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Abstract:  28 

 29 

Reduced participation in COVID-19 vaccination programs is a key societal concern. 30 

Understanding factors associated with vaccination uptake can help in planning effective 31 

immunization programs. We considered 2,890 health, socioeconomic, familial, and 32 

demographic factors measured on the entire Finnish population aged 30 to 80 33 

(N=3,192,505) and genome-wide information for a subset of 273,765 individuals. Risk 34 

factors were further classified into 12 thematic categories and a machine learning model was 35 

trained for each category. The main outcome was uptaking the first COVID-19 vaccination 36 

dose by 31.10.2021, which has occurred for 90.3% of the individuals. 37 

 38 

The strongest predictor category was labor income in 2019 (AUC evaluated in a separate 39 

test set = 0.710, 95% CI: 0.708-0.712), while drug purchase history, including 376 drug 40 

classes, achieved a similar prediction performance (AUC = 0.706, 95% CI: 0.704-0.708). 41 

Higher relative risks of being unvaccinated were observed for some mental health diagnoses 42 
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(e.g. dissocial personality disorder, OR=1.26, 95% CI : 1.24-1.27 ) and when considering 43 

vaccination status of first-degree relatives (OR=1.31, 95% CI:1.31-1.32 for unvaccinated 44 

mothers) 45 

 46 

We derived a prediction model for vaccination uptake by combining all the predictors and 47 

achieved good discrimination (AUC = 0.801, 95% CI: 0.799-0.803). The 1% of individuals 48 

with the highest risk of not vaccinating according to the model predictions had an average 49 

observed vaccination rate of only 18.8%. 50 

 51 

We identified 8 genetic loci associated with vaccination uptake and derived a polygenic 52 

score, which was a weak predictor of vaccination status in an independent subset 53 

(AUC=0.612, 95% CI: 0.601-0.623). Genetic effects were replicated in an additional 145,615 54 

individuals from Estonia (genetic correlation=0.80, 95% CI: 0.66-0.95) and, similarly to data 55 

from Finland, correlated with mental health and propensity to participate in scientific studies. 56 

Individuals at higher genetic risk for severe COVID-19 were less likely to get vaccinated 57 

(OR=1.03, 95% CI: 1.02-1.05). 58 

 59 

Our results, while highlighting the importance of harmonized nationwide information, not 60 

limited to health, suggest that individuals at higher risk of suffering the worst consequences 61 

of COVID-19 are also those less likely to uptake COVID-19 vaccination. The results can 62 

support evidence-informed actions for COVID-19 and other areas of national immunization 63 

programs.  64 

 65 

Introduction 66 

In the face of the worldwide COVID-19 pandemic, safe and effective vaccines were 67 

developed and approved for use in record-breaking time [1]. However, across high-income 68 

countries, somewhere between 5% and 30% of the population has not received any dose of 69 

COVID-19 vaccine, and higher proportions of unvaccinated were observed in low-income 70 

countries [2]. In Finland, 23.5% of the population has not received any dose of COVID-19 71 

vaccine by the end of October 2021, in line with several other European countries. In the 72 

case of COVID-19, a comprehensive and rapid vaccination of the population is key to 73 

reducing disease severity (vaccination effectiveness, VE, against death 99.0% [3]), 74 

alleviating the healthcare burden (VE against hospitalization 97.2% [3]) and reducing the 75 

spread of infection [4]. Refusal, postponement, or inability to participate in the vaccination 76 

program is therefore a key societal concern. Being able to identify individual factors 77 

impacting vaccination uptake can help policymakers to design more effective targeted 78 

interventions for future immunization programs. 79 

 80 

Previous studies aiming to identify factors underlying the intention to take a COVID-19 81 

vaccination were mostly based on surveys [5,6,7,8,9,10,11]. These studies have identified 82 

factors such as trust and knowledge of the COVID-19 vaccines, recommendations by 83 

healthcare professionals, as well as beliefs about the disease severity and convenience of 84 

vaccination as important predictors of intention to take COVID-19 vaccination. This is in line 85 

with previous studies about vaccine hesitancy [12,13]. While offering important information 86 

about self-perceived reasons for vaccine hesitancy, studies based on survey data have 87 
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several limitations. First, surveys are typically limited to a few thousand individuals, limiting 88 

the power to identify individuals at risk. Second, survey participants are often not 89 

representative of the general population and factors associated with vaccine hesitancy, such 90 

as socioeconomic status or education level, are also associated with participation in 91 

scientific studies [14]. Thus, individuals more likely to not participate in a vaccination 92 

program are also more likely to be under-represented in surveys. Third, surveys are affected 93 

by reporting bias, either voluntary or involuntary, and can collect only a limited set of 94 

information limiting the power of epidemiological and machine learning analyses. 95 

 96 

To address these limitations and to provide new insights, we used a comprehensive 97 

collection of nationwide registers covering detailed health, socioeconomic, familial and 98 

demographic information to map potential predictors of COVID-19 vaccination uptake across 99 

the entire Finnish population (5.5 million individuals). We compared 2,890 predictors 100 

measured before 31.12.2019 and uptake of the first dose of COVID-19 vaccine between 101 

27.12.2020 and 31.10.2021. We used machine learning methods to quantify the importance 102 

of 12 different predictor categories (e.g. disease history, medication purchases, education 103 

level, see Figure 1a) and their overlap. Finally, we combined these categories to derive a 104 

prediction model of COVID-19 vaccination status.  105 

 106 

Previous studies have shown a genetic liability and identified individual genetic factors that 107 

impact COVID-19 severity and susceptibility [15]. Across 273,765 individuals (with 108 

replication in additional 145,615 individuals from Estonia), we evaluated if genetic 109 

information could predict COVID-19 vaccination uptake, if there is a genetic overlap with 110 

health and behavioral traits that were not available nationwide and if individuals with higher 111 

genetic risk for COVID-19 were more or less likely to be vaccinated. 112 

 113 

Understanding the predictors of vaccination uptake is an important step toward a more 114 

sustainable public health response. This study establishes a framework for using machine 115 

learning and statistical genetics methods to identify individuals that are less likely to 116 

participate in COVID-19 vaccination programs.  117 

 118 

Results 119 

Comprehensive nationwide information to identify predictors of 120 

COVID-19 vaccination uptake 121 

The FinRegistry project (https://www.finregistry.fi/) combines and harmonizes data from 18 122 

Finnish nationwide registers into a comprehensive dataset for epidemiological and machine 123 

learning analyses. Briefly, these registers cover disease diagnoses from primary, secondary 124 

and tertiary care, medication purchases, welfare benefits, multi-generational familial 125 

relationships, socio-economic and demographic information for at least 10 years, with some 126 

registers dating back to the 1970’s (Figure 1 for study overview, Data and Methods). One 127 

of these registers, the Finnish Vaccination register, contains records of all COVID-19 128 

vaccination doses administered in Finland.  129 

 130 
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 131 
Figure 1. a) Schematic outline of the study. COVID-19 vaccination uptake (at least one 132 

vaccination dose) at the end of October 2021 was extracted from the Finnish Vaccination 133 

Register for each individual aged 30-80 years and living in Finland. A comprehensive 134 

collection of potential predictors was extracted (at the end of 2019, except for vaccination 135 

status of relatives for which data up to end of October 2021 was used) from nation-wide 136 

registries, totalling 2,890 potential predictors across 12 manually defined predictor 137 

categories. Genetics of Covid-19 vaccination uptake was studied in a subsample of 138 

individuals of the total study population (FinnGen participants) and replicated in Estonia 139 

Biobank. Machine learning was then used to identify predictors and predictor categories that 140 

best predict vaccination uptake in the test set. b) Total number of vaccinated (blue, at least 141 

one vaccination dose) and unvaccinated (purple) females and males in the study population 142 

at the end of October 2021. c) Cumulative fraction of different age groups in the study 143 

population (blue: 30-40 year olds, orange: 41-50 year olds, green: 51-60 year olds, red: 61-144 

70 year olds, violet: 71-80 year olds) who have received 1st dose of COVID-19 vaccine as 145 

function of time during the follow-up period. 146 

 147 

We manually divided the vast amount of information, in total 2,890 potential predictors, into 148 

