Chikungunya intra-vector infection dynamics in *Aedes albopictus* reveals low vector barrier intensity and supports an explosive epidemic potential in mainland France

Barbara Viginier¹, Lucie Cappuccio¹, Céline Garnier¹, Edwige Martin², Carine Maisse¹, Claire Valiente Moro², Guillaume Minard², Albin Fontaine³,⁴,⁵, Sébastian Lequime⁶, Maxime Ratinier¹, Frédérick Arnaud¹ & Vincent Raquin*¹

¹ IVPC UMR754, INRAE, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, PSL Research University, F-69007 Lyon, France.
² Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France.
³ Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.
⁴ Aix Marseille Univ, IRD, SSA, AP-HM, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France.
⁵ IHU Méditerranéen Infection, Marseille, France.
⁶ Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.

*Corresponding author
Correspondence: vincent.raquin@ephe.psl.eu

ABSTRACT

Arbovirus emergence and epidemic potential, as approximated by the vectorial capacity formula, depends on host and vector parameters, including the vector’s intrinsic ability to replicate then transmit the pathogen known as vector competence. Vector competence is a complex, time-dependent, quantitative phenotype influenced by biotic and abiotic factors. A combination of experimental and modelling approaches is required to assess arbovirus intra-vector dynamics and estimate its epidemic potential. In this study, we measured infection, dissemination, and transmission dynamics of chikungunya virus (CHIKV) in a field-derived *Aedes albopictus* population (Lyon metropolis, France) after oral exposure to a range of virus doses spanning human viraemia. Statistical modelling indicates rapid and efficient CHIKV progression in the vector mainly due to an absence of a dissemination barrier, with 100% of the infected mosquitoes ultimately exhibiting a disseminated infection, regardless of the virus dose. Transmission rate data revealed a time-dependent, but overall weak, transmission barrier, with individuals transmitting as soon as 2 days post-exposure (dpe) and >50% infectious mosquitoes at 6 dpe for the highest dose. Based on these experimental intra-vector dynamics data, epidemiological simulations conducted with an agent-based model showed that even at low mosquito biting rates, CHIKV could trigger explosive outbreaks. Together, this reveals the high epidemic potential of CHIKV upon transmission by *Aedes albopictus* in mainland France.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Keywords: Arbovirus; vector; mosquito; Aedes albopictus; chikungunya virus; epidemiology; vector competence; modelisation
Arthropod-borne viruses (arboviruses) are pathogens transmitted to vertebrate hosts by hematophagous arthropods, mainly mosquitoes. Arbovirus spread is a multi-factorial, dynamic process that can be estimated using the vectorial capacity (VCap) model, which aims to determine the average number of infectious vector bites that arise per day from one infected host in a susceptible human population (Smith et al., 2012). The vector-centric component of VCap integrates mosquito ecological (density per host, survival) and behavioural (daily biting rate per human) factors along with the vector’s proxies of virus transmission efficiency such as vector competence (VComp) and its time-related expression, the extrinsic incubation period (EIP). VComp represents the ability of mosquitoes to: i) allow midgut infection following an infectious blood meal, ii) disseminate the virus beyond the midgut barrier, and iii) retransmit the virus through the saliva during the next bite. In VCap models, VComp and EIP are often simplified under the EIP_{50}, the time required to reach 50% of infectious mosquitoes. Effectively, each individual mosquito has a given EIP leading to a range of EIPs in the population. EIP distribution can be assessed experimentally by measuring the time between the initial mosquito infection and the mosquito infectiousness using an adequate number of individual mosquitoes and time points. Taking into account the time-dependency of Vcomp improves VCap estimation and therefore allow to capture the full epidemic potential of arboviruses (Lequime et al., 2020). VComp is impacted by biotic (e.g., mosquito and virus genotype, virus dose, microbiota) and abiotic (e.g., temperature) factors (Viglietta et al., 2021), but how these factors shape VComp dynamics has still to be determined.

Dengue virus (DENV), yellow fever virus (YFV), Zika virus (ZIKV), and chikungunya virus (CHIKV) pose a major threat as they are responsible for hundreds of millions of human infections each year worldwide, leading to severe morbidity and mortality (Labeaud et al., 2011; Bhatt et al., 2013). These arboviruses are primarily transmitted to humans by *Aedes aegypti* mosquitoes, although the Asian tiger mosquito, *Aedes albopictus*, is often incriminated as a vector. Indeed, *A. albopictus* is an important vector of arboviruses as evidenced by vector competence laboratory assays and the detection of infected field specimens (Gratz, 2004; Paupy et al., 2009). Notably, *A. albopictus* was identified as the main vector during CHIKV outbreaks in Gabon (2007), Congo (2011) as well as in a major outbreak at La Réunion island (2006) (Schuffenecker et al., 2006; Bonilauri et al., 2008; Pagès et al., 2009; Paupy et al., 2012; Mombouli et al., 2013). In Europe, this vector species is incriminated for autochthonous circulation of CHIKV for instance in Italy (Venturi et al., 2017) and mainland France (Delisle et al., 2015). Vector competence studies established that vector competence of *Ae. albopictus* for CHIKV depends on genetic (e.g., mosquito and virus genotype) and environmental (e.g., temperature) factors (Tsetsarkin et al., 2007; Vazeille et al., 2007; Zouache et al., 2014; Sanchez-Vargas et al., 2019). Host viremia, approximated by virus dose in the blood meal during artificial mosquito infectious feeding experiments, is another major factor that drives mosquito vector competence (Nguyet et al., 2013; Aubry et al., 2020). Vertebrate host viremia for CHIKV last 4 to 12 days with an increase in blood viral titer prior to symptoms, up to a peak around 8 log_{10} infectious particles/ml followed by a decrease until virus clearance for most of the cases (Schwartz & Albert, 2010). Beyond non-human primates, an estimate of CHIKV human viremia dynamics is lacking due to limited longitudinal monitoring of infected patients, despite it could help to decipher the duration and magnitude of human infectiousness for mosquitoes (Labadie et al., 2010). In *Ae. albopictus*, two studies exposed mosquitoes to a range of CHIKV doses in the blood meal with varying outcomes on vector competence as estimated by mosquito infection and dissemination rate (Pesko et al., 2009; Hurk et al., 2010). Vector competence studies on *Ae. albopictus* from mainland France measured CHIKV transmission rate although upon exposure to a single dose, always above 6.5 log_{10} FFU/ml range (Moutailler et al., 2009; Vega-Rua et al., 2013; Zouache et al., 2014; Vega-Rúa et al., 2015). In addition, these studies focused on a limited number of time points after CHIKV exposure that prevent to capture the dynamics of vector competence. A study monitoring intra-vector dynamics of CHIKV and its epidemiological relevance is still lacking, notably upon variations of vector competence major drivers such as virus dose.

