min post injection of 0.1
mmol/kg preload contrast injection); DWI = Diffusion weighted imaging; DTI = Diffusion tensor imaging; MD = Mean
diffusivity (equivalent to apparent diffusion coefficient); FA = Fractional anisotropy.
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Materials and methods
The ‘Image-Based Mapping of Brain Tumors’ clinical protocol (IRB# 16-002424) is a minimal-risk study that
aims to further characterize intratumoral heterogeneity of brain tumors. Here, we outline our study collecting
multiple image-guided biopsy samples as part of standard surgical approaches. We aim to collect samples
dispersed in and around the abnormality seen on T1Gd MRI to allow for cross-annotation for relevant MRI
features. As these image-localized biopsies are collected during routine surgical interventions, this study does
not alter the course of treatment for consented patients, but we hope that findings using this data will ultimately
help patients in the future. We present an example set of biopsy locations for a single surgery in Fig 2. The
data gathered through this study will be useful for countless research directions. The study’s primary objectives
are to identify relationships between imaging and a number of important tumor features, such as tumor cell
density, genetic status, transcriptomic status, and molecular status. Secondary objectives include investigating
associations amongst imaging, radiation dosimetry, tumor recurrence/treatment effect, and clinical outcome.
We foresee the use of statistical methods such as repeated measures correlations [71] and mixed effects
models [72] to test for gene correlations and differences between imaging regions, Cox mixed effects models
[73] to determine impact on clinical outcome, and supervised machine learning models such as regressors or
classifiers to connect tumor composition (cellular, genetic, transcriptomics) to the more readily available
imaging data.

Fig 2: Illustrative example of biopsy locations annotated relative to imaging abnormalities. Here we show an
example case where 9 image-localized biopsies were acquired from a patient. (A) An example screenshot from the
intraoperative neuronavigation system of a non-enhancing (NE) biopsy sample. (B) An example screenshot from the
intraoperative neuronavigation system of a contrast-enhancing (CE) biopsy sample. (C) A screenshot from intraoperative
navigation is shown, highlighting the translation to a full three-dimensional rendering of segmented imaging abnormalities
and biopsy locations. The segmented CE (dark blue) and NE (light blue) abnormalities are shown with biopsy locations
(red). (D-F) MRI planes overlaid with segmentations and biopsy locations, highlighting the representative spread of biopsy
locations that we can achieve. Although only the CE and NE regions are outlined here, we collect other multiparametric
MRIs as well for the patients as shown in Fig 1.

Inclusion and exclusion criteria
Inclusion criteria for patient participation in the study are as follows:

- Age between 18 and 99 (inclusive)
- Undergoing diagnostic biopsy and/or surgical resection for a brain lesion

Exclusion criteria for patient participation in the study are as follows:
- Insufficient renal function: eGFR < 60 mg/min/1.72m2 [74]
- Allergy to Gadolinium (Gd)
- Pregnant or nursing
- History of hemolytic anemia or asthma
- Inability to obtain informed written consent

Workflow

Before surgery
Patients are identified through the institutional electronic medical records system (i.e., Epic Systems). Clinical
schedules for MR scanners and operating rooms are checked daily for eligible participants. A study-specific
multi-parametric imaging protocol is acquired prior to surgery for eligible patients. The imaging protocol
includes T1-weighted (T1W), T1-weighted with gadolinium contrast (T1Gd), T2-weighted (T2W),
T2W-fluid-attenuated inversion recovery (T2-FLAIR), diffusion tensor imaging (DTI), and dynamic susceptibility
contrast (DSC) perfusion MRI (Fig 1). These imaging sequences are acquired prior to the collection of
image-guided biopsy samples and, in some instances, following the patient’s diagnosis or treatment. In
addition to MRI, other imaging modalities may be collected and reviewed, these include computed tomography
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(CT) and positron emission tomography (PET) imaging data collected as part of clinical practice or in
conjunction with other imaging-based protocols.