12 consistent categories for easier interpretation of the results. Predictors were available 149 

before 31st December 2019 (i.e. before the start of the COVID-19 pandemic, except for the 150 

vaccination status of relatives for which vaccination records until 31st October 2021 were 151 

used) for all individual residents of Finland alive on the 31st December 2020. We considered 152 

only individuals between 30 and 80 years old and excluded 6.1% of the study population 153 
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who had emigrated and a further 1.9% with a reported positive COVID-19 test by the 31st 154 

October 2021. We further excluded 0.1% of the remaining study population living in Askola, 155 

a municipality with incomplete vaccination records (see Extended Data Figure 1). We 156 

chose the age range 30-80 because by 31st October 2021 everyone in this age range had 157 

been eligible for a first dose of COVID-19 for at least 4 months (Figure 1c). In total we 158 

included 3,192,505 individuals (50,5% females), of which 136,947 females (8.5%) and 159 

171,647 males (10.9%) (Figure 1b) were unvaccinated. Younger individuals were eligible for 160 

vaccination later and had a lower vaccination rate by the end of the study period (Figure 1c). 161 

Thus, age was used as covariate in all the presented analyses. Genetic information from the 162 

FinnGen study [16] was available for a subset of 273,765 individuals fulfilling similar 163 

inclusion criteria, of which 93% had received their first dose of a COVID-19 vaccination by 164 

31.10.2021. Details of data preprocessing are reported in the Data and Methods section. 165 

 166 

 167 
Figure 2. a) Area under receiver-operator characteristics curve (AUC) for XGBoost 168 

classifiers trained using predictors from different predictor categories (each model also 169 

includes the baseline predictors age and sex).  Error bars show 95% confidence intervals 170 

computed using bootstrapping. Number of predictors within each category is indicated on top 171 

of the corresponding bar. The black vertical dashed line indicates the performance of an 172 

XGBoost model allowed to use only age and sex as predictors. Most of the predictor 173 

categories perform better than this baseline model, with Income and Drug purchases being 174 

the most predictive categories. b) AUC from Lasso classifiers trained separately for each of 175 

the individual predictors (models also include the baseline predictors age and sex), grouped 176 

by the categories. Some of the interesting highly predictive predictors have been highlighted 177 

(for a fully annotated list of AUCs of individual predictors, see Supplementary Table 2). c) 178 

Association between labor income in 2019 and COVID-19 vaccination uptake. Odds ratio 179 

from a logistic regression model using income percentile bins as predictors and adjusting for 180 

age and sex. The 40%-50% percentile bin was used as a reference category. Error bars 181 

indicate 95% confidence intervals for odds ratios computed using bootstrapping. d) 182 

Associations between previous disease diagnoses and COVID-19 vaccination status. Odds 183 

ratio from a logistic regression model using a binary disease indicator as predictor and 184 

adjusting for age and sex. Some of the interesting predictors are highlighted. Predictors with 185 

multiple hypothesis testing-adjusted p-value > 0.01 (Benjamini-Hochberg method), and 186 

prevalence among vaccinated <1000 are not shown. Error bars indicate 95% confidence 187 

intervals for odds ratios computed using bootstrapping. For a fully annotated list of ORs of 188 

individual predictors, see Supplementary Table 3. 189 

 190 
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Income in 2019 and drug purchase history were the strongest 191 

predictors of COVID-19 vaccination uptake 192 

We studied the importance of the 12 categories of predictors in predicting COVID-19 193 

vaccination uptake using machine learning models (XGBoost [17]) trained separately for 194 

each category in a randomly sampled 80% of the study population and evaluated on the 195 

remaining 20%. Each model also included age and sex as predictors, representing the 196 

baseline model. Income (area under receiver-operator characteristics curve (AUC) = 0.710, 197 

95% CI: 0.708-0.712) and history of previous drug purchases, including 376 drug classes, 198 

(AUC = 0.706, 95% CI: 0.704-0.708) were the most predictive categories (Figure 2a, 199 

Supplementary Table 1). All but one of the categories, long-term care, performed better 200 

than the simple baseline model including only age and sex (AUC=0.612, 95% CI: 0.610-201 

0.614; Figure 2a). 202 

 203 

Next, we studied the classification performance of individual predictors within each category 204 

by training individual Lasso models for each of the 2,890 predictors, including the baseline 205 

variables age and sex (Figure 2b, Supplementary Table 2; see Data and Methods for 206 

details). To provide interpretable effect sizes, we also performed logistic regression (without 207 

penalization) for each of the predictors, including age and sex as covariates, and calculated 208 

odds ratios (OR) of not vaccinating against COVID-19 (Extended Data Figure 2, 209 

Supplementary Table 3; see Data and Methods). Reference levels for the predictors used 210 

in the logistic regression analysis are listed in Supplementary Table 8. Not having income 211 

from labor in 2019 was the most predictive individual predictor (AUC=0.668, 95% CI: 0.666-212 

0.671, OR=1.35, 95% CI: 1.35-1.35). Among individuals with labor income, those in the 213 

lowest income decile had a significantly higher chance of not uptaking vaccination compared 214 

to individuals in the 40%-50% income decile bin (OR=1.08, 95% CI: 1.08-1.09; Figure 2c). 215 

Overall we observed a linear relationship between income and COVID-19 vaccination 216 

uptake. Other socio-demographic variables such as speaking another mother tongue than 217 

Finnish or Swedish were both strong predictors and conferred an elevated relative risk of not 218 

vaccinating (AUC=0.649, 95% CI: 0.647-0.651; OR=1.27, 95% CI: 1.27-1.27).  219 

 220 

We examined individual disease diagnoses (Figure 2d) and drug purchases to identify 221 

possible disease groups associated with vaccination uptake (Supplementary Table 3). The 222 

highest odds ratios of not vaccinating were observed for diagnoses of substance abuse, 223 

such as stimulants (OR=1.22, 95% CI : 1.21 - 1.23) and cannabinoids (OR=1.25, 95% CI: 224 

1.24 - 1.26), and also for hepatitis C diagnosis (OR=1.22, 95% CI 1.21 - 1.23) which is 225 

strongly associated with intravenous drug usage. Other mental health conditions, particularly 226 

those associated with psychotic- or delusion-type symptoms, showed large relative risks 227 

(e.g. OR of dissocial personality disorder = 1.24, 95% CI:  1.23 - 1.26, OR of schizoid 228 

personality disorder = 1.14, 95% CI: 1.13 - 1.15). 229 

 230 

While drug purchase history was the second strongest predictor category, no single 231 

medication alone was a strong predictor, suggesting that the combined history of different 232 

drug purchases is largely responsible for the predictiveness of the category. However, 233 

several of the most predictive drugs associated with not vaccinating were those used in the 234 

treatment of psychosis-associated disorders, such as phenothiazines (OR 1.07, 1.07 - 1.07) 235 

and novel/atypical antipsychotics (OR 1.07, 1.07-1.07). ADHD medications had the highest 236 
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OR among the individual drugs (1.08, 95% CI 1.07 - 1.09). Memantine, a medication used to 237 

treat symptoms of cognitive impairment such as Alzheimer’s disease, was associated with a 238 

higher non-vaccination rate (OR 1.04 and 95% CI 1.03-1.05). 239 

 240 

Because of comprehensive information on multi-generational familial relationships, we could 241 

study how the vaccination status of a close relative impacts the chances of taking up 242 

vaccination (Extended Data Figure 3). We only considered individuals with relatives in the 243 

study population (see Supplementary Table 3, Data and Methods). 244 

We found that having an unvaccinated mother increases the risk of not being vaccinated 245 