Here, we studied intra-vector infection dynamics of a field-derived population of *Ae. albopictus* from Lyon metropolis exposed by artificial membrane feeding to a range of human viraemia-like CHIKV (La Réunion 06.21 isolate, East Central South Africa (ECSA) clade) doses, based on our model of human CHIKV viremia. Strains from ECSA clade carrying the same A226V mutation on envelope E1 gene than 06.21 were identified from autochtonous cases in mainland France, supporting the choice of the 06.21 strain for this study (Franke et al., 2019). Individual mosquitoes were analyzed from day 2 to day 20 post-exposure (dpe) to determine infection, dissemination, and transmission rates by infectious titration in addition to the quantification of CHIKV RNA
load in the saliva. This allowed us to estimate CHIKV intra-vector dynamics and the strength of vector infection, dissemination, and transmission barriers as well as the distribution of EIP according to the virus dose in the blood meal. These data were implemented in the agent-based model nosoi (Lequime et al., 2020) to estimate, using realistic vectorial capacity parameters, the epidemic potential of CHIKV in a French population of Ae. albopictus. Our results improve our understanding on vector-virus interactions and provides key informations to better anticipate and prevent CHIKV emergence in mainland France.

Methods

Modelling chikungunya viraemia in humans

Chikungunya virus (CHIKV) loads in human blood along with the time course of infection in patients were recovered from two studies. The first study monitored blood CHIKV viraemia from a retrospective cohort of 102 febrile patients in Bandung, West Java, Indonesia, between 2005 and 2009 (Riswari et al., 2015). The second study assessed CHIKV RNA viremic profile from 36 sera from day 1 to day 7 of illness during a CHIKV epidemic in 2009 in Thepa and Chana districts of Songkhla province, Thailand (Appassakij et al., 2013). For the second study, the median value of the blood CHIKV RNA loads from a group of patients (n=2 to 21) per day of illness was used. The viraemia data from RT-qPCR was expressed on the logarithmic scale to the base 10 before model fitting. Wood’s gamma-type function was used to model the viraemia dynamic. The function is given in the following equation:

\[y(t) = at^b e^{-ct} \] (Eq. 1)

where \(y(t) \) represents the level of viraemia in the blood at \(t \) days post-infection, with \(a \), \(b \), and \(c \) representing constants linked to the viraemia dynamic (Islam et al., 2013). Viraemia data were originally expressed in time pre- or post-symptom onset, while the model represents viraemia as a function of time post-infection. A fixed arbitrary median intrinsic incubation period of 6 days was added to each viraemia time to standardize the time scale between the data and the model. This fixed incubation period falls into the estimated 2-10 days incubation range (Moloney et al., 2014) and was chosen to ensure that all observed viraemia data occurred after infection. The model was fitted to the data using non-linear least-squares regression implemented in the \texttt{nls} function in the R environment (RCoreTeam, 2022). This method proposed a possible intra-human CHIKV viraemia dynamic with 95% confidence intervals.

CHIKV stock production and titration

The CHIKV strain 06.21 from the Indian Ocean lineage was isolated from a newborn serum sample with neonatal encephalopathy in La Réunion island in 2005 (Schuffenecker et al., 2006). This strain was amplified in Aedes albopictus cell line C6/36 as previously described (Raquin et al., 2015). CHIKV was inoculated at a multiplicity of infection of 0.01 on Ae. albopictus C6/36 cells cultivated in Leibovitz’s L-15 media (Gibco) with 10% (v:v) 1X Tryptose Phosphate Broth (Gibco), 10% (v:v) foetal bovine serum and 0.1% (v:v) 10,000 units/mL penicillin/streptomycin (Gibco). Cells were incubated for 3 days at 28°C before the cell supernatant was clarified by centrifugation for 5 min at 500 g and stored at -80°C as aliquots. CHIKV infectious titer was measured on C6/36 using fluorescent focus assay (Raquin et al., 2015). Briefly, 3 x 10^5 cells/well were inoculated in 96-well plates (TPP) with 40 µL/well of viral inoculum (after culture media removal) and incubated for 1 h at 28°C. 150 µL/well of a mix 1:1 L-15 media and 3.2% medium viscosity carboxymethyl cellulose (Sigma) were added as an overlay before incubation of the cells for 3 days at 28°C. After incubation, cells were fixed in 150 µL/well of 4% paraformaldehyde for 20 min at room temperature (RT) and then rinsed 3 times in 100 µL/well of 1X Dulbecco’s phosphate-buffered saline (DPBS) (Gibco) prior to immune labelling. Cells were permeabilized for 30 min in 50 µL/well of 0.3% (v:v) Triton X-100 (Sigma) in 1X DPBS + 1% Bovine Serum Albumin (BSA, Sigma) at RT then rinsed 3 times in 100 µL/well of 1X DPBS. A Semliki Forest virus antcapsid antibody (Dr. Carine Maisse) diluted 1:600 in 1X DPBS + 1% BSA was used as a primary antibody (Greiser-Wilk et al., 1989). Cells were incubated in 40 µL/well of primary antibody for 1 h at 37°C, rinsed 3 times in 100 µL/well of 1X DPBS then incubated in 40 µL/well of anti-mouse Alexa488 secondary antibody (Life Technologies) at 1:500 in 1X DPBS + 1% BSA for 30 min at 37°C. Cells were rinsed 3 times in 100 µL/well 1X DPBS, then once in 100 µL/well tap water, stored at 4°C overnight before the enumeration of fluorescent foci under Zeiss Colibri 7 fluorescence microscope at 10X objective. The CHIKV infectious titer was expressed as
Mosquito colony maintenance