Blood is collected in up to two 10mL ethylenediamine tetraacetic acid (EDTA) tubes and the buffy coat is
frozen. This blood collection is used for germline DNA comparisons to the respective tumors and occurs during
a standard of care visit. If the patient has multiple standard-of-care lab visits, we may collect at any of those as
long as the subject has not withdrawn informed consent.

Urine is collected and stored at 4ºC to assess biomarkers (free circulating DNA/RNA) associated with therapy
response. This may also be collected at any standard of care lab visits, as long as the subject has not
withdrawn informed consent. Table 1 shows the timeline for the collection of all sections of this protocol.

Table 1: General schedule of events for this research study from patient identification to routine follow-up. Patient
information beyond routine follow-up can also be collected. No additional modifications are made to the standard clinical
care trajectory, unless the patient has another surgery.

Fig 3: A schematic of our per-patient biopsy collection workflow. Additionally, patients may have samples collected at
subsequent surgeries [75–79].

During surgery
During routine surgery, biopsies are obtained and the MRI location is recorded using an intraoperative
neuronavigation system (Medtronic StealthStation 8, Minneapolis, MN) with additional screenshots taken (such
as that in Fig 3) to further validate the coordinate location. At the beginning of this study, biopsies were frozen
by the Surgical Pathology department. However, to reduce time to freezing of the tissue, flash-freezing was
implemented in the operating room (OR) with Surgical Pathology as a backup, if necessary. This has
significantly improved our success in achieving freezing tissue within 5 minutes of surgical extraction (S1 Fig).
We collect multiple spatially-annotated stereotactic biopsies from the across the diversity of MRI-definable
tumor regions in patients with glioma and metastatic brain tumors with a goal of 8 biopsies per surgery with a
target of ≥250 mg/biopsy (see Fig 4). Tumor grade is assessed by a pathologist using corresponding clinical
biopsy samples in line with standard conventions [80,81].
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Originally, biopsies were only flash-frozen in order to conduct whole-exome and RNA sequencing on the
samples. Since December of 2022, we also began submerging tissue in formalin. At first, this was done by the
surgeon collecting extra samples, 2 at each coordinate location (16 formalin fixed samples were collected with
this method). However, this overstretched the clinical workflow. In consultation with clinical staff, it was decided
that one sample will be collected from each coordinate location, and if the sample is large enough the research
team will split them in two; one is then flash frozen and the other formalin fixed. This way, we have more
information about the biology in each of these areas, without any increased risk to the patient or workload on
the clinical staff. We have so far collected a total of 29 formalin-fixed samples.

Fig 4: Overview of Image-Localized Biopsy Histology Distribution (Top) Total number of surgeries with
image-localized biopsies collected, broken down by grade (total of 183 surgeries). (Middle) Number of samples per
surgery, broken down by grade. (Bottom) Total samples collected per grade (total of 1136 image-localized samples). Met
= Metastatic brain tumor.

Screenshots taken for each research sample are extracted from the neuronavigation system and imported into
our IRB-compliant database PatientView (Fig 3). Samples are time-stamped and designated an alphabetical
letter to facilitate matching each sample to its corresponding screenshot and clinical notes in the electronic
medical record. Samples collected are also cross-referenced with the Surgical Pathology department to
confirm the number of biopsies collected, label accuracy, and overall quality assurance.

After surgery
Imaging data is collected, coded, processed, and matched with the genetic and molecular data obtained from
each biopsy. Post-processing analyses include registration, normalization, inhomogeneity correction, and
feature extraction as described elsewhere [17,43,48]. Planned studies include the development of statistical
models between imaging, various tissue characterizations (e.g. copy number variants, transcriptomic
signatures, immunohistochemistry etc.), and clinical outcomes.