(OR=1.31, 95% CI:1.31-1.32). The risk of not vaccinating was smaller when having an 246 

unvaccinated father  (OR=1.23, 95% CI: 1.22-1.23) or when having any unvaccinated 247 

siblings (OR=1.17, 95% CI: 1.16-1.17).  248 

 249 

We performed a sensitivity analysis to account for individuals not eligible for vaccination due 250 

to non-reported emigration outside Finland. To capture unreported emigration, we excluded 251 

all individuals with no data entries in 2019 (4.0%; see Data and Methods). Overall, we did 252 

not observe differences in predictive performance for most individual predictors as measured 253 

by AUC (Extended Data Figure 4a). However, we observed significant deflation in the ORs 254 

of several rare mother tongues (Extended Data Figure 4b). The OR for speaking another 255 

mother tongue than Finnish or Swedish decreased from 1.27 to 1.15. 256 

A prediction model for COVID-19 vaccination uptake  257 

Combining all the registry-based predictors into a single XGBoost model resulted in good 258 

discrimination (AUC = 0.801, 95% CI: 0.799-0.803 in the test set) but modest calibration. 259 

However, we recalibrated the model using the method from ref. [18] obtaining a good 260 

calibration (Extended Data Figure 5). In the test set, the top 1% of individuals with the 261 

highest predicted probability of not uptaking vaccination (N=6,385) had an observed 262 

vaccination rate of only 18.8% vs 90.3% when considering everyone in the test set (Figure 263 

3a). The XGBoost classifier outperformed a Lasso classifier trained using the same full set of 264 

predictors (AUC=0.778, 95% CI: 0.776-0.780). 265 

 266 

We analyzed the importance of each predictor in the combined XGBoost model by 267 

computing the mean absolute Shapley values of the predictors [19]. A handful of predictors 268 

have a strong contribution to the model, with income, the total number of drug purchases, 269 

age, total duration of received social benefits, and being married among the most important 270 

predictors (Figure 3b). Interestingly, income is a stronger predictor of COVID-19 vaccination 271 

status than age.  272 

 273 
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 274 
 275 

Figure 3. a) Fractions of unvaccinated individuals in the test set as a function of centile bins 276 

of predicted probabilities to not vaccinate from the full XGBoost model. The 99th centile bin  277 

comprises 6,385 individuals that have only an 18.8% (95% CI: 17.9%-19.8%) chance of 278 

vaccinating. The error bars indicate 95% confidence intervals computed using bootstrapping. 279 

The black dashed line indicates the average fraction of unvaccinated individuals in the study 280 

population. b) Mean absolute Shapley values [16] computed for all individual predictors used 281 

in the full XGBoost model. Higher values indicate higher average impact of the predictor in 282 

pushing the model output towards unvaccinated (blue), and vaccinated (red). The top 20 283 

most important predictors are shown for clarity. 284 

Different predictor categories share similar information on 285 

COVID-19 vaccination uptake 286 

 287 

Some of the predictor categories included in this study are often considered to capture 288 

separate information. For example, information on drug purchases should mainly capture 289 

health, while income and job profession should represent important socio-economic factors. 290 

To study how much independent information each predictor category contains, we 291 

considered all possible combinations of predictor categories, and trained a separate Lasso 292 

classifier model for each of the 4,097 combinations. The rationale for this experiment is that, 293 

by testing each possible combination of predictors categories, we can quantify information 294 

relevant to COVID-19 vaccination prediction that is unique to single categories vs what is 295 

shared across categories.  296 

 297 

Figure 4a shows the drop in AUC when removing each predictor category separately from 298 

the combined model. As expected, classification performance decreases the most when 299 

removing the drug purchases history category, leading to a drop in AUC of 1.3%. However, 300 

this decrease is substantially lower than the AUC improvement that this category contributes 301 

on top of age and sex (15.3%), indicating that much of the predictive information from this 302 

category, is captured by other categories present in the combined model.  303 

 304 

We then proceeded to study the impact of removing multiple categories simultaneously on 305 

the prediction of COVID-19 vaccination uptake. This allows us to identify category 306 

combinations that have the largest effect on the model predictions (Figure 4b). For example, 307 

removing 10 out of 12 categories results in only 7.4% AUC decrease (with the most 308 
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predictive model containing two categories, occupation and drug purchases) compared to 309 

the full model with all 12 categories. Taken together, these results indicate that predictive 310 

information is substantially shared across categories and relatively good prediction accuracy 311 

can be achieved even in settings where some of the information used in this study are 312 

missing.  313 

 314 

 315 
Figure 4. a) Drop in AUC (area under receiver-operator characteristics curve, y-axis) when 316 

removing a single category at a time from the full Lasso classifier (including all predictors). 317 

Removing all predictors from a category removes all information unique to the predictors of 318 

that category, meaning that the drop in AUC quantifies the loss in predictive power due to 319 

information unique to the removed category. The lower the AUC here, the higher is the 320 

amount of unique information contained in the category that is useful for predicting COVID-321 

19 vaccination uptake. The black dashed line indicates AUC of the full Lasso model using all 322 

predictor categories. Error bars and the error band correspond to 95% confidence intervals 323 

computed using bootstrapping. b) Drop in AUC (area under receiver-operator characteristics 324 

curve, y-axis) when removing different combinations of predictor categories from the full 325 

Lasso model (full model corresponds to “Number of included categories = 12”). All 326 

combinations of removed categories were tested by training separate Lasso classifiers on 327 

the data including only the specific combination of predictor categories, and the 328 

corresponding AUCs are shown as individual dots. Violin plots show the distribution of AUCs 329 

for each number of removed categories. Individual models discussed in the text are 330 

highlighted and named. The model with 0 removed categories corresponds to a model 331 

trained using the baseline predictors age and sex only. All models include also age and sex 332 

as predictors. Panel 4a shows a detailed view of “Number of included categories = 11”. c) 333 

Pairwise partial Pearson correlation, adjusting for age and sex, between predicted 334 

probabilities of COVID-19 vaccination uptake for each test set sample, obtained from each 335 

category separately (XGBoost classifiers, AUCs for these models shown in Fig. 2a and 336 

Supplementary Table 1). Color indicates the strength of correlation, and the correlation 337 

coefficient is shown on each heatmap cell.  Hierarchical clustering dendrograms of the 338 

partial correlation matrix of model predictions are shown beside the matrix and were used in 339 

ordering the rows and columns. 340 
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 341 

To understand how much predictive information was shared across categories, 342 

independently of age and sex, we computed partial pairwise Pearson correlation between 343 

predicted probabilities obtained from models trained separately in each category (Figure 4c, 344 

same models shown in Figure 2a). We found that COVID-19 vaccination uptake 345 

probabilities predicted using income, education, occupation and social benefits categories 346 

were highly correlated and clustered together (Pearson partial correlation coefficient > 0.25). 347 

We also identified significant correlations between predicted probabilities from socio-348 

economic categories and health-related categories. For example, the correlation between 349 

predicted probabilities from income and drug purchase history categories was 0.22. 350 

Genetic information is a weak predictor of COVID-19 351 

vaccination, but correlates with COVID-19 severity and 352 

behavioral traits 353 

 354 
 355 
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Figure 5. a) Manhattan plot of COVID-19 vaccination uptake from meta-analysis of FinnGen 356 

and Estonian Biobank. Genetic variant must have been tested in both datasets, passed 357 

quality control in both (INFO ≥ 0.8 and MAF ≥ 0.1%) and significant variants must not have 358 

indicated significant heterogeneity (heterogeneity P-value < 0.0056 - P-value corrected for 359 

multiple testing with 9 significant variants). The red horizontal line indicates genome-wide 360 

significance. b) Genetic correlations between COVID-19 vaccination uptake and selected 361 

health and behavioral phenotypes. Error bars represent standard errors. Orange error bars 362 

and point estimates represent Bonferroni-significant genetic correlations (P-value  < 0.002). 363 

The black dashed line indicates 0 genetic correlation. Positive correlation means correlation 364 

with reduced COVID-19 vaccination uptake. BMI = Body Mass Index. 365 

We performed a genome-wide association study of COVID-19 vaccination uptake in 366 

FinnGen (N=273,615) and the Estonian Biobank (N=145,615), restricted to European 367 

ancestry. Effects were consistent across the two studies as evidenced by a genetic 368 

correlation of 0.8 (95% CI: 0.66-0.95). We, therefore, performed a meta-analysis using 369 

METAL [20]. We identified 8 genome-wide significant loci (P-value ≤ 5x10-8) (Figure 5a; 370 

Methods) and, in Supplementary Table 5, we reported the most likely gene linked to each 371 

lead variant by using a machine learning-based prioritization score from Open Targets 372 