The Lyon metropolitan population of *Aedes albopictus* originates from a field sampling of larvae in 2018 that were brought back to insectary for rearing (Microbial Ecology lab, Lyon, France) for less than 10 generations before experimental infections. Sampling locations included Villeurbanne (N : 45°46'18990“ E : 4°53'24615” and Pierre-Bénite (N :45°42'11534’’ E : 4°49'28743”) in Lyon metropolitan area, mainland France. The population was maintained and amplified under standard laboratory conditions (28°C, 80% relative humidity, 16:8 hours light:dark cycles) using mice feeding (*Mus musculus*) in accordance with the Institutional Animal Care and Use Committee from Lyon1 University and the French Ministry for Higher Education and Research (Apafis #31807-2021052715018315). Eggs were hatched for 1 h in dechlorinated tap water, and larvae were reared at 26°C (16:8 h light:dark cycle) at a density of 200 larvae in 23 x 34 x 7 cm plastic trays (Gilac) in 1.5 L of dechlorinated tap water supplemented with 0.1 g of a 3:1 (TetraMin tropical fish food:Biover yeast) powder every two days. Adults were maintained in 32.5 x 32.5 x 32.5 cm mesh cages (Bugdorm) at 28°C, 80% relative humidity, 16:8 h light:dark cycle with permanent access to 10% sugar solution.

Experimental mosquito exposure to CHIKV

Female mosquitoes (4 to 8-day old) were confined in 136 x 81 mm plastic feeding boxes (Corning-Gosselin) with ~60 individual per box then transferred to the level 3 biosafety facility (SFR Biosciences, Anira-L3, Lyon Gerland) at 26°C, 12:12 h light:dark cycle deprived from sugar solution 16 h before the infectious blood meal. The blood meal was composed of a 2:1 (v:v) mixture of washed human erythrocytes (from multiple anonymous donors collected by EFS AURA under the CODECOH agreement DC-2019-3507) and viral suspension at several doses, and supplemented with 2% (v:v) of 0.5 M ATP, pH 7 in water (Sigma). Feeders (Hemotek) were covered with pig small intestine and filled with 3 mL of infectious blood mixture. Females were allowed to feed for 1 h at 26°C and blood aliquots were taken before (T0) and after (1 h) the feeding and stored at -80°C for virus titration (Figure S1). Mosquitoes were anaesthetized on ice and fully engorged females were transferred in 1-pint cardboard containers (10-25 females/container) and maintained with 10% sucrose. Cardboard containers were placed in 18 x 18 x 18 inches cages (BioQuip) and kept in climatic chambers at 26°C, 70% humidity. Two independent vector competence experiments were conducted with 370 and 418 individuals mosquitoes per experiment, respectively. In a first experiment (n=370), mosquito body and head infection were tested for the presence of infectious virus at 4 time points while in the second experiment (n=418), mosquito head and saliva were analyzed at 10 time points.

Mosquito dissection and CHIKV detection

At the selected day post-exposure (dpe) to CHIKV, individual saliva were collected then the heads and bodies were recovered. Prior to saliva collection, mosquitoes were anaesthetized on ice then legs and wings were removed under a stereomicroscope. Individuals were placed on plastic plates maintained by double-sided adhesive tape. The proboscis was inserted in a trimmed 10 µL filtered tip containing 10 µL of foetal bovine serum (FBS) held above the mosquito by modelling clay (Heitmann et al., 2018). Two µL of 1% pilocarpine hydrochloride (Sigma) supplemented with 0.1% Tween-20 (Sigma) in water were added on the thorax of each mosquito to promote salivation. Mosquitoes were allowed to salivate at 26°C, 80% relative humidity for 1 h. The FBS that contains the saliva was expelled in an ice-cold tube filled with 150 µL of DMEM media (Gibco) supplemented with antibiotics solution (Amphotericin B 2.5 µg/mL, Nystatin 1/100, Gentamicin 50 µg/mL, Penicillin 5U/mL and Streptomycin 5 µg/mL (Gibco)). Following salivation, each mosquito’s head and body were separated using a pin holder with 0.15 mm minutien pins (FST). Heads and bodies were transferred in individual grinding tubes (Qiagen) containing 500 µL of DMEM supplemented with antibiotics (see above) and one 3-mm diameter tungsten bead (Qiagen). Samples were ground on a 96-well adapter set for 2 x 1 min, 30 Hz using a Tissuelyser II (Qiagen), then stored at -80°C. CHIKV detection was performed once on 40 µL of undiluted (raw) saliva, head and body samples using fluorescent focus assay on C6/36 cells (see above). Each mosquito sample was declared positive or negative for CHIKV in the presence or absence of a fluorescent signal, respectively. Each 96-well plate contained positive (virus stock) and negative (raw grinding media) controls. Two independent persons examined each plate. Of note, saliva samples were deposited immediately (no freezing step) on C6/36 cells to maximize CHIKV detection. 30 µL of saliva sample were immediately mixed
with 70 µL of TRIzol (Life Technologies) and stored at -80°C before RNA isolation. The rest of the samples were stored at -80°C as a backup.