Each sample is delivered to the Surgical Pathology department after being flash-frozen in liquid nitrogen. The
samples are stored in a -80ºC freezer until subsequent processing. Flash-frozen tissue is retrieved and
embedded frozen in optimal cutting temperature (OCT) compound. Tissue is sectioned (e.g. target 10µm with
the goal of up to 20 slides) in -20ºC cryostat (e.g., Microm-HM-550) utilizing a microtome blade. Originally, In
the event of excess archived formalin-fixed paraffin-embedded (FFPE) tissue collected per the standard clinical
protocol, retrospective tissue may be obtained (under the discretion of a neuropathologist) to undergo further
tissue analysis (we aim to collect up to 100µm in FFPE scrolls). Now, if size allows, samples are split by the
research team and formalin-fixed in the OR. All specimens are also stained with hematoxylin and eosin (H&E)
and reviewed by a neuropathologist to quantify tumor content. Tissue specimens may be submitted for
subsequent genetic, molecular, or epigenetic analysis, including, but not exclusive to, next-generation
sequencing, array-based comparative genomic hybridization (aCGH), exome sequencing, methylation
analysis, and RNA sequencing.

Data abstraction, management, and availability
Details of the patient’s clinical course, treatments, MRI images, pathologies, and treatment response are
abstracted from the medical records system by IRB-approved staff and an anonymized data repository is
distributed to the rest of the team for data analysis. Data is made accessible to all IRB-approved staff, but only
the principal investigators, study coordinators, and research assistants have full rights to update data in our
main data repository as they are responsible for ensuring the data quality and accuracy.

Biopsy-related data, including time of collection, specimen ID, neuronavigation information, and other notes are
collected by two to three researchers during surgery in physical journals. These journals contain coded patient
IDs with no patient health information. This data is transferred to a password-protected document with all
relevant data for each patient, which is stored on a secure server that can only be accessed by IRB-approved
researchers. Biopsy location data and image information is taken directly from the neuronavigation system
using plans and time-stamped screenshots as previously described. The image data and screenshots are kept
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in deidentified patient folders on the secure server. Patient identifiers, demographic information, and sample
data are collated in the main data repository.

Research data that documents, supports, and validates research findings will be made available after the main
findings from the final research data set have been accepted for publication. We will provide these in the form
of csv files. In addition, if requested, tissue and imaging data may be made available for sharing to qualified
parties by the technology transfer office as soon as is reasonably possible, so long as such a request does not
compromise intellectual property interests, interfere with publication, invade subject privacy, or betray
confidentiality. Data that are shared will include standards and notations needed to interpret the data, following
commonly accepted practices. All data from tissue processed from this cohort will be made available through
the MOSAIC consortium we have formed around this important novel intratumoral heterogeneity initiative:
www.BrainTumorMOSAIC.org. Additional data requests may be initiated by contacting the Swanson lab
through our website: www.MathematicalNeuroOncology.org.

Ethical considerations and declarations
This study was approved by the Mayo Clinic IRB on 1/9/2017 with approval number 16-002424. All participants
presented in this work have undergone written informed consent. The principal investigators are responsible
for ensuring the IRB-approved study protocol is followed and for reporting any adverse events. The study
protocol is reviewed for renewal annually.

Safety considerations
Our study is not therapeutically interventional. This is a minimal-risk study as procedures are in line with
standard clinical activities with only the possible addition of advanced imaging. The safety of the patient is our
top priority and is monitored by the neurosurgeon as surgery is performed.

Patient demographics and sample counts
As of March 31st 2023, this study has enrolled 203 patients with 183 surgeries that resulted in the successful
collection of biopsy samples (182 of which collected image-localized biopsies). A total of 1171 biopsies have
been collected of which 1136 are image localized, with a mean of 6.40 samples per surgery. The mean age of
these patients was 57.5 years old (ranging from 18-91). The self-reported sex breakdown is 113 males and 90
females with mean ages of 58.2 years (20-84) and 56.6 years (18-91), respectively. The self-reported racial
and ethnic distribution of the cohort is largely white and non-Hispanic/Latino individuals (Fig 5, analogous
sex-specific figures in Supplement 1). The samples collected in this study were largely acquired from patients
with glioma and brain metastasis, although 10 patients had another type of brain lesion. We collected
image-localized biopsies from 134 glioma surgeries, of which: 4 were grade 1, 16 were grade 2, 17 were grade
3 and 97 were grade 4. We collected image-localized biopsies from 38 surgeries for patients with cancers that
had metastasized to the brain. See Fig 6 for further breakdowns such as tumor status and biopsy counts
(analogous sex-specific figures can be found in S3 and S4 Figs).