Genetics [21,22]. Four out of eight lead variants were associated with anthropometric traits, 373 

such as body fat distribution (Supplementary Table 5). These four variants increased the 374 

likelihood of vaccination while being associated with reduced body fat. We next investigated 375 

the SNP-based heritability of vaccination uptake through LDSC regression [23], finding a low 376 

but significant SNP-based heritability (observed scale h2
SNP = 2.6%, SE = 0.18%, p-val = 377 

1.36x10-47). 378 

  379 

Given the significant heritability, we explored if we could build a polygenic score (PGS) that 380 

is predictive of vaccination uptake. We re-ran the GWAS on 70% of the FinnGen individuals, 381 

meta-analyzed these results with the GWAS conducted in the Estonia Biobank, and used the 382 

results to build a PGS in the remaining 30% of the FinnGen individuals. A model including 383 

age, sex and the PGS reached an AUC of 0.612 (95% CI: 0.601 - 0.623) when predicting 384 

vaccination uptake, significantly higher than the baseline model including only age and sex 385 

(AUC=0.589, 95% CI: 0.578 - 0.600, P-value for improvement=1.72x10-9). PGS predicted 386 

vaccination status better than the pregnancy and long-term care categories, and similarly to 387 

municipality of residence  (Supplementary Table 1). 388 

  389 

We explored the genetic correlations between the GWAS of vaccination uptake and a series 390 

of other health and behavioral information, mostly not available in the nationwide FinRegistry 391 

dataset. Of the 23 phenotypes tested, 11 were significant after multiple hypothesis testing 392 

correction (P-value < 2 x 10-3 (Bonferroni correction for 23 tests)) (Figure 5b). Four 393 

psychiatric disorders - schizophrenia, major depressive disorder, bipolar disorder and 394 

attention deficit hyperactivity disorder - were all positively genetically associated with 395 

reduced vaccination uptake (rg between 0.18 and 0.43), consistent with the epidemiological 396 

results (Figure 2c). Not vaccinating was also associated with a higher genetic predisposition 397 

to loneliness, risky behavior and smoking (rg between 0.25  and 0.33). Interestingly, we 398 

found a negative correlation (rg= -0.34, 95% CI: -0.40 - -0.28) with participation in 399 

subsequent questionnaires of UK Biobank (a proxy for engagement in scientific research) 400 

(Supplementary Table 6). Genetic correlations were comparable when COVID-19 cases 401 

were included in the vaccination uptake phenotype (Extended Data Figure 6; only for 402 

FinnGen study). 403 
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  404 

To test if individuals at higher genetic risk for COVID-19 susceptibility and severity were 405 

more or less likely to vaccinate, we built PGS for COVID-19 severity and susceptibility using 406 

Release 7 from the COVID-19 host Genetic initiative [15], which includes mostly studies 407 

collected before the start of the vaccination campaigns. Individuals with higher PGS for 408 

COVID-19 severity and susceptibility were less likely to receive the vaccine. However, the 409 

association was modest (severity: OR = 1.03, 95%CI: 1.02 - 1.05; susceptibility: OR = 1.02, 410 

95%CI: 1.01 - 1.04 per 1 standard deviation in PGS) partially due to the PGS for COVID-19 411 

being a weak predictor of COVID-19. Mendelian randomization analysis indicates a lack of 412 

causal relationship between COVID-19 severity and reduced vaccination uptake 413 

(Supplementary Table 9). 414 

Discussion 415 

The digitalization, harmonization, and accessibility of information routinely collected within 416 

healthcare and by governmental agencies opens the possibility to inform policymakers at an 417 

unprecedented pace and breadth. The comprehensive collection of nationwide registers 418 

combined with biobank data and empowered by machine learning approaches allowed us to 419 

extensively compare the impact that health-related, socioeconomic, familial, genetics and 420 

demographic information have on one the most pressing public health issues: participation in 421 

COVID-19 vaccination programs. 422 

 423 

Even in the relatively equal Finnish society, socio-economic aspects and, in particular, labor 424 

income in 2019, or lack thereof, were the strongest predictors of uptaking the first dose of 425 

COVID-19 vaccine. This observation could also be partly explained by people in lower 426 

income occupations having more limited access to vaccines due to e.g. stricter working 427 

schedules. Nonetheless, information about job professions was a weaker predictor of 428 

vaccination uptake than income. Lack of income in 2019, the strongest predictor, captures a 429 

wide range of socio-economic factors including unemployment, severe illness, and 430 

retirement.  431 

 432 

Several disease conditions were associated with vaccination uptake. Mental health was the 433 

most important category: especially psychosis-related conditions and diagnoses related to 434 

substance use disorders were associated with lower vaccination uptake. Associations with 435 

individual drug purchases supported these observations. People with mental health 436 

disorders are at increased risk of (severe) COVID-19, but even more notably, COVID-19 can 437 

cause deterioration in mental health, reduction in neuropsychiatric functioning, and even 438 

neurodegeneration [24]. As those suffering from mental health disorders appear to be at 439 

higher risk of non-vaccination, efforts to increase their vaccination uptake could prove 440 

especially effective in reducing both the acute infections and the multifactorial burden of long 441 

COVID at an individual and societal level.  442 

 443 

Interestingly, drugs used in the management of Alzheimer’s and Parkinson’s diseases were 444 

associated with lower vaccination rates. People with these conditions are at higher risk for 445 

severe disease from COVID-19 [25], likely have reduced functioning in everyday life and can 446 

also have reduced ability to make informed decisions about their vaccination. Other, more 447 
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common diseases were associated with reduced vaccination uptake, likely by capturing 448 

underlying socio-economic factors.  449 

 450 

Previous studies have shown that the experience of a family member with COVID-19 451 

increased acceptance of the COVID-19 vaccine [26]. In line with this observation, we found 452 

that vaccination status correlates within families. For example, having an unvaccinated 453 

mother increased the risk of not being vaccinated (OR=1.31, 95% CI:1.31-1.32). The 454 

observation that family members influence vaccination uptake with different magnitudes 455 

indicates that other factors, beyond those shared within families (e.g. socio-economic 456 

status), impact vaccination status. 457 

 458 

History of medication purchases was the strongest predictor category together with income, 459 

despite none of the individual drugs being a very strong predictor alone. We hypothesize that 460 

patterns of drug purchases are a relatively good proxy for both health and socio-economic 461 

aspects. In light of this observation, we performed extensive analyses to understand if 462 

different predictor categories are capturing overlapping information. We found a large 463 

overlap and redundancy in the predictive properties of different categories, some of which 464 

are traditionally considered independently (e.g. health and socio-economic indicators). This 465 

observation is important for two reasons. First, it blurs the distinction between health and 466 

socio-economic information. Contamination between these two categories has 467 

consequences for law and ethics scholars. For example, informed consents in biomedical 468 

studies are often bound to health-related research, while we show that socio-economic and 469 

health information can capture similar underlying aspects in predicting vaccination uptake. 470 

Second, it questions the feasibility of excluding information perceived as sensitive from 471 

machine learning-based prediction models. For example, citizens might be against using 472 

income to identify individuals at higher risk of not vaccinating but be more inclined to accept 473 

targeting individuals based on certain previous health conditions. We showed that predicted 474 

probabilities of vaccination uptake obtained using drug purchase history are correlated with 475 

predictions obtained using income, questioning whether drug purchase information should 476 

be used in a hypothetical scenario where income cannot be used as a predictor.  477 

 478 

We showed that by including all the ~3,000 predictors we could train a well-predictive model 479 

of COVID-19 vaccination uptake. For example, such a model can be used to identify 1% of 480 

the population with an average vaccination rate of approximately 19%, which is almost 5 481 

times lower than the national average. A simpler prediction model can likely be constructed 482 

without a large loss of predictive power, using few socio-economic variables.  483 