RNA isolation from saliva
Total RNA was isolated from 30 µL of saliva mixed with 70 µL TRIzol and then stored at -80°C, as described (Raquin et al., 2017). After thawing samples on ice, 20 µL chloroform (Sigma) were added. The tubes were mixed vigorously, incubated at 4°C for 5 min and centrifuged at 17,000 G for 15 min, 4°C. The upper phase was transferred in a new tube containing 60 µL isopropanol supplemented with 1 µL GlycoBlue (Life Technologies). Samples were mixed vigorously and stored at -80°C overnight to allow RNA precipitation. After 15 min at 17,000 G, 4°C, the supernatant was discarded, and the blue pellet was rinsed with 500 µL ice-cold 70% ethanol in water. The samples were centrifuged at 17,000 G for 15 min, 4°C, the supernatant was discarded, and the RNA pellet was allowed to dry for 10 min at room temperature. Ten µL RNase-free water (Gibco) were added, and samples were incubated at 37°C for 10 min to solubilize RNA prior to transfer in RNAse-free 96-well plates and storage at -80°C.

CHIKV load quantification in saliva
Total RNA (2 µL) isolated from individual mosquito saliva were used as template in a one-step TaqMan RT-qPCR assay. The QuantiTect Virus kit (Qiagen) was used to prepare the reaction mix in a final volume of 30 µL. The reaction solution consisted of 6 µL 5X master mix, 1.5 µL primers (forward 5'-CCCGTAAAGACGGTGAA-3' and reverse 5'-CTCCGGATATGCGAGAT-3') and TaqMan probe (5'-FAM-TGCCCGAGTGACCATGCC-BHQ1-3') (Hurk et al., 2010) mixed at 0.4 µM and 0.2 µM final concentration respectively, 0.3 µL 100X RT mix, 20.2 µL RNase-free water (Gibco) and 2 µL template saliva RNA. RT-qPCR reaction was conducted on a StepOne Plus machine (Applied) for 20 min at 50°C (RT step), 5 min at 95°C (initial denaturation) and 40 cycles with 15 s at 95°C and 45 s at 60°C. Serial dilutions of CHIKV 0.21 synthetic RNA from 8 to 1 log_{10} copies/µL were used as an external standard to estimate CHIKV RNA copies in saliva samples. Each plate contained duplicates of standard synthetic RNA samples as well as negative controls and random saliva samples without reverse transcriptase (RT-) also in duplicate. Aliquots from the same standard RNA (thawed only once) were used for all the plates, and samples from a single time-point were measured on the same plate to allow sample comparison.

Statistical analyses
Mosquito infection (number of CHIKV-positive mosquito bodies / number engorged mosquitoes), dissemination (number of positive CHIKV-saliva / number of CHIKV-positive bodies) and transmission rate (number of positive heads / number of CHIKV-positive heads) were analysed by logistical regression and considered as binary response variables. The time (dpe) and virus dose (log_{10} FFU/mL) were considered continuous explanatory variables in a full factorial generalized linear model with a binomial error and a logit link function. Logistic regression assumes a saturation level of 100% and could not be used to model the relationship between the probability of transmission (response variable) and the time post-infection, the dose and their interaction (predictors). Therefore, we first estimated the saturation level (K) for each dose and subtracted the value N = number of mosquitoes with CHIKV dissemination x (100% - K) to the number of mosquitoes without virus in their saliva at each time post virus exposure to artificially remove mosquitoes that would never ultimately transmit the virus from the dataset. Logistic regression was then used on these transformed data to predict transmission rates across time post virus exposure and the virus dose (Figure S2).

The statistical significance of the predictors’ effects was assessed by comparing nested models using deviance analysis based on a chi-squared distribution. All the statistical analyses were performed in R Studio (Posit), and figures were created with the package ggplot2 within the Tidyverse environment (Wickham et al., 2019). The R script used for this study is available, and supplementary table 1 summarizes the proportion of infected, disseminated and infectious mosquitoes for all the experiments conducted.

Epidemiological modelling using nosoi
A series of stochastic agent-based model simulations were performed using the R package nosoi and a specific branch available on nosoi’s GitHub page (https://github.com/slequime/nosoi/tree/fontaine) as previously done (Lequime et al., 2020). Briefly, 100 independent simulations were run in replicates for each condition. Each simulation started with one infected human and was run for 365 days or until the allowed
number of infected individuals (100,000 humans or 1,000,000 mosquitoes, respectively) was reached. We considered transmission only between an infected mosquito and an uninfected human or between an infected human and an uninfected mosquito. Vertical and sexual transmission, and the impact of potential superinfection were ignored during the simulations. We assumed no particular structure within host and vector populations.

It was also considered that humans do not die from infection and leave the simulation after they clear the infection (here 12 days). Each human agent experienced a Poisson-like distribution of bites per day with a mean value manually set at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 60 based on field measurement of *Aedes albopictus* blood-feeding behaviour (Delatte et al., 2010). Human-to-mosquito transmission followed a time-post-infection-dependent probability function, identical for all human agents, computed from the human viraemic profile (Eq. 1, see above) and dose-response experiments (Eq. 2):

\[P_{trans \, h \rightarrow m}(t) = \frac{1}{1 + \exp\left(-\left(-11.1678 + 1.9929 + (a \cdot t^3 \cdot \exp(-c \cdot t))\right)\right)} \]

(Eq. 2)

where based on our model, \(a = 0.01479\), \(b = 7.21809\) and \(c = 1.11915\).

