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Abstract
Parkinson’s disease (PD) has a large heritable component and genome-wide association studies to date

have identified over 90 variants associated with PD, providing deeper insights into the disease biology.
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However, there have not been large-scale rare variant analyses for PD. To address this gap, we

investigated the rare genetic component of PD at minor allele frequencies <1%, using whole genome and

whole exome sequencing data from 7,184 PD cases, 6,701 proxy-cases, and 51,650 healthy controls from

the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes

of Health, the UK Biobank, and Genentech. We performed burden tests meta-analyses on protein-altering

variants, prioritized based on their predicted functional impact. Our work identified several genes

reaching exome-wide significance. While two of these genes, GBA and LRRK2, have been previously

implicated as risk factors for PD, we identify potential novel associations for B3GNT3, AUNIP, ADH5,

TUBA1B, OR1G1, CAPN10, and TREML1. Of these, B3GNT3 and TREML1 provide new evidence for the

role of neuroinflammation in PD. To date, this is the largest analysis of rare genetic variation in PD.

Introduction
Parkinson’s disease (PD) is a complex neurological disease likely caused by an interplay between aging,

environmental factors and genetics. While the role of common genetic variation in PD has been

extensively studied using large genome-wide association studies (GWAS), rare variants can also

contribute to familial and sporadic disease. To date, 92 independent risk signals have been associated with

PD including common variants in close proximity to SNCA, TMEM175 and MAPT (Nalls et al. 2019; Foo

et al. 2020). Most of the risk alleles found by array-based GWAS have frequencies over 5% in the

population of interest, often reside in non-coding regions of the genome, and typically have moderate

effect sizes. In contrast, rare damaging and pathogenic variants implicated in PD, such as coding variants

in SNCA (Polymeropoulos et al. 1997) and PRKN (Kitada et al. 1998), have traditionally been identified

using family-based approaches. One aspect of major interest in disease genetics is the large number of

pleomorphic genes, where multiple variants of varying allele frequency present with a wide range of

effect sizes (A. Singleton and Hardy 2011). For example, in PD, GWAS identified common variants with

moderate effects near GBA, GCH1, LRRK2, SNCA and VPS13C (Nalls et al. 2019), while familial studies

identified rare variants in the same genes resulting in more damaging effects (e.g., GBA p.N370S, LRRK2

p.G2019S, and SNCA p.A53T) (Jansen et al. 2017; Gaare et al. 2020; Rudakou et al. 2021; Mencacci et al.

2014).

In contrast to common variation, there have been no large-scale efforts investigating the role of rare

variation in PD on a genome-wide scale. Although rare variant associations for several PD genes (such as

ARSA and ATP10B) have been reported in candidate gene studies (J. S. Lee et al. 2019; Martin et al.

2020), these genes remain controversial due to lack of replication in independent PD datasets (Makarious
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et al. 2019; Fan et al. 2020; Tesson et al. 2020; Real et al. 2020). One of the main challenges that comes

with analyzing rare variants is that the quality and reliability of imputation procedures decreases with

allele frequency. Since genome-wide genotyping methods are currently much cheaper than sequencing,

most large datasets used for GWAS rely on imputed genotype data. A strength of the present study is that

we focus on using whole genome (WGS) and whole exome sequencing (WES) to facilitate the analysis of

rare variation. We perform the largest genome-wide analysis of rare variation in PD to date, investigating

7,184 PD cases, 6,701 proxy-cases (defined as having a parent or sibling with PD), and 51,650

neurologically healthy controls of European ancestry from several large sequencing efforts. Using this

data, we execute gene-level burden testing in order to understand how moderate- to large-effect rare

variants contribute to the genetic etiology of PD.

Materials and Methods
AMP-PD and NIH Genome Sequencing Data

Whole genome sequencing data was obtained from multiple datasets including the Parkinson's

Progression Markers Initiative (PPMI), the Parkinson’s Disease Biomarkers Program (PDBP), and the

Harvard Biomarker Study (HBS), BioFIND, SURE-PD3, and STEADY-PD3 as part of the Accelerating

Medicines Partnership in Parkinson’s Disease (AMP-PD) initiative. Several other datasets were

sequenced in parallel at the Laboratory of Neurogenetics (LNG) and the U.S. Uniformed Services

University (USHUS), including samples from the National Institutes of Health (NIH) PD clinic, the

United Kingdom Brain Expression Consortium (UKBEC) (Trabzuni, United Kingdom Brain Expression

Consortium (UKBEC), and Thomson 2014), the North American Brain Expression Consortium (NABEC)