 484 

GWASs have been conducted on thousands of health and behavioral traits and many 485 

behavioral traits are affected by genetic factors [27]. Importantly, both COVID-19 486 

susceptibility and severity have an important genetic component [15]. This, together with the 487 

observation that many of the registry-based predictors identified in this study have been 488 

shown to have a strong genetic risk component (e.g. mental health disorders) led us to study 489 

genetic predictors of COVID-19 vaccination uptake. Genetic information is measured from 490 

many individuals (up to 10% of the Finnish population by 2023), has low measurement error, 491 

is stable through life, and is not impacted by reverse causation. For the above-listed 492 

reasons, statistical genetics approaches can be used to identify correlates of vaccination 493 

uptake that are not easily measured nationwide. Such correlates can be easily tested for 494 

replication in datasets from different countries. We demonstrate this by performing a meta-495 
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analysis on FinnGen and Estonian Biobank study participants showing that genetic 496 

correlations between vaccination uptake and socioeconomic traits or psychiatric disorders 497 

persist across countries. Interestingly, we found a significant genetic correlation with 498 

participating in optional questionnaires within the UK Biobank, supporting a shared 499 

underlying effect between participating in scientific studies and propensity to vaccination. We 500 

also found that genetic information summarized in PGS are weak, but not insignificant, 501 

predictors of COVID-19 vaccination. Finally, our results indicate that individuals at higher 502 

genetic risk of severe COVID-19 are less likely to get vaccinated but that this association is 503 

unlikely causal and more likely due to shared risk factors captured by the PGS.  504 

 505 

Our approach has several limitations. First, generalizability outside Finland and to non-506 

European ancestries is unclear and replication in other countries is needed to understand 507 

the generalizability of our findings across different populations. Previous studies using 508 

nationwide registers have, however,  shown similar risk factors for severe COVID-19 as in 509 

other countries [28,29]. Second, information about deaths and emigration from Finland 510 

during the year 2021 was not available to us. Thus, some individuals might not have taken 511 

the COVID-19 vaccination because they had passed away or had emigrated during the 512 

follow-up period. We restricted the analyses to individuals younger than 80 years old to 513 

reduce the number of individuals expected to die in 2021. Third, due to the scope and 514 

complexity of the included predictors, we made some simplifying decisions in preprocessing 515 

the nationwide registry data. Thus, the predictors included in the analyses are subject to 516 

some simplifications and limitations. We considered disease diagnoses and drug purchases 517 

over the lifespan of the individuals in the study population and condensed this information 518 

into binary yes/no predictors. Missing values for many socio-economic variables were 519 

considered by including separate predictors for missingness, but there might be multiple 520 

reasons for missing records. Better modeling of missing data and age of diagnosis are likely 521 

to further increase the predictive performance of the models presented in this study. Not 522 

everyone reports emigrating outside Finland to the responsible authorities. To capture this 523 

potential bias, we performed a sensitivity analysis removing individuals with no data entries 524 

in the year 2019 and showed, overall, no significant changes in the AUCs of individual 525 

predictors.  526 

 527 

In conclusion, by performing a rapid nationwide examination of predictors of COVID-19 528 

vaccination uptake across different life domains, we have highlighted the importance of 529 

harmonized and accessible registry and biobank-based information. We have shown that 530 

COVID-19 vaccination uptake is multifactorial and that individuals at higher risk of suffering 531 

the worst consequences of COVID-19 are also those less likely to uptake COVID-19 532 

vaccination.  These results provide potential avenues for targeted interventions supporting 533 

COVID-19 and possibly other national immunization programs. 534 

Data and Methods 535 

Study population 536 

The FinRegistry dataset (https://www.finregistry.fi/), used in the phenotypic analyses, 537 

includes 7,166,416 individuals of whom 5,339,804 (74.51%) are index individuals (every 538 
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resident of Finland alive on January 1st 2010). The remaining 1,826,612 individuals are 539 

relatives (offspring, parents, siblings) and spouses of index individuals who are not index 540 

individuals themselves. 541 

 542 

FinnGen [16] and the Estonian Biobank (EstBB) [30] were used to explore the role of 543 

genetics in COVID-19 vaccination status. The FinnGen project combines multiple hospital 544 

biobanks and digital health registries. The data release used for this analysis (Release 9) 545 

has genotype data available for 377,277 individuals of Finnish ancestry. The Estonian 546 

Biobank is a volunteer-based sample with continually updated national health registry 547 

linkage and genotype data on 202,910 individuals.    548 

 549 

To restrict the study population to individuals who had had a fair opportunity of receiving the 550 

first dose of a COVID-19 vaccination by the end of October 2021, we excluded the following 551 

individuals: 552 

 553 

1) Individuals who had died or emigrated before 31.12.2020 (death statistics for year 554 

2021 in Finland were not available). 555 

2) Individuals who were less than 30 years old at 31.10.2021. 556 

3) Individuals who were older than 80 years old at 31.10.2021. 557 

4) Individuals who had a laboratory-confirmed COVID-19 diagnosis prior to 31.10.2021. 558 

5) Individuals living in a municipality called Askola. 559 

 560 

For the genetic analyses conducted in FinnGen and Estonian Biobank, death or emigration 561 

was limited to 31.12.2019 as statistics beyond this date were unavailable for FinnGen. 562 

Residents of Askola were excluded, as it was the only municipality where the vaccination 563 

coverage differed radically from any other Finnish municipality (see Extended Data Figure 564 

1). After these exclusion criteria, the final FinRegistry study population contains 3,192,505 565 

individuals, the FinnGen study population includes 273,615 individuals.  566 

 567 

The study outcome, having received at least one dose of a COVID-19 vaccine by 568 

31.10.2021 was defined for the Finnish data using the official registry-based definition by the 569 

National Institute for Health and Welfare :  570 

 571 

1) Identifying all participants with a record for the ATC code J07BX03 (covid 572 

vaccinations). 573 

2) Identifying all participants with a record corresponding to a relevant drug name. The 574 

criteria included all records with a drug definition or trade name including: “COM”, 575 

“COV”, “CVID”, “CO19”,”COR”,”KOR”,”PFI”,”MOD”,”AST”,”AZ”,”BION”,”SPIKE”. From 576 

the set of records identified using these criteria, we excluded ambiguous records 577 

containing: “TIC”, ”ZOSTA”, ”NEULA”, ”VESIROK”, ”DUKORAL”, ”TUHKA”, 578 

”COVAC”, ”VAZ”, ”ZAST”, ”PASTEUR”, “FLUR”, “LASTEN”, “”KURKKU”, “SUSTA”. 579 

3) Records were only considered after 01.10.2020.   580 

 581 

In the Estonian Biobank, the study outcome of having received at least one dose of a 582 

COVID-19 vaccine was defined based on linked data from the national Health and Welfare 583 

Information Systems Centre (TEHIK). Health care providers in Estonia have to submit all 584 

vaccination notifications to TEHIK, which is also the institution responsible for creating 585 

vaccination certificates. The database contains the following information: name of vaccine, 586 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.11.22282213doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.11.22282213
http://creativecommons.org/licenses/by/4.0/


anatomical therapeutic chemical (ATC) code, amount (mcg), dosing and schedule. We 587 

included all individuals with at least one record of a COVID-19 vaccine (ATC code J07BX03) 588 

between 10 October 2020 and 31 October 2021 as cases, and others as controls. 589 

 590 

Selection and definition of the phenotypic predictors 591 

The FinRegistry study contains a comprehensive selection of data modalities ranging from 592 

disease history to drug purchase history and detailed socioeconomic variables, as illustrated 593 

in Figure 1a. We performed an initial variable selection by manually curating variables of 594 

interest across the different registries. Categorical variables were dichotomized into indicator 595 

variables. Individual predictors, and their manually curated categories are listed in  596 

Supplementary Tables 2-3. For each predictor, excluding disease occurrences and drug 597 

purchases, we also included a binary predictor indicating if the value for this predictor was 598 

missing or not. For disease diagnoses and drug purchases, not having a record of the 599 

diagnosis/purchase was interpreted as absence of the diagnoses/purchase. Taken together, 600 

we defined in total 2,997 predictors (including age and sex). Prevalence of the predictors 601 

within the study population was not assessed beforehand. To preserve the privacy of 602 

individuals in the study population, FinRegistry has a policy that allows exporting aggregated 603 

data only when the aggregated data is based on 5 or more individuals. Some of the very rare 604 

predictors had fewer than this number of individuals either among vaccinated or 605 

unvaccinated, and thus individual predictor level results for these predictors could not be 606 

exported from the secure analysis environment. In total, 105 of the defined predictors were 607 

excluded from the individual predictor level results due to this, leaving us with 2,892 608 

predictors (including age and sex). Preprocessing of different categories of phenotypic 609 

predictors is discussed in more detail below, each category at a time. 610 

 611 

Drug purchases 612 

Information about drug purchases was retrieved from the Social Insurance Institution of 613 