Fig 5: Self-reported race (top) and ethnicity (bottom) in the patient cohort, which consists predominantly of patients
reporting as white and not Hispanic/Latino. See S2 Fig for sex-specific breakdowns.

Fig 6: Flowchart for enrollment, starting from the number of patients (N) who were approached for the study, to surgeries
(S) and total number of biopsies collected (bx), stratified by grade and tumor status. See S3 and S4 Figs for sex-specific
breakdowns. *One case included in the recurrent grade III group underwent a grade transformation.

Discussion
As with any clinical study, there are many potential limitations that must be considered. This study aims to
retrieve multiple biopsies from a variety of locations spanning the diversity of MRI-defined tumor regions. For
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example in glioma, it is particularly important that we biopsy from the diffusely invaded normal appearing brain
parenchyma, as these samples will be more similar to the unresected invasive margins that repopulate the
disease. While we have a goal of 8 samples per surgery, in some cases this sampling scheme is not possible.
In other cases, we may not be able to collect from all imaging regions. The operating neurosurgeon is
responsible for evaluating the safety of biopsy collection and assessing any potential risk that may result from
such collection. As a result, there is notable variability in the number and size of the collected specimens;
however, this has helped define our study as a reasonable and pragmatic collection protocol.

Image-localization poses additional challenges. First, the neuronavigation system requires preoperative patient
registration, resulting in a measurable registration error during surgery. Second, this process is reliant on
preoperative imaging, which must be ordered by clinicians and, in some scenarios, is obtained up to three
weeks prior to surgery. Further, such static images cannot account for intraoperative brain shift, a phenomenon
where the brain fills the space of resected tissue. Unfortunately, this issue remains a universal challenge for
image-localization during neurological surgery, and there is currently no standard procedure in place to
accurately measure this change intraoperatively. These are all important considerations for image-based
modeling. In addition, different MRI machines with different techs and field strengths can lead to varying
imaging features, even within the same patient. Rather than alter clinical workflow, we must find ways (such as
normalization techniques) to bring these images together into a comparable space for radiomics models.

Another limitation is in the uniformity of available imaging and the related difficulty of consenting patients
promptly. Patients are identified through our institution's patient scheduling systems (currently in EPIC, the
electronic medical records system utilized at Mayo Clinic). Specifically, MRI and OR schedules are monitored
for potential patients for the study. However, emergent patients who undergo imaging at short notice and
immediately proceed with surgery may be missed or, if consented, may not have received the entire protocol of
imaging before surgery. Since biopsy collections require research personnel, surgeries may also be missed if
researchers’ schedules do not permit attendance. Further, surgeries are not attended if there is increased risk
to the patient (e.g. patient safety concerns from the neurosurgeon) or the research team (i.e., active COVID-19
diagnosis).

Although this data collection comes with challenges, many of these are typical during the integration of
research into a clinical workflow. Neuronavigation has proven to be a useful clinical tool for surgical planning
and intraoperative guidance. By utilizing neuronavigation for research, we can attain much greater insight into
the inter- and intra-patient spatial heterogeneity of brain tumors and its imaging presentation. These insights
may provide therapeutic targets for clinical trials and we hope one day they will improve treatment options.

For all research approaches, we want our dataset to be both representative of each tumor and the patient
cohort we ultimately aim to serve. Of course more data is always desirable, particularly for radiomics models,
but it is unrealistic to expect the clinical team to collect all resected tissue as image-localized biopsies. With
this protocol, we’ve mindfully struck a balance between representative data, minimal patient risk, and minimal
impact on the clinical workflow. It is our hope that spatial localization of brain tumor biopsies becomes standard
in the clinic to increase our understanding of these tumors, inform clinical care, and ultimately improve
prognosis for patients.
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