(Gibbs et al. 2010), and Wellderly (Erikson et al. 2016). All cohorts from AMP-PD (PPMI, PDBP, HBS,

BioFIND, SURE-PD3, and STEADY-PD3) were processed using the GATK Best Practices guidelines set

by the Broad Institute’s joint discovery pipeline and elaborated on elsewhere (Iwaki et al. 2021). All other

cohorts were joint called separate from AMP-PD but in a similar manner, also from the processed WGS

data following the GATK Best Practices using the Broad Institute’s workflow for joint discovery and

Variant Quality Score Recalibration (VQSR)(Poplin et al. 2017). Data processing and quality control

(QC) procedures have been described previously (Bandres-Ciga et al. 2020; Iwaki et al. 2021). Additional

quality control was performed to exclude closely related individuals (PI_HAT >0.125) by selecting one

sample at random using PLINK (v1.9; (Purcell et al. 2007)). All individuals were of European ancestry as

confirmed by principal component analysis using HapMap3 European ancestry populations. Individuals

recruited as part of a biased and/or genetic dataset, such as LRRK2 and GBA rare variant carriers within a
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specific effort of PPMI, were excluded from this analysis. Including all variants within the gene

boundaries, a minimum allele count (MAC) threshold of 1 was applied. Exonic regions were subset from

the whole genome sequencing data using the exome calling regions from gnomAD lifted over to hg38

(Karczewski et al. 2020).

UK Biobank

Exome sequencing data from a total of 200,643 individuals (OQFE dataset, field codes: 23151 and 23155)

were downloaded from the UK Biobank in December of 2020 (Bycroft et al. 2018). Standard quality

control was performed to exclude non-European outliers. Closely related individuals (PI_HAT >0.125)

were excluded by selecting one sample at random using PLINK (v1.9; (Purcell et al. 2007)). Standard

exome sequencing data filtering was applied using suggested parameters as described in previous UK

biobank exome sequencing studies (Backman et al. 2021).

UK Biobank phenotype data were obtained from ICD10 codes (field code: 41270), PD (field code:

131023), illnesses of father and mother (field codes: 20107 and 20110), parkinsonism (field code: 42031)

or dementia (field code: 42018), genetic ethnic grouping (field code: 22006), year of birth (field code: 34)

and age of recruitment (field code: 21022). Cases were defined as any individual identified as having PD

using the above field code. Proxy-cases were defined as having a parent or sibling with PD as previously

reported (Nalls et al. 2019). Controls were filtered to exclude any individuals with an age of recruitment <

59 years, any reported nervous system disorders (Category 2406), a parent with PD or dementia (field

codes: 20107 and 20110) and any reported neurological disorder (field codes: Dementia/42018, Vascular

dementia/42022, FTD/42024, ALS/42028, Parkinsonism/42030, PD/42032, PSP/42034, MSA/42036).

Genentech

Whole genome sequencing data from Genentech included a total of 2,710 PD cases and 8,994 individuals

used as controls. PD cases included 2,318 individuals from 23andMe, a subset of those included in the

analysis by Chang and colleagues (Chang et al. 2017) who were contacted and provided consent for this

analysis. An additional 392 PD cases were obtained from the Roche clinical trial TASMAR. Individuals

included as controls were obtained from various Genentech clinical trials/studies and included cases for

four diseases that do not share notable heritability with PD: age-related macular degeneration (AMD,

n=1,735), asthma (n=3,398), idiopathic pulmonary fibrosis (IPF, n=1,532), and rheumatoid arthritis (RA,

n=2,329). Illumina HiSeq based 30× genome sequencing was performed on all samples using 150bp

paired-end reads. The reads were then mapped to the GRCh38 reference genome with BWA (Li and

Durbin 2009), followed by application of GATK (Li and Durbin 2009; McKenna et al. 2010) for base
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quality score recalibration, indel realignment, and duplicate removal. This was followed by SNP and

INDEL discovery and genotyping across all samples simultaneously using variant quality score

recalibration according to GATK Best Practices recommendations (DePristo et al. 2011; Van der Auwera

et al. 2013; Van der Auwera and O’Connor 2020). The 11,704 samples included in these analyses passed

the following QC steps: genotype missing rate < 0.1, no sample pair had kinship coefficient (k0 i.e.

probability of zero alleles shared identical-by-descent; or the value Z0 reported by PLINK’s –genome

module) < 0.4; and no sample was an outlier in five iterations of outlier removal using PCA (Price et al.

2006).