Finland, Kela, which is a government agency that provides basic economic security by 614 

financial support for Finnish residents and many Finns living abroad. One of the social 615 

security benefits provided by Kela is reimbursements of part of the costs of medicines that 616 

are prescribed for the treatment of an illness. This data contains nation-wide information 617 

about prescribed drugs that are purchased from pharmacies. It does not include drugs 618 

delivered in hospitals or purchases of drugs without a prescription. This register exists from 619 

1995. Drug purchase information was coded into binary predictors describing whether an 620 

individual has ever purchased the drug during 1995-2019. Similar drugs were collapsed into 621 

one predictor by considering only the first five digits of the ATC-codes. 622 

Occupation 623 

Information about job occupation was retrieved from Statistics Finland, which is a Finnish 624 

public authority that collects, combines, and stores data on a wide range of topics. 625 

Occupation is available for employed people at the end of the statistical reference year. The 626 

information exists from years 1970, 1975, 1980, 1990, 1993, 1995, 2000, and 2004 on an 627 

annual basis. We defined occupation as the latest reported (not unknown) occupation before 628 
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31.12.2019. Occupation information was coded into 11 binary predictors, according to the 629 

highest-level categorization in the Statistics Finland data.  630 

Disease history 631 

Disease history was captured using two sets of data, FinnGen clinical endpoints and Finnish 632 

National Infectious Diseases Register. The clinical endpoints have been originally defined for 633 

the FinnGen project [16] by a group of clinical experts. The clinical endpoints were 634 

predominantly generated by combining ICD8, ICD9 and ICD10 codes retrieved from the 635 

Finnish Institute of Health and Welfare registries (hospital discharge, cause of death, and 636 

cancer registers). In addition, for a small proportion of clinical endpoints, information about 637 

drug purchases (Kela), drug reimbursements (Kela), surgical procedures (Finnish Institute of 638 

Health and Welfare), and primary health care ICD codes (Finnish Institute of Health and 639 

Welfare) were utilized. Clinical endpoints were filtered by excluding endpoints with less than 640 

1,000 individuals in the FinRegistry population, and redundant and highly correlated clinical 641 

endpoints as defined by FinnGen. Clinical endpoints defined solely based on ATC codes 642 

were also excluded as they capture the same information as drug purchases. For more 643 

information about FinnGen clinical endpoints and their definitions see 644 

https://www.finngen.fi/sites/default/files/inline-files/FinnGen_Endpoints_Elisa%20Lahtela.pdf 645 

and https://risteys.finregistry.fi/. Clinical endpoints were collected between 1.1.1969 and 646 

31.12.2019. 647 

 648 

The Finnish National Infectious Diseases Register, retrieved from Finnish Institute of Health 649 

and Welfare, is based on the Communicable Diseases Act and Decree that requires medical 650 

doctors and laboratories to report cases of certain infectious diseases. The data exists from 651 

years 1995-2021. The 10 most frequently reported infectious diseases were included as 652 

binary variables (having ever had the diagnosis, prior to 31.12.2019), excluding COVID-19. 653 

COVID-19 diagnoses (up until the end of the study period 31.10.2021) from the infectious 654 

diseases register were used to exclude people from the study population, as people with a 655 

COVID-19 diagnosis had different eligibility criteria for vaccination as the rest of the 656 

population. In total, the Diseases category includes 1,959 binary predictors that describe if 657 

the individual has ever had the diagnosis. 658 

Income 659 

Information about income was retrieved from Finnish pension registry. The income covers 660 

salary from labor, not income from benefits or capital income. Income from the year 2019 661 

was used as a continuous predictor. Year 2019 was selected as it was the latest full year 662 

before the outbreak of the COVID-19 pandemic in Finland. Individuals with missing income 663 

information from 2019 (N=1,173,047) were treated as missing data and were not included in 664 

computing the income percentiles in Figure 2c. Missing income information was treated as a 665 

separate binary predictor. There are multiple reasons why income information might be 666 

missing including unemployment, severe illness, and retirement.  667 

 668 

Education 669 

Information about education level and field of education were retrieved from Statistics 670 

Finland as the highest completed degree by statistical year. The data exist for years 1970, 671 
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1975, 1985, and for every year between 1987 and 2018. Education level was defined as the 672 

highest completed degree by the end of 2018, and the field of education used was the field 673 

corresponding to the highest completed degree. Education level was coded into 10 binary 674 

predictors, according to the highest-level categorization in the Statistics Finland data, with 675 

the exception of adding one predictor corresponding to possibly ongoing education. Each 676 

individual aged between 30-35 was assigned to this category based on the median age of 677 

receiving doctoral degree in our dataset. Correspondingly, the field of education was set to 678 

“education possibly ongoing” for everyone aged between 30-35. In total, the field of 679 

education was coded into 13 binary predictors.  680 

 681 

Marital status 682 

Information of the marital status in the study population was retrieved from the Finnish 683 

Population Registry from the Digital and Population Data Services Agency. The data exists 684 

between 1960 and 2019. Marital status was coded into 9 binary predictors using the latest 685 

known marital status. In addition, separate predictors of ever being married or ever divorced 686 

were defined based on the same original data. 687 

Social benefits 688 

The amount and duration of social benefits received were retrieved from the Finnish Register 689 

of Social Assistance. This register covers years between 1985 and 2019, and includes social 690 

benefits received by social service clients who, due to lack or insufficiency of income or 691 

social security benefits, have claimed social assistance. Social security benefits are not 692 

included in the “social benefits” category in this study. 693 

 694 

The social benefits data used in this study is a combination of recipients of primary social 695 

assistance, preventive social assistance and rehabilitative work benefit. The social benefits 696 

category includes four predictors: total actual income support in euros received by an 697 

individual between 1985-2019, total number of months an individual has received actual 698 

income support between that same interval, total number of months an individual has 699 

received any income support, as well as whether an individual has ever received social 700 

assistance. 701 

Long-term care 702 

Care Register for Social Welfare from Finnish Institute of Health and Welfare was used to 703 

obtain information about long-term care periods. This register contains data on activities and 704 

clients of institutional care and residential services of social welfare, and covers years 705 

between 1995 and 2019. The register contains comprehensive data from individuals who 706 

have been clients in: private and/or public retirement homes, elderly 24-hour residential 707 

accommodation, institutional care and assisted living for the intellectually disabled, 24-hour 708 

residential housing for severely physically or intellectually disabled, treatment for substance 709 

abuse, and rehabilitation facilities, or non-round-the-clock housing services. 710 

 711 

In this study, we used this data to create two sets of binary predictors. The first set contains 712 

20 different predictors that detail the type of care given to an individual (for example living in 713 

an elderly home or rehabilitation facility). The second set contains 29 different predictors that 714 
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describe the main reason for entering the treatment. In addition, a predictor was created 715 

describing whether an individual had any periods of long-term care between 1995-2019 and 716 

another predictor to sum up the total number of treatment days within the same period. 717 

Place of residence 718 

The latest known place of residence was extracted from the Finnish Population Registry 719 

(Digital and population data services agency) on a municipality level. All individuals living in 720 

municipality Askola were discarded due to the vaccination coverage in Askola being a heavy 721 

outlier. Thus, place of residence was encoded as 306 binary predictors, including a predictor 722 

describing whether the place of residence is unknown. 723 

Mother tongue 724 

Information about mother tongue was obtained from the Finnish Population Registry from the 725 

Digital and Population Data Services Agency. This information is available between 1960-726 

2019. Each mother tongue was considered as a separate binary predictor. Additionally, a 727 

predictor summarizing all other mother tongues than Finnish and Swedish was created. 728 

 729 

Pregnancy related 730 

Information about pregnancy related variables was obtained from the Medical Birth Register 731 

from Finnish Institute of Health and Welfare. The information is available for all births given 732 

in Finland between 1987 and 2019. We selected manually a set of 47 predictors from the 733 