The daily survival probability of infected mosquito agents was set empirically at 0.85 (Favier et al., 2005; Fontaine et al., 2018). Human biting (only one per mosquito agent) was set at fixed dates depending on a gonotrophic cycle duration drawn for each mosquito in a truncated Poisson distribution with a mean of 4 days (no draws below 3). The mosquito-to-human transmission was determined for each mosquito agent based on its individual EIP value acting as a threshold for transmission (if time post-infection is greater or equal to the EIP value, the mosquito can transmit). However, a certain proportion (based on saturation parameter \(K\), see above) of mosquitoes never transmitted. The individual EIP value was dependent on the virus dose that initiated the infection based on this equation (Lequime et al., 2020):

\[DD_{50} = \frac{\log\left(\frac{-\beta_0}{\beta_1 \times X_1}\right) - \beta_0 - \beta_1 \times X_1}{\beta_2 + \beta_3 \times X_1} \]

(Eq. 3)

where \(P = 0.5\) (i.e., the median transmission probability), \(\beta_0\) is the Y-intercept value (-2.328973), \(\beta_1\) (0.278953), \(\beta_2\) (0.136746) and \(\beta_3\) (0.003276) are model coefficients associated to the virus dose, time post virus exposure and their interaction, respectively. \(X_1\) represents the virus dose value.

Results

Estimating CHIKV viraemia in humans by modelisation of clinical data

Intra-human dynamic of CHIKV viraemia over time post-infection was approximated using time course of human CHIKV viraemia in individual patients from two studies (Appassakij et al., 2013; Riswari et al., 2015). CHIKV loads were assessed at 3 to 6 different time points, prior or post symptoms onset from the blood of 5 patients. The range of CHIKV viraemia duration among the 5 patients was 4-12 days, with a minimal and a maximum CHIKV load of 1 and 8.78 log\(_{10}\) PFU equivalent/mL, respectively. Of note, two patients displayed 1.04 and 3.25 log\(_{10}\) PFU equivalent/mL before symptoms onset, respectively. Modelling CHIKV viraemic profile using a Wood’s gamma-type function indicates that mean viral load rapidly increases to peak after 6.45 days (i.e. within 24h after symptoms onset) at 7.55 log\(_{10}\) PFU equivalent/mL (7.01-8.78 log\(_{10}\) equivalent PFU/mL depending on the patient) (Figure 1).
Figure 1 - Estimated time course of CHIKV load in human blood as a function of days post-infection. A Wood’s gamma-type function was used to model CHIKV viraemia dynamics based on the time course of human viraemia data in 5 patients. The black line represents model prediction using mean fit parameter values. Each dot represents a single experimental measurement with colours corresponding to different patients. The vertical gold line indicates the day of symptoms onset. The grey ribbon represents upper and lower predicted values. Refers to raw data table “ChikV_Viremia_dynamic.txt” (see data availability section).

The dose, but not the time, modulates mosquito infection rate

Female *Ae. albopictus* were exposed to a human erythrocytes suspension containing three CHIKV doses (3.94, 6.07 and 8.63 log$_{10}$ FFU/mL) that span the estimated range of human viraemia as estimated above (Figure 1). Mosquito infection rate (IR) remained below 7% (*n*=35 to 53 individuals tested) at 3.94 log$_{10}$ FFU/mL, ranged from 65 to 85% at 6.07 log$_{10}$ FFU/mL (*n*=20 to 35) and raised above 94% at 8.63 log$_{10}$ FFU/mL (*n*=12 to 24) (Figure 2A). A detail table of these data is presented in supplementary table S1. IR significantly increases with the dose but it does not depend on the time post-exposure (*Wald χ$_2^2$, P$_{dose}= 1.1 \times 10^{-6}$, P$_{time}= 0.9$ and P$_{dose*time} = 0.17$). As IR depends on the virus dose but not on the time post-exposure, we fitted a logistic model to the data considering CHIKV titer in the blood meal as a unique explanatory variable (Figure 2B). Dose-dependent IR describes a sigmoid with a median oral infection dose (OID$_{50%}$) of 5.6 log$_{10}$ FFU/mL and an OID$_{25%}$ and OID$_{75%}$ of 5.05 log$_{10}$ FFU/mL and 6.15 log$_{10}$ FFU/mL, respectively. The oral infection saturation level was reached at about 7.5 log$_{10}$ FFU/mL.
Figure 2 - Dose-dependent infection rate of *Ae. albopictus* mosquitoes exposed to CHIKV 06.21. (A) The mosquito infection rate corresponds to the proportion (in %) of mosquito bodies positive for CHIKV infection out of the total of engorged mosquitoes, measured at 2, 6, 9 and 14 days post-exposure for three CHIKV doses (3.94, 6.07 and 8.63 log₁₀ FFU/mL) in the blood meal. The number of individuals analysed at each time point is indicated above the bars that represents the 95% confidence interval. (B) Mosquito infection rate as a function of CHIKV dose in the blood meal. Blue dots correspond to the observed infection rate upon the three CHIKV doses tested. Dot size is proportional to the number of mosquitoes tested. The black line was obtained by fitting a logistic model to the data. The grey ribbon indicates the 95% confidence interval. The oral infectious dose (OID) to infect 25%, 50% and 75% of the mosquitoes exposed to CHIKV is indicated with the associated standard error (in log₁₀ FFU/mL). Refer to raw data table "Data_titer_EIPdyna_body_head_final.txt" (see data availability section).