Variant Annotation

Variants were annotated using the SnpEff and SnpSift annotation softwares (v4.3t; (Cingolani et al.

2012)) as well as the Ensembl Variant Effect Predictor (VEP; v104; (McLaren et al. 2016)) package. Both

the Combined Annotation Dependent Depletion (CADD; v1.4; (Rentzsch et al. 2019)) and the

Loss-of-Function (LoF) Transcript Effect Estimator (LOFTEE; v1.02; (Karczewski et al. 2020)) VEP

plugins were used. SnpEff is a toolbox based on 38,000 genomes that is designed to annotate genetic

variants and predict their downstream functional consequences. SnpSift leverages multiple databases to

filter SnpEff outputs and prioritize variants, and can predict amino acid changes as having “moderate” or

“high” impact. The CADD plugin for VEP is a tool used to score the deleteriousness of single nucleotide

variations, insertions, and deletions. A CADD PHRED score is a scaled measure of deleteriousness, with

a score of 20 indicating that the variant is among the top 1% of deleterious variants in the genome

(Rentzsch et al. 2019). The LOFTEE plugin for VEP is uniquely designed to assess stop-gain, frameshift,

and splice-site disrupting variants and classify these as LoF with either low or high confidence. The

following variant classes were used for gene burden analyses: 1) missense variants as defined by SnpEff,

2) moderate or high impact variants as defined by SnpEff/SnpSift, 3) high confidence LoF variants as

defined by LOFTEE, and 4) variants with either a CADD PHRED score > 20 or high confidence LoF

variants as defined by LOFTEE.

Gene Burden Analysis and Meta-Analysis

The AMP-PD and NIH datasets were merged prior to gene burden analysis, with duplicates removed.

Rare variant testing for this merged dataset, the UK Biobank case-control dataset, and the UK Biobank

proxy-control datasets were performed using the Sequence Kernel Association Test – Optimal (SKAT-O)

and the Combined and Multivariate Collapsing (CMC) Wald algorithms (Seunggeun Lee, Wu, and Lin

2012; Seunggeun Lee et al. 2016). These algorithms were run using the RVtests package (v2.1.0; (Zeggini

and Morris 2015)). The CMC Wald test collapses and combines all rare variants and then performs a Wald
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test, where only an alternative model is fit and the effect size is estimated (Seunggeung Lee et al. 2014).

SKAT-O is an optimized sequencing kernel association test designed to combat limitations introduced by

the SKAT and burden tests. SKAT-O aggregates the associations between variants and the phenotype of

interest while allowing for SNP-SNP interactions, and has been proven to detect genes more reliably than

a burden or SKAT test separately by adaptively selecting the best linear combination of both SKAT and

burden tests to maximize test power (Seunggeun Lee et al. 2012). All analyses were stratified by the four

variant classes described above and by maximum minor allele frequencies (MAF) levels of 1% and 0.1%.

For Genentech data, SKAT-O and CMC-Wald tests were performed using the R package SKAT (Wu et al.

2011).

The combined AMP-PD and NIH dataset was adjusted for sex, age, and the first five principal

components. The UK Biobank datasets were adjusted for sex, Townsend scores, and the first five

principal components. For the UK Biobank analyses, only neurologically healthy controls 65 years and

older were included in analyses, and therefore age was not included as a covariate. Meta-analyses of the

resulting summary statistics per gene were performed using custom Python (v3.7) scripts, which we have

made available on our GitHub (https://github.com/neurogenetics/PD-BURDEN). In summary, the two

meta-analysis approaches used in this study were 1) a combined p-value approach using Fisher’s test, and

2) a weighted Z-score approach. In previous studies, Fisher’s method was reported to detect > 75% of

causal effects (either deleterious or protective) that are in the same direction (Derkach, Lawless, and Sun

2013). Unless otherwise stated, all results reported in this manuscript correspond to the SKAT-O rare

variant test, and all meta-analyses were performed using the combined p-values reported following

Fisher’s test.

Rare variant analyses were performed on each dataset separately. Two joint meta-analyses were

performed as follows: 1) a case-control meta-analysis between the combined AMP-PD and NIH dataset,

the Genentech dataset, and the UK Biobank case-control dataset, and 2) a meta-analysis of the

case-control and proxy-control results from the combined AMP-PD and NIH dataset, the Genentech

dataset, the UK Biobank PD case-control dataset, the UK Biobank sibling proxy-cases dataset, and the

UK Biobank parent proxy-cases dataset. A summary of the analysis workflow is outlined in Figure 1.

Power Calculations

100 gene simulations were run using the power calculation function with default European haplotypes

made available in the SKAT R package (v2.0.1; (Seunggeun Lee et al. 2012)). The total sample size was

estimated at 65,535, with 7,184 PD cases, 6,701 proxy-cases down-weighted to ¼ of a PD case
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(corresponding to 1,675 cases), and 51,650 controls resulting in a case proportion of 13.5%. We estimated

the disease prevalence of PD at 1% as previously described (Tysnes and Storstein 2017) and used an

exome-wide significance threshold (α) of 1E-6. Assuming close to 20,000 protein-coding genes, resulting

in a Bonferroni correction of 2.50E-6, the threshold of significance was adjusted to 1E-6 to account for

two algorithms. Power calculations based on varying percentages of causality (10%, 5%, 3%, 1%, and

0.5%) and causal MAF (0.05%, 0.1%, 0.5%, 1%, 3%, and 5%) are reported in Supplementary Table 5.

Assuming at least 3% of the rare alleles tested are causal, this analysis

has ≥ 80% power to detect associations at the tested MAF cutoffs

(Supplementary Table 5).

Data and Code Availability

All code is available on GitHub at https://github.com/neurogenetics/PD-BURDEN. AMP-PD genome

sequencing data can be accessed via the AMP-PD platform https://amp-pd.org/. UK Biobank data is

accessible via application at https://www.ukbiobank.ac.uk/. All gene-level summary statistics are

available on the GitHub repository.

Results
Study overview

A total of 7,184 PD cases, 6,701 sibling/parent proxy-cases, and 51,650 controls with whole genome

(AMP-PD, NIH and Genentech) or exome (UK Biobank) sequencing were included in this analysis

(Table 1). Rare variant gene-level burden tests were performed across all genes for four variant classes

and two causal MAF cutoffs (Figure 1). As expected, we observed that more deleterious variant classes

resulted in fewer variants tested per gene.

Genetic burden testing in large PD case-control datasets

Initial gene burden analyses per dataset (AMP-PD and NIH Genomes, Genentech, UK Biobank cases, UK

biobank sibling proxies, and UK Biobank parent proxies) resulted in several known PD genes (e.g. GBA

and LRRK2) reaching significance exome-wide (P < 1E-6; Tables 2 and 3), confirming the validity of our

approach. Lambda values per dataset showed minimal genomic inflation when adjusted for the number of

cases, proxy-cases, and controls (λ1000; Supplementary Table 3). As expected, datasets with smaller

sample sizes, such as the UK Biobank sibling proxy-control dataset, resulted in increased genomic

deflation when analyzed separately (λ1000 < 0.9).

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.08.22280168doi: medRxiv preprint 

https://paperpile.com/c/SRviBF/zZLge
https://github.com/neurogenetics/PD-BURDEN
https://amp-pd.org/
https://www.ukbiobank.ac.uk/
https://doi.org/10.1101/2022.11.08.22280168


Rare variant burden analysis of both GBA and LRRK2 reached significance exome-wide in the initial

analysis of missense, moderate/high impact, and LoF or highly deleterious (CADD PHRED > 20)

variants. GBA was significant for these variant categories in both the Genentech (P=1.32E-08;

P=5.70E-08; P=6.99E-08, respectively) and UK Biobank parent proxies (P=2.15E-10; P=2.15E-10;

2.15E-10, respectively) datasets. LRRK2 was significant for these categories in the combined AMP-PD

and NIH dataset (P=1.96E-07; P=2.09E-07; P=2.23E-07, respectively). LoF variants in B3GNT3 were

significant exome-wide in the Genentech dataset (P=4.40E-09) and replicated at nominal significance in

the UK Biobank parent proxies dataset (P=0.032). Moderate and high impact variants in TUBA1B were

significant in the UK Biobank parent proxies dataset (P=9.48E-07). LoF or highly deleterious variants in

ADH5 were significant in the UK Biobank cases-control dataset (P=3.13E-07), and LoF or highly

deleterious variants in OR1G1 were significant in the UK Biobank sibling proxies dataset (P=6.58E-07;

Table 2).

Ultra-rare variant (MAF < 0.1%) burden analysis of missense, moderate/high impact, and LoF or highly

deleterious variants in GBA were significant exome-wide in the UK biobank parent proxies dataset

(P=6.88E-08; P=5.13E-10; P=7.89E-08, respectively). LoF or highly deleterious variants in GBA were

also significant in the UK Biobank case-control dataset (P=4.56E-07). LoF or highly deleterious variants

in LRRK2 were significant in the Genentech dataset (P=6.15E-07). Moderate/high impact variants in

AUNIP were significant in the UK Biobank case-control dataset (P=3.04E-08), and TUBA1B in the UK

Biobank parent proxies dataset (P=9.48E-07). LoF variants in B3GNT3 were significant in the Genentech

dataset (P=4.40E-09), and AUNIP in the UK Biobank case-control dataset (P=3.13E-08). LoF or highly

deleterious variants in AUNIP were significant in the UK Biobank case-control dataset (P=3.15E-08), and

LoF or highly deleterious variants in OR1G1 were significant in the UK biobank sibling proxies dataset

(P=6.58E-07). Ultra-rare variant burden analysis identified no significant genes exome-wide in any of the

four variant classes within the AMP-PD and NIH genomes (P < 1E-6; Table 3).

Meta-analyses of large PD datasets

The first meta-analysis (herein called the case-control meta-analysis) excluded any UK Biobank

proxy-cases. The second meta-analysis (herein called the case-control-proxies meta-analysis) included

UK Biobank proxy-cases in addition to cases and controls. No significant divergence from expected

lambda values (range: 0.97-1.00) were detected in any of the meta-analyses performed (Supplementary

Table 4). Rare variant burden analysis of missense, moderate/high impact, and LoF or highly deleterious

variants in GBA were significant exome-wide across both meta-analyses ([case-control P=3.27E-14;
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P=9.10E-15; P=3.722E-14, respectively] and [case-control-proxies P=1.46E-21; P=1.32E-22;

P=9.12E-22, respectively]). High confidence LoF variants in CAPN10 (case-control P=3.60E-07;

case-control-proxies P=7.84E-07) and B3GNT3 (case-control P=4.40E-09; case-control-proxies

P=3.36E-09) were also significant exome-wide (Table 2).

Ultra-rare variant burden analysis of missense and moderate/high impact variants in AUNIP were

significant exome-wide across both meta-analyses ([case-control P=1.54E-08; P=1.64E-08, respectively]

and [case-control-proxies P=2.70E-07; P=2.04E-07, respectively]). Moderate/high impact variants in

TREML1 were significant with the inclusion of proxy-cases. As in the rare variant burden analysis,

ultra-rare LoF variants in CAPN10 (case-control P=3.60E-07; case-control-proxies P=7.84E-07) and

B3GNT3 (case-control P=4.40E-09; case-control-proxies P=3.36E-09) were also significant. Notably,

both rare (MAF < 1%) and ultra-rare (MAF < 0.1%) GBA variants showed significant associations with

PD risk (Tables 2 and 3).

B3GNT3 was identified in the high confidence LoF variant class group with p-values of 4.40E-09 in the

Genentech dataset and P=0.032 in the UK biobank parent proxies. However, no variants meeting this

criteria were present in the AMP-PD and NIH genomes, so the association of rare LoF variation in

B3GNT3 could not be confirmed. The majority of novel candidate genes identified in this study (B3GNT3,

AUNIP, ADH5, TUBA1B, OR1G1, CAPN10, and TREML1) only reached significance exome-wide using

the SKAT-O test. (Supplementary Table 8). Full results from the SKAT-O and CMC Wald burden tests

performed for each variant class, MAF cutoff, and meta-analysis group can be found on our GitHub

repository (https://github.com/neurogenetics/PD-BURDEN).

Conditional LRRK2 analysis

Since LRRK2 p.G2019S is a relatively common risk factor for PD, we explored whether the rare variant

association at LRRK2 is driven primarily by this variant. The observed association at LRRK2 was lost (P >

0.05) after conditioning on the allelic status of LRRK2 p.G2019S for all of the tested variant categories

and MAF thresholds in the discovery datasets (excluding Genentech; Supplementary Table 8). Besides

LRRK2 p.G2019S, no other substantial coding risk was detected.

Assessment of previously reported PD causal or high risk genes and GWAS regions

We next attempted to replicate a large number of genes that showed rare variant associations with PD in

previous studies (for a full list, please see Supplementary Table 9). Besides the previously discussed

GBA and LRRK2, none of these genes met exome-wide significance (P > 1E-6) in our analysis. However,
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we did observe sub-significant association signals for LoF or highly deleterious variants in ARSA

(P=8.73E-05) and DNAJC6 (P=8.08E-04; Supplementary Table 9). Since we did not detect a P-value of

interest in PRKN (P=0.30), which has been robustly associated with predominantly early onset PD in

previous studies, we investigated the enrichment of homozygous and potentially compound heterozygous

PRKN mutations in PD. In the most stringent variant class (LoF or highly deleterious variants), we found

a frequency of 0.41% in cases and 0.07% in controls in the combined AMP-PD and NIH dataset

(Supplementary Table 6).

We also attempted to determine whether known PD loci identified by GWAS present rare variant

associations, as has been shown previously near SNCA, GBA, GCH1, VPS13C, and LRRK2 (Jansen et al.

2017; Gaare et al. 2020; Rudakou et al. 2021; Mencacci et al. 2014). We assessed a total of 80 PD GWAS

regions, 78 of which were identified in the largest GWAS of Europeans (Nalls et al. 2019) and two of

which were identified in the largest PD GWAS of East Asians (Foo et al. 2020). Only two genes, GBA

and LRRK2, were significant after Bonferroni correction for 2,361 unique genes within 1 megabase of

known PD loci, suggesting that coding variants do not play a large role in these GWAS regions, but rather

that signals are driven by non-coding variation in these regions.

Discussion
We report the results of rare variant gene burden tests of PD using the largest sample size to date

including 7,184 PD cases, 6,701 proxy-cases, and 51,650 healthy controls. A meta-analysis of gene

burden results reaffirms that rare variants in GBA and LRRK2 are associated with PD risk in individuals

with European ancestry. However, we also observed several novel PD-associated genes (B3GNT3,

AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1) that met exome-wide significance (P < 1E-6)

in our analysis. Although these genes were not significant across all of the datasets tested

(Supplementary Table 7), this may be due to varied power in the different datasets due to sample size

and/or geographical population differences between the datasets that influence the presence or absence of

rare variants of interest. We observed the strongest evidence of a novel rare variant association at

B3GNT3, where loss of function variation showed a significant meta-analysis P-value (P=4.40E-09)

primarily driven by the Genentech (P=4.40E-09) and UK Biobank (parent proxies P=0.032) datasets.

Variants meeting this criteria were not present in the combined AMP-PD and NIH genomes, requiring

additional data to confirm association with PD risk. These variants in B3GNT3 are rare, with three

variants driving the association in both the Genentech and UK Biobank parent proxies datasets, and are

therefore likely to be absent in the remaining datasets analyzed.
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Previously suggested GWAS loci also harbor rare variants of interest, such as SYT11, FGF20, and GCH1

(Pu et al. 2022). We identified no significant p-values in these genes, consistent with a similar, albeit

smaller, analysis performed in the East Asian population (Pu et al. 2022). However, the vast majority of

previously PD-associated genes were not nominated by our analysis, including PINK1 and PRKN

(PARK2), which are the most common genetic cause of early onset PD (Pandey et al. 2019). This is

somewhat expected since burden testing algorithms are most well-powered to detect dominant and

high-risk variants such as those in GBA and LRRK2, and are less sensitive to recessive and ultra rare

mutations. It is also important to note that PD patients who carry PRKN, PINK1, and SNCA mutations

often have a slightly different PD phenotype (e.g. earlier onset, varying progression rates, rapid dementia

onset) compared to the general PD population (Klein and Westenberger 2012). Since most PD cases

included in this analysis showed onset of symptoms in their sixties, it is less likely that they will harbor

pathogenic PRKN mutations than those with early onset PD (Table 1). It is therefore likely that such

mutation carriers are underrepresented in the datasets included in this study.

Immune involvement including adaptive T lymphocyte response in PD is well described and reviewed

elsewhere (Mosley et al. 2012). B3GNT3 encodes an enzyme involved in the synthesis of L-selectin

required for lymphocyte homing, particularly for rolling of leukocytes on endothelial cells, facilitating

their migration into inflammatory sites. TUBA1B encodes the 1B chain of alpha-tubulin, the main

constituent of cytoskeleton. Growing evidence suggests the role of microtubule defects in progressive

neuronal loss in PD (Calogero et al. 2019; Pellegrini et al. 2017). Alpha-tubulin has previously been

shown to aggregate as a result of mutations in genes encoding proteins well known to be implicated in

PD, including parkin (Ren, Zhao, and Feng 2003) and alpha-synuclein (Cartelli et al. 2016). TREML1 is

one of the TREM receptors that are increasingly being implicated in neurodegenerative disorders like

Alzheimer’s disease, PD, and multiple sclerosis (Dardiotis et al. 2017; Feng et al. 2019; Piccio et al.

2008). ADH5 encodes for one of the alcohol dehydrogenases, which have been studied in the past for

association with PD risk with conflicting results (Kim et al. 2020; Buervenich et al. 2005; García-Martín

et al. 2019). There is no clear, discernible connection between known PD biology and the function of the

remaining three genes: AUNIP, OR1G1, and CAPN10. Further studies providing genetic support and

functional data for these and related genes will be necessary to uncover their potential role in PD.

There are several limitations of this study. First, our analysis was restricted to individuals of European

ancestry. It is important to expand rare variant analyses of PD to non-European populations as more

whole genome and whole exome sequencing data becomes available. Although the sample size is large
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compared to previous rare variant analyses of PD, we lack power to detect associations in genes where ≤

3% of the variants tested are putatively functional or causal, as some rare variant tests weigh rarer

variants with increased penetrance and effect size differently or not at all (Supplementary Table 5).

Since our literature search for previously reported rare variant associations was comprehensive and not

limited to late-onset PD, it is possible that failure to replicate these associations is due to our analysis

focusing on associations in late-onset PD compared to controls. Additionally, our analysis included parent

and sibling proxy-cases from the UK Biobank to increase statistical power. Although PD proxy-cases

have shown to be valuable in large-scale studies investigating common variation (Nalls et al. 2019) and

we have demonstrated their utility at detecting rare variant associations in known PD genes such as GBA

(Supplementary Table 7), we acknowledge that caution should be used when searching for recessive

forms of disease. Finally, the vast majority of PD patients included in this study are from the “general”

PD population, of which typically less than ~10% have a positive family history. Future rare variant

studies will benefit from recruitment efforts that prioritize PD patients who are highly suspected to have a

monogenic form of disease since these individuals are more likely to harbor highly pathogenic or causal

mutations that have not previously been associated with PD. This strategy is being actively used for

recruitment of PD patients by the Global Parkinson's Genetics Program (Global Parkinson’s Genetics

Program 2021).

Clinical heterogeneity within PD cases has been well documented (Campbell et al. 2020; Mu et al. 2017;

Sauerbier et al. 2016). Analysis of rare variants restricted to subtypes of PD may identify genes important

in PD subtypes but not PD as a whole. Our analysis was also restricted to SNVs and small indels. Future

analyses will benefit from the use of long-read sequencing to assess the impact of structural variants,

which have been shown to be important and causal for PD (A. B. Singleton et al. 2003; Scott, Chiang, and

Hall 2021; Kitada et al. 1998).

Overall, we performed the largest PD genetic burden test to date. We identified GBA and LRRK2 as two

genes harboring rare variants associated with PD and nominated several other previously unidentified

genes. Further replication in larger datasets that prioritize familial PD cases and individuals of

non-European ancestry will provide greater insight into the nominated genes.
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Figures and Tables
Table 1: Datasets Overview after Quality Control

Sample Size Age^ (Mean ± SD) Sex (Male; %)

Dataset Cases Controls Cases Controls
Cases sex

(Male; %)

Controls

sex (Male;

%)

AMP-PD and NIH Genomes (Includes:

PPMI, PDBP, HBS, BioFIND, NIH PD

clinic, UKBEC, NABEC, Wellderly)

3,369 4,605 62.1 (11.8) 71.9 (16.2) 63.6 47.6

UKB case-control (WES) 1,105 5,643 62.9 (5.24) 64.1 (2.84) 62.4 47.6

UKB sibling proxy-control (WES) 668* 3,463 62.2 (5.59) 64.1 (2.83) 45.5 49.5

UKB parent proxy-control (WES) 6,033* 28,945 58.1 (7.23) 64.1 (2.82) 42.5 48.7

Genentech case-control (WGS) 2,710 8,994 64.7 (10.4) 59.2 (15.6) 59.2 40.7

Total
7,184 cases;

6,701 proxies

51,650

controls

AMP-PD: Accelerating Medicines Partnership Parkinson’s disease; NIH: National Institutes of Health;

PPMI: Parkinson's Progression Markers Initiative; PDBP: Parkinson’s disease Biomarkers Project; HBS:

Harvard Biomarker Study; UKBEC: UK Brain Expression Consortium; NABEC: North American Brain

Expression Consortium; UKB: UK Biobank

WES: Whole exome sequences; WGS: whole genome sequences

* indicates proxy cases

^age for AMP-PD and NIH datasets reported at recruitment or baseline, ages reported for UK Biobank

datasets at recruitment, ages reported for Genentech at recruitment
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Figure 1: Graphical representation of the Analysis Workflow. 1) Annotation was performed using

VEP and four variant groups were selected: a) missense variants as defined by SnpEff, b) moderate or

high impact variants as defined by SnpEff/SnpSift, c) high confidence LoF variants as defined by

LOFTEE, and d) variants with either a CADD PHRED score > 20 or high confidence LoF variants as

defined by LOFTEE. 2) Burden analysis was performed on each dataset separately at rare (MAF<1%) and

ultra-rare (MAF<0.1%) cut-offs. 3) Meta-analysis strategy 1 using only PD cases and controls, otherwise

referred to as the “case-control” meta-analysis. 4) Meta-analysis strategy 2 using PD cases, PD proxy

cases (siblings and parent), and controls, otherwise referred to as the “case-control-proxies”

meta-analysis.

Table 2: Genes reaching exome-wide significance (p<1E-6) in MAF <1% in meta-analyses and

individual datasets following SKAT-O

VARIANT

CLASS

(MAF <1%)

GENE
CASE ONLY

META PVAL

CASE PROXIES

META PVAL

AMP NIH

PVAL

GNE

PVAL

UKB CASE

PVAL

UKB SIBLING

PVAL

UKB PARENT

PVAL

Missense
GBA** 3.27E-14 1.46E-21 1.05E-05 1.32E-08 3.14E-04 0.247 2.15E-10

LRRK2* 7.15E-07 9.46E-06 1.96E-07 0.047 0.372 0.615 0.482

Moderate

or High

Impact

GBA** 9.10E-15 1.32E-22 1.05E-05 5.70E-08 1.89E-05 0.073 2.15E-10

LRRK2* 7.23E-07 9.85E-06 2.09E-07 0.040 0.413 0.584 0.527
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TUBA1B 0.69 9.02E-05 NA 0.647 0.501 0.352 9.48E-07

LOF
B3GNT3** 4.40E-09 3.36E-09 NA 4.40E-09 NA NA 0.032

CAPN10** 3.60E-07 7.84E-07 NA 0.005 3.75E-06 0.053 0.394

CADD>20

or LOF

GBA** 3.72E-14 9.12E-22 1.24E-05 6.99E-08 5.77E-05 0.130 2.15E-10

LRRK2* 2.49E-07 4.22E-06 2.23E-07 0.012 0.409 0.735 0.485

ADH5 4.62E-06 6.15E-05 0.512 0.170 3.13E-07 0.491 0.768

OR1G1 0.215 6.56E-06 0.848 0.029 0.620 6.58E-07 0.063

* denotes genes that pass exome-wide significance (P<1E-6) in one meta-analysis

** denotes genes that pass exome-wide significance (P<1E-6) in both meta-analyses

Table 3: Genes reaching exome-wide significance (p<1E-6) in MAF < 0.1% in meta-analyses and

individual datasets following SKAT-O

VARIANT

CLASS

(MAF <0.1%)

GENE
CASE ONLY

META PVAL

CASE

PROXIES

META PVAL

AMP

NIH

PVAL

GNE PVAL

UKB

CASE

PVAL

UKB

SIBLING

PVAL

UKB

PARENT

PVAL

Missense GBA* 1.86E-05 4.48E-12 0.022 2.30E-02 2.55E-04 5.41E-03 6.86E-08

Moderate or

High Impact

GBA* 1.71E-06 4.87E-16 NA 0.088 1.13E-06 0.001 5.13E-10

AUNIP** 1.54E-08 2.70E-07 NA 0.023 3.04E-08 0.170 1

TUBA1B 0.690 9.02E-05 NA 0.647 0.501 0.352 9.48E-07

TREML1* 0.048 3.58E-07 NA 0.010 0.858 0.001 1.41E-05

LOF B3GNT3** 4.40E-09 3.36E-09 NA 4.40E-09 NA NA 0.032

AUNIP** 1.64E-08 2.04E-07 NA 0.024 3.13E-08 0.116 1

CAPN10** 3.60E-07 7.84E-07 NA 0.005 3.75E-06 0.053 0.394

CADD>20 or

LOF

GBA** 2.33E-07 1.20E-14 0.017 0.127 4.56E-07 8.93E-04 7.89E-08

LRRK2 3.46E-06 2.65E-06 0.727 6.15E-07 0.044 0.771 0.014

B3GNT3 0.334 0.238 0.264 0.266 0.460 1 0.053

AUNIP* 2.12E-07 1.53E-06 0.886 0.032 3.15E-08 0.125 1

OR1G1 0.215 6.56E-06 0.848 0.029 0.620 6.58E-07 0.063

* denotes genes that pass exome-wide significance (P<1E-6) in one meta-analysis

** denotes genes that pass exome-wide significance (P<1E-6) in both meta-analyses
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