Medical Birth Register. It is worth noticing that the pregnancy related information was only 734 

used for women who have been pregnant.  735 

Vaccinated relatives 736 

Information about COVID-19 vaccination status was obtained by combining the vaccination 737 

registry with information about familial relationships within the study population retrieved 738 

from the Finnish Population Registry from the Digital and Population Data Services Agency. 739 

The familial information is available between 1964-2019. 740 

 741 

For each individual in the study population, we created separate binary predictors describing 742 

the vaccination status of their mother and father. If the mother/father was not included in the 743 

study population, the value of the corresponding predictor was marked as missing. There are 744 

several reasons why a person's relative would not be included in the study population. They 745 

can be too young (<30 yo), too old (>80 yo), dead, or emigrated. 746 

 747 

Additionally, we created a binary predictor describing the vaccination status of possible 748 

siblings of each individual in the study population. The value of this predictor was coded as 0 749 

if the individual had siblings and any of them was vaccinated, as 1 if the individual had 750 

siblings and none of them was vaccinated, and as missing if the individual had no siblings or 751 

information about possible siblings’ vaccination status was not available.  752 

. 753 
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Train/test split, imputation of missing values 754 

The study population was divided at random into training and test sets. Training set contains 755 

80% of the study population. Only the training set was used in model training and fitting. Test 756 

set was reserved for computing the performance of the models. Classification performance 757 

was measured using Area Under ROC-curve (AUC), and uncertainty of the obtained AUC 758 

values was estimated using bootstrapping by drawing with replacement 2,000 samples from 759 

the test set, and computing the 95% confidence intervals. For speeding up the training of 760 

Lasso and XGBoost classifiers, the training set was downsampled to include all of the non-761 

vaccinated (308,594 individuals) and 4 randomly sampled vaccinated individuals per each 762 

non-vaccinated. 763 

 764 

Each binary predictor category (except for drug purchases and disease diagnoses, as 765 

described above) includes a binary predictor that encodes whether the value was missing in 766 

the registries. For example, education level is encoded with 9 binary predictors describing 767 

the education levels and one binary predictor indicating whether information about education 768 

level was missing. In the logistic regression analysis, individuals with missing values were 769 

discarded from the analysis. This corresponds to a complete case analysis. The number of 770 

missing values is shown for each predictor in Supplementary Tables 2-3. In the Lasso 771 

analyses, imputation was used to keep the data set sizes constant across the compared 772 

predictors. Imputation was conducted by drawing new values for the missing values with 773 

replacement from the distribution of the non-missing values of the same predictor, assuming 774 

that the values are missing at random. In XGBoost analyses, missing values were input to 775 

the algorithm as is, letting XGBoost learn the rules for handling missing values. 776 

Logistic regression  777 

Logistic regression adjusted for age and sex was used to determine association of each 778 

binary predictor with vaccination status (1 = not vaccinated, 0 = vaccinated). For each binary 779 

predictor, the following model was fit on the training split of the data using the function 780 

bigglm from library biglm (version 0.9.2.1): 781 

 782 

𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠 ~ 𝑎𝑔𝑒 +  𝑠𝑒𝑥 +  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟. 783 

 784 

The reference category for the different predictors is detailed in the Supplementary Table 8. 785 

The p-values of the logistic regression model coefficients were corrected for multiple 786 

hypothesis testing using the Benjamini-Hochberg procedure [31], implemented in the Python 787 

package statsmodels (version 0.12.2) [32]. 788 

XGBoost classifiers 789 

XGBoost (eXtreme Gradient Boosting, version 1.5.0) [17] classifiers were trained for each 790 

predictor category and for the full set of predictors to understand how much learning 791 

interactions and non-linearities can boost the vaccination status predictions. All models were 792 

trained on the training split of the data using 5-fold cross-validation to optimize the model 793 

hyperparameters using Bayesian hyperparameter optimization (BayesSearchCV function 794 

from scikit-optimize, version 0.9.0) over the range of possible hyperparameter values 795 
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detailed in Supplementary Table 4, sampling 200 hyperparameter combinations for each 796 

model. Balanced class weighting was used. 797 

 798 

1) Separate XGBoost classifiers for each predictor category 799 

To determine the predictive performances of the predictor categories, an XGBoost classifier 800 

was fitted containing all the predictors from the specific category (see Supplementary 801 

Tables 2-3 for which predictors are included into which category). In addition, age and sex 802 

were used as predictors in each model, and a separate baseline model including age and 803 

sex only was trained to serve as a benchmark. Results from these XGBoost models are 804 

shown in Figures 2a and 4c, and the AUCs are listed in Supplementary Table 1.  805 

2) XGBoost classifier trained with the full set of predictors 806 

An XGBoost model was trained using the full set of 2,997 predictors similarly as the 807 

individual-category models described above. TreeExplainer-method from the SHAP library 808 

[19] was used to interpret the importances of individual predictors of the full XGBoost model 809 

in terms of Shapley values. Shapley values were computed averaging over randomly chosen 810 

training samples, covering 5% of the whole training set. We used the interventional feature 811 

perturbations with a random sample of 100 individuals from the training set as the 812 

background data. The results from this model are shown in Figure 3. Due to undersampling 813 

the vaccinated individuals and using class weights during training, the full XGBoost model is 814 

not well calibrated. We used the method proposed in [18] to show that the model can be 815 

recalibrated to predict probabilities that correspond well to the actual observed probabilities. 816 

Lasso classifiers 817 

Lasso classifiers were trained in three slightly different settings: 1) separate Lasso classifiers 818 

for each predictor, 2) separate Lasso classifiers for each combination of predictor categories 819 

and 3) Lasso classifiers trained with the full set of predictors. All models were trained on the 820 

training split of the data using 5-fold cross-validation to optimize the regularization strength. 821 

Models were fitted with the cv.glmnet function from the glmnet R package (version 4.1.1) 822 

[33] with the default parameter values. Balanced class weighting was used. We separately 823 

described the three different settings for training Lasso classifiers in the following. 824 

1) Separate Lasso classifiers for each predictor 825 

To determine the predictive power of individual predictors, a Lasso logistic regression model 826 

was fitted for each predictor including age and sex. For each predictor, the following model 827 

was fit: 828 

 829 

𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠 ~ 𝑎𝑔𝑒 +  𝑠𝑒𝑥 +  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟, 830 

 831 

The results from these analyses were used in Figure 2b, and the full results are listed in 832 

Supplementary Table 2. 833 

 834 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2022.11.11.22282213doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.11.22282213
http://creativecommons.org/licenses/by/4.0/


2) Separate Lasso classifiers for each combination of predictor 835 

categories 836 

To quantify the importance of individual predictor categories in forecasting the vaccination 837 

status, additional Lasso classifier models were trained with systematically testing each 838 

possible combination of the 12 predictor categories. Not including one predictor category in 839 

the model removes all information contained only in this predictor from the training data 840 

(notice that other predictor categories can partly, or even completely contain the same 841 

information that the removed category). For example, excluding all predictors in the 842 

Occupation category removes from the training set all information that cannot be explained 843 

by any other predictor category. Due to computational complexity of this experiment, 844 

requiring training of 4,095 separate models, Lasso was used here instead of the more 845 

computationally expensive XGBoost. 846 

 847 

To determine the predictive performances of each combination of predictor categories, a 848 

Lasso logistic regression model was fitted containing all the predictors from the specific 849 

combination of categories. In addition, age and sex were used as predictors in each model. 850 

Given a set C containing all the predictors in the specific combination, the fitted model is 851 

 852 

𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠 ~ 𝑎𝑔𝑒 +  𝑠𝑒𝑥 + ∑𝑖∈𝐶  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖, 853 

 854 

where the index i runs over all predictors in category C. The results from these analyses 855 

were used in Figures 4a and 4b.  856 

3) Lasso classifiers trained with the full set of predictors 857 

To determine the overall predictive performance across all predictors, we trained Lasso 858 

logistic regression models also using the full set of 2,997 predictors: 859 

 860 

𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠 ~ 𝑎𝑔𝑒 +  𝑠𝑒𝑥 + ∑𝑖  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖, 861 