Dose- and time-dependent mosquito dissemination dynamics

The proportion of CHIKV-positive heads among positive bodies (*i.e.*, mosquito dissemination rate, DIR) was analysed using virus dose, time post-exposure and their interaction as explanatory variables. At 2 days post-exposure, <50% of the mosquitoes presented a disseminated infection for the doses 3.94 (*n*=1 individual tested) and 6.07 (*n*=18) log₁₀ FFU/mL, whereas DIR was already above 80% after 2 days in mosquitoes exposed to 8.63 log₁₀ FFU/mL of CHIKV (*n*=23) (Figure 3A). Notably, DIR increases >80% for all the three doses after 6 dpe (*n*=1 to 29 individual tested per time point and dose) (Figure 3A and table S1). Although they are not in interaction, both time and dose impact DIR (Wald χ², P_{dose} = 8.29 x 10⁻⁶, P_{time} = 1.75 x 10⁻⁶ and P_{dose*time} = 0.83). The plateau was 100% at doses 3.94 and 8.63 log₁₀ FFU/mL and 95.6% at the dose 6.07 log₁₀ FFU/mL (*n*=22/23). The time to reach 50% dissemination in *Ae. albopictus* exposed to CHIKV was 7.5 days, 2.2 days and <1 day for 3.94, 6.07 and 8.63 log₁₀ FFU/mL CHIKV doses in the blood meal, respectively. DIR was inferred from experimental data for a larger set of CHIKV dose ranging from 3 to 8 log₁₀ FFU/mL (Figure 3B). All the CHIKV doses tested led to 100% dissemination within the 40 days range used for predictions, although a longer time is required to reach this plateau at the lowest dose.
Figure 3 - Dose-dependent dissemination rate of *Ae. albopictus* mosquitoes exposed to CHIKV 06.21. (A) The mosquito dissemination rate corresponds to the number of CHIKV-positive heads out of the infected (CHIKV-positive bodies) individuals, measured at 2, 6, 9 and 14 days post-exposure for three virus doses (3.94, 6.07 and 8.63 log_{10} FFU/mL) in the blood meal. Dot size is proportional to the number of mosquitoes tested. No disseminated females were detected at day 14 post-exposure at the 3.94 log_{10} FFU/mL dose. Logistic regression was used to model the time-dependent effect of the virus dose on mosquito dissemination rate. Lines correspond to fit values with their 95% confidence intervals displayed as ribbons. The time needed to reach 50% dissemination is 7.5, 2.2 and <1 day for the 3.94, 6.07 and 8.63 log_{10} FFU/mL CHIKV doses, respectively, as indicated within each facet label. (B) Predicted dissemination dynamics according to virus dose and time post-exposure for a range of CHIKV blood meal titers (3 to 8 log_{10} FFU/mL). Refers to raw data table "Data_titer_EIPdyna_final.txt" (see data availability section).

Time post-exposure modulates transmission rate and viral load in the saliva

The presence of infectious CHIKV particles in individual mosquito saliva collected by forced salivation technique was monitored at a fine time scale. This allowed us to measure the transmission rate (TR) and quantify individual viral load in saliva over time, and to estimate the extrinsic incubation period (EIP). Two virus doses (5.68 and 8.06 log_{10} FFU/mL) were used to obtain a workable proportion of infectious mosquitoes at a high number of time points that covers mosquito expected lifespan while remaining in the range of human viraemia. From day 2 post-exposure, TR increases following a sigmoid shape, reaching a plateau of around 60% for both doses (Figure 4A). TR was analysed using virus dose, time post-exposure and their interaction as explanatory variables, and only time was significant (Wald χ², P_{time} = 0.0037, P_{dose} = 0.18, and P_{dose*time} = 0.8). Infectious saliva samples were detected as soon as day 2 post-exposure to CHIKV, with a 33% TR at dose 5.68 log_{10} FFU/mL (n=1/3 individuals tested) and 14% at dose 8.06 log_{10} FFU/mL (n=2/14). The time needed to reach 50% infectious mosquitoes (i.e. Extrinsic Incubation Period 50%, EIP_{50%}) was 7.5 and 3.5 days for doses 5.68 and 8.06 log_{10} FFU/mL, respectively. A TR saturation at 100% is a prerequisite to applying logistic regression analysis to the data. Therefore, the proportion of mosquitoes that would not ultimately transmit the virus was artificially removed from the dataset based on the predicted saturation level at each dose (i.e., 40% of mosquitoes without the virus in their saliva were removed at each time post-infection). Logistic regression was used on these transformed data to predict TR across a range of doses over time (Figure 5).

To decipher if CHIKV load in the saliva could be associated with the virus dose mosquitoes were challenged with, total RNA was isolated at each time point from the saliva of individual mosquitoes exposed to 5.68 or 8.06 log_{10} FFU/mL. Viral load was measured by TaqMan RT-qPCR assay and analysed according to virus dose and time post-exposure. A high individual variation is noticed (up to 10,000 fold difference between individuals), although CHIKV load in the saliva seems to decrease over time (Figure 4B). Only the time post-exposure significantly affected viral load when considering saliva samples that were CHIKV-positive both in qRT-PCR and in infectious titration (Anova, P_{time} = 0.006, P_{dose} = 0.66 and P_{dose*time} = 0.94). Of note, both time

Note: The text contains a figure citation, which is not visible in the image. The citation is included as follows: Figure 3 and Figure 4.
and virus dose affected viral load in the saliva when considering RNA-positive samples regardless of the presence of infectious virus (Figure S3).

![Graph A](image1.png)

Figure 4 - Transmission dynamics of CHIKV 06.21 by Ae. albopictus. (A) Mosquito transmission rate corresponds to the number of CHIKV-positive saliva out of the number of CHIKV-positive heads collected at 2, 3, 4, 5, 6, 7, 10, 12, 14, and 20 days post-exposure for two virus doses (5.68 and 8.06 log_{10} FFU/mL) in the blood meal. Dot size is proportional to the number of saliva tested. (B) CHIKV RNA load of each saliva scored positive for infectious CHIKV was measured by TaqMan RT-qPCR assay using a synthetic RNA as standard, then expressed in log_{10} CHIKV RNA copies/saliva. Each dot represents a saliva sample from a mosquito exposed to the indicated dose. Refers to raw data tables “Data_titer_EIPdyna_final.txt” and “Data_CHIKV_RNA_load_saliva.txt” (see data availability section).

Simulation of CHIKV epidemic upon dose-dependent intra-vector dynamics

A stochastic agent-based model was used to assess the epidemiological impact of within-host CHIKV dynamics using the R package nosoi, as done previously for ZIKV (Lequime et al., 2020). Starting with one infected human in a population of susceptible humans and mosquitoes, the model simulates CHIKV transmissions according to human viraemia, its derived probability of mosquito infection, and virus transmission timeliness (EIP). The model was run 100 independent times for a maximum of 365 days for a range of eleven mean individual mosquito biting rates (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 60 independent mosquitoes biting per person per day). Simulations led to large outbreaks (>100 secondary infections) even under a low mosquito biting rate (Figure 5A). The maximum threshold of mosquito infections was reached regardless of biting intensity, although the time needed to reach this threshold and the inter-simulation variation were higher at the lowest biting intensity (i.e. 1 bite per day) compare to other conditions (Figure 5B). Accordingly, secondary cases values distributions across simulations were narrow for all conditions except at 1 bite per day reflecting the explosive nature of the outbreak. The mean secondary case values increases as a function of the mosquito biting intensity with a mean (± SD) of 3.68 (± 1.92), 7.37 (± 2.71), 11.06 (± 3.32), 14.75 (± 3.84), 18.43 (± 4.29), 22.12 (± 4.7), 25.81 (± 5.07), 29.5 (± 5.43), 33.18 (± 5.75), 36.87 (± 6.07) and 221.15 (± 6.09) for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 60 mosquito bites per person per day, respectively (Figure 5C).
Figure 5 - Influence of dose-dependent intra-mosquito CHIKV dynamics on outbreak simulations with various levels of mosquito bites. Stochastic agent-based epidemiological simulations considering within-vector infection dynamics on transmission probability during mosquito-human infectious contacts were performed in 100 independent replicates. A total of 11 mosquito bite intensity levels were tested: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 60 bites per human per day. (A) Stacked proportions of outbreak simulations resulting in no secondary infected human host, < 100 and \geq 100 infected human hosts. (B) Cumulative number of infected humans over time. Each curve represents a simulation run. (C) Violin plots showing the number of secondary cases densities for each intensity of mosquito exposure. Refers to raw data tables “Compiled_results_run5.csv”, “cumulative_run5.csv” and “R0dist_run5.csv” (see data availability section).
Discussion

Vector competence (VComp) of *Aedes albopictus* for chikungunya virus (CHIKV) has been widely studied, notably since the La Réunion outbreak in 2006. VComp studies outline *Ae. albopictus* overall potential for CHIKV transmission although knowledge gaps remain regarding intra-vector virus dynamics and its impact on CHIKV epidemic potential notably regarding the virus dose. Our work contributes to fill these gaps, providing important data on the interplay between CHIKV and *Ae. albopictus* as well as on the viremia-dependent human infectiousness for mosquitoes.

A CHIKV journey in the mosquito

Ae. albopictus midgut infection is strongly influenced by CHIKV dose in the blood meal. Previous studies documented an oral infectious dose for 50% of the mosquitoes (OID$_{50%}$) ranging from 1.7 to 3.52 log$_{10}$ infectious particles per mL of blood for CHIKV 06.21 and thus lower than the 5.60 log$_{10}$ FFU/mL OID$_{50%}$ estimated in our *Ae. albopictus* population (Tssetsarkin et al., 2007; Pesko et al., 2009; Hurk et al., 2010). ZIKV OID$_{50%}$ was 5.62 log$_{10}$ FFU/mL in *Ae. albopictus* while in *Ae. aegypti*, ZIKV and DENV OID$_{50%}$ ranged from 4.73 to 8.10 log$_{10}$ FFU/mL and from 3.95 to 5.5 log$_{10}$ FFU/mL, respectively (Nguyet et al., 2013; Aubry et al., 2020; Lequime et al., 2020). Altogether, it shows that mosquito dose-response to arbovirus infection impacts viral emergence depending on the mosquito and virus genotypes considered, although the underlying genetic determinants remain unclear (Aubry et al., 2020). The CHIKV time-independent infection rate and relatively low OID$_{50%}$ in *Ae. albopictus* suggests that primary infection of midgut cells is rapid and efficient. Such CHIKV midgut infection pattern could be promoted by the presence of several potential midgut receptors for Alphavirus entry in mosquitoes (Franz et al., 2015). Importantly, a 0.5 log$_{10}$ FFU/mL increase in OID$_{50%}$ during the exponential phase results in twice as much infected mosquitoes, which could exacerbate outbreaks, notably upon large vector densities. Therefore, dose-response experiments at a small dose range for each virus and mosquito genotype of interest would significantly improve our understanding of vector competence.

CHIKV dissemination from the *Ae. albopictus* midgut depends on the interaction between time post-exposure and virus dose. A previous study showed that at day 6 post-exposure, CHIKV dissemination rate in *Ae. albopictus* increases with virus dose, being ~10%, ~50% and >80% upon 3.6, 4.4 and 5.2 log$_{10}$ PFU/mL in the blood meal respectively (Pesko et al., 2009). Here, we show that if at least 6 days are needed to reach ~30% dissemination upon 3.94 log$_{10}$ FFU/mL, virus doses of 6.07 and 8.63 log$_{10}$ FFU/mL led overall to ~90% dissemination regardless of the time point (except at day 2 for the 6.07 log$_{10}$ FFU/mL dose where only 40% dissemination was observed). Of note, CHIKV dissemination rate at 3.94 log$_{10}$ FFU/mL shall be interpreted with caution due to the low sample size that arise directly from the low infection rate (1.9 to 6.5%, n = 37 to 53 individuals per time point). These results reveal the ability of CHIKV to efficiently disseminate from the midgut, as modelling for a larger dose range estimates that all infected mosquitoes eventually disseminate even at the lowest dose considered (2 log$_{10}$ FFU/mL). CHIKV and ZIKV present a nearly identical OID$_{50%}$ suggesting similar midgut infection potential in *Ae. albopictus*. However, ZIKV dissemination is slower and, to a minor extend, reaches lower value compared to CHIKV (Lequime et al., 2020). This discrepancy might be due to viral replication in the midgut as dissemination rate correlates with midgut viral load (Houk et al., 1981; Bosio et al., 1998; Dickson et al., 2014; Vazeille et al., 2019; Carpenter et al., 2021). CHIKV dissemination might arise from an efficient replication in the midgut tissue. Recently, the CHIKV 3’ untranslated region was recently shown to promote dissemination through an increased viral replication in the mosquito midgut (Merwaiss et al., 2020). Identifying mosquito factors that impede viral replication, for instance by interfering with key virus replication determinants, represents an interesting lead for engineered vector control approaches that could limit arbovirus spread (Raquin et al., 2017; Merkling et al., 2020; Williams et al., 2020; Dong et al., 2022).

Ultimately, arboviruses infect and replicate in mosquito salivary glands, this step being essential to allow virus transmission to the host (Vega-Rúa et al., 2015; Raquin & Lambrechts, 2017). Virus prevalence in the head is often used as a proxy for transmission potential but it is likely an overestimate due to salivary glands barriers, notably for CHIKV (Sanchez-Vargas et al., 2021). Our study shows that ~60% of the mosquitoes with disseminated infection eventually become infectious, this being an underestimate of mosquito-to-host transmission potential due to the use of forced salivation technique (Gloria-Soria et al., 2022). Moreover, transmission rate strongly depends on the time post-exposure. Previously, the time to
reach 50% of infectious mosquitoes in the population (EIP50%) was estimated by a meta-analysis at 7 days
(±1 day), based on dissemination data and for mosquitoes exposed to relatively high virus doses
(Christofferson et al., 2014). Despite no overall effect of virus dose on the transmission rate (Pdose = 0.18),
CHIKV EIP50% was 7.5 and 3.5 days in mosquitoes exposed to 5.68 or 8.06 log_{10} FFU/mL, respectively,
suggesting that virus dose might influence CHIKV transmission. Increasing sample size and/or testing an
intermediate virus dose (e.g. 6 log_{10} FFU/mL) could help to better capture the impact of virus dose on
transmission rate and resolve this discrepancy. Interestingly, when considering all CHIKV-positive salvias
(including the ones with only CHIKV RNA but no infectious virus), the CHIKV RNA load in the saliva depends
on time post-exposure and virus dose but not in interaction. Overall, the CHIKV load in saliva seems higher
at high dose but decreases overtime, questioning arbovirus-salivary glands interaction. In a previous study,
individual ZIKV-disseminated Ae. aegypti mosquitoes were offered successive non-infectious blood meals
in an attempt to monitor expelled virus during feeding in a non-sacrificial manner. Authors observed an
on/off presence of ZIKV in the blood meal for a single individual over time; however, whether this is due to
biological or methodological causes is unclear (Mayton et al., 2021). In Ae. albopictus, up to 10,000-fold
difference of CHIKV RNA load in the saliva was found between individuals at a given time point and dose,
in accordance with previous results (Dubrulle et al., 2009; Bohers et al., 2020; Robison et al., 2020). No
correlation was found between CHIKV titer in the salivary glands and in the saliva, that might be linked with
such inter-individual variations (Sanchez-Vargas et al., 2019). Despite several studies that identified
histological and genetical factors modulating viral infection in this tissue, it is still unclear how and in which
amount infectious virions are produced in salivary glands and then transferred into the saliva over time
(Ciano et al., 2014; Modahl et al., 2019; Chowdhury et al., 2021; Sanchez-Vargas et al., 2021). Notably, viral
particles in the saliva might use specific viral factors and/or mosquito saliva proteins to persist in the saliva
and promote their transmission (Pompon et al., 2017; Marin-Lopez et al., 2021). This is key as virus titer in
the mosquito inoculum is associated with viraemia level and symptoms severity in mice and macaques
models (Labadie et al., 2010; Zhang et al., 2022).

Human viremia and mosquito infection

A large majority of VComp studies exposed Ae. albopictus to a high (>7 log_{10} plaque-forming units
(PFU)/mL) CHIKV titer in the blood meal (Coffey et al., 2014). According to our estimate, CHIKV viraemia in
humans can reach >7 log_{10} PFU equivalent per mL of blood, although this corresponds to the highest value
measured within a short time window (<2 days). Our CHIKV viraemia estimate from human longitudinal
data lasts from 4 to 12 days with a mean maximum titer of 7.55 log_{10} PFU/mL, which is largely supported
by previous human and nonhuman studies (Lanciotti et al., 2007; Panning et al., 2008; Labadie et al., 2010;
Schwartz & Albert, 2010). The mean human viraemia is above 3.94 log_{10} FFU/mL during 5.5 days, implying
that humans are infectious to mosquitoes during more than half of their viraemia. These data are key to
improve sanitary guidelines for the management of CHIKV infections and spread. However, major
differences in CHIKV viraemia magnitude and length are observed between individual hosts, which can be
associated with host and/or virus genotypes as observed in dengue virus (DENV)