 862 

where the index i now runs through all predictors.  The results from these analyses were 863 

used only for comparison with XGBoost, which was chosen as the primary method to 864 

calculate the combined prediction model. 865 

Sensitivity analysis removing individuals with no data entries in 866 

the year 2019 867 

As a sensitivity analysis, we removed all individuals with no data entries in the year 2019 868 

and re-run the Lasso and the logistic regression analyses. Specifically, we removed each 869 

individual with no disease diagnoses, and no drug purchases, and no social benefits, and no 870 

long-term care entries, and no birth register entries and with zero income. This ended up 871 

removing 129,089 out of the total 3,192,505 individuals in the study population, indicating 872 

that we have reliable follow-up for a large majority of the study population. We considered 873 

only these data sources, because other data sources repeat the entry from the previous year 874 

if there is no new entry for the current year. Individuals with no data entries in the year 2019 875 
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were removed from the training and test sets, and otherwise the same train/test split was 876 

used. The results from this analysis are shown in Extended Data Figure 4. 877 

Calculation of partial correlations between machine learning 878 

model predictions, and clustering of predictions 879 

To compute the similarity between the predicted probabilities for COVID-19 vaccination 880 

uptake obtained from models trained for each predictor category, we calculated, in the test 881 

set, partial Pearson correlations between predicted probabilities from each category and 882 

visualized these as a clustered heatmap (Figure 4c). To remove the correlation between 883 

predicted probabilities which is explained by the fact that age and sex are included in each 884 

category,  we used the partial_corr function from Python library pingouin (version 0.5.2) [34], 885 

using default parameters. Clustering of the partial correlation coefficient matrix was 886 

computed and the heatmap plotted using the clustermap function from Python library 887 

seaborn (version 0.11.2) [35], with the default parameters (method='average', 888 

metric='euclidean'). 889 

 890 

Analysis of genetic predictors 891 

 892 

We constructed the same vaccination phenotype used for FinRegistry in both FinnGen and 893 

Estonia biobank, with the exception that deaths were excluded until 31.12.2019 as data was 894 

not available over the full time period (Total: Ncases=45,202, Ncontrols=374,178; FinnGen: 895 

Ncases=19,338, Ncontrols=254,427; EstBB: Ncases=25,864, Ncontrols=119,751). GWAS was 896 

performed using REGENIE v2.2.4 [36] for FinnGen and SAIGE v1.0.7 [37] for Estonian 897 

Biobank (Supplementary Methods). To test suitability for meta-analysis, genetic 898 

correlations were performed using Linkage Disequilibrium Score Regression (LDSC) and 899 

hapmap single nucleotide polymorphisms (SNPs) [23]. Quality control was performed on 900 

each set of summary statistics from FinnGen and Estonian Biobank, restricting SNPs to 901 

have INFO score ≧ 0.8 and minor allele frequency (MAF) ≧ 0.1%. Meta-analysis was 902 

performed using METAL [20]. Genetic correlations with 23 phenotypes - including 903 

educational attainment, psychiatric disorders, physical diseases (including COVID 904 

susceptibility and severity), anthropometric traits, personality traits and general lifestyle 905 

factors - were calculated using Linkage Disequilibrium Score Regression (LDSC) [23] (See 906 

Supplementary Table 3 for a list of summary statistics used for each phenotype).   907 

 908 

Polygenic Scores (PGS) for vaccination status were computed using PRS-CS [38]. To 909 

remove sample overlap, prior to meta-analysis with the EstBB, we first performed GWAS in 910 

a random 70% of the FinnGen study (Ncases = 13,555, Ncontrols = 178,081). Association testing 911 

was then restricted to the remaining 30%. We trained a logistic regression model of COVID-912 

19 vaccination where the predictors were the vaccination PGS, age and sex by training a 913 

regression in 50% of the test set and calculated AUC in the remaining 50%. PGSs for 914 

COVID-19 severity and susceptibility were calculated using the same method, but 915 

association with COVID-19 vaccination uptake was performed in the full sample due to the 916 

lack of sample overlap. COVID-19 Host Genetic Initiative with FinnGen and 23andMe 917 
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excluded (COVID severity: Ncases = 44,549, Ncontrols = 2,018,071; COVID susceptibility: Ncases 918 

= 155,026, Ncontrols = 2,445,292) were used as summary statistics to calculate PGS [15]. 919 

 920 

To understand the impact of removing COVID cases on our results, we repeated all 921 

analyses including COVID cases within the FinnGen sample.  922 

 923 

To test the causal effect of COVID-19 severity on vaccination status, we used Mendelian 924 

Randomization [39]. MRBase was used to run two sample mendelian randomization [40]. 925 

For the exposure, we selected release 7 of the COVID-19 severity summary statistics with 926 

23andMe and FinnGen samples excluded [15] whereas for the outcome, we selected the 927 

summary statistics for vaccination status from the FinnGen sample only as to prevent 928 

sample overlap. 929 
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 985 

The Finnish biobank data can be accessed through the Fingenious® services 986 
(https://site.fingenious.fi/en/) managed by FINBB. 987 
 988 

Summary statistics of the COVID-19 vaccination uptake GWAS will be made available at the 989 

GWAS Catalog upon publication. 990 
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https://github.com/dsgelab/COVID-19-vaccination-public. 993 
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 1142 

 1143 

 1144 

 1145 

Extended Data Figures 1146 

 1147 

 1148 
Extended Data Figure 1. Covid-19 1st dose vaccination coverage in the study population in 1149 

each Finnish municipality. Residents of Askola (highlighted with red and annotated) were 1150 

excluded from the study as the vaccination coverage in Askola (2,948 residents in the study 1151 

population) seemed artificially low compared to all other municipalities and is likely due to 1152 

misreporting. 1153 
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 1155 
Extended Data Figure 2. Violin plots describing the distributions of adjusted odds ratios 1156 

(OR) (adjusted for age and sex, see Methods) for not uptaking the COVID-19 vaccination 1157 

separately for each of the predictor categories. See Supplementary Table 3 for a full list of 1158 

ORs for the individual predictors. 1159 

 1160 

 1161 

 1162 
Extended Data Figure 3. Adjusted (for age and sex, see Methods) odds ratios (OR) 1163 

describing the risk of not uptaking the COVID-19 vaccination when either a) mother, b) 1164 

father, or c) any of their siblings is unvaccinated (for the entire follow-up period of 1.1.2021-1165 

31.10.2021). 1166 
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 1168 
Extended Data Figure 4. Sensitivity analysis removing all individuals with no data entries in 1169 

the year 2019 from the study population (in total 129,089 such individuals, see Data and 1170 

Methods for details). The dots are colored by the predictor category. Error bars correspond 1171 

to 95% confidence intervals computed using bootstrapping. a) Area under receiver-operator 1172 

characteristics curve (AUC) using the full study population (x-axis) plotted against the AUC 1173 

using the study population with individuals with no data in the year 2019 removed (y-axis) 1174 

from Lasso classifier models trained separately for each individual predictor (including also 1175 

age and sex as predictors in each model). Models were trained separately using training 1176 

data with and without individuals with no data entries in the year 2019. AUCs were computed 1177 

on a separate unseen test set. No significant changes in AUC were observed for any 1178 

predictor. b) Odds ratios (OR) using the full study population (x-axis) plotted against the ORs 1179 

using the study population with individuals with no data in the year 2019 removed (y-axis) 1180 

from logistic regression models trained separately for each individual predictor, adjusting for 1181 
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age and sex. Significant drop in OR when removing individuals with no data in the year 2019 1182 

occur mostly for relatively rare mother tongues (some highlighted with labels). 1183 

 1184 

 1185 

 1186 
Extended Data Figure 5. Calibration curves for the full XGBoost (all predictors) model 1187 

predicting COVID-19 vaccination status before (blue) and after (orange) recalibration (see 1188 

Methods). 1189 
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 1192 
Extended Data Figure 6. Genetic correlations with and without COVID-19 cases included in 1193 

the phenotype definition (FinnGen study). Error bars represent standard errors. Black error 1194 

bars and point estimates represent the vaccination phenotype which includes COVID-19 1195 

cases.  1196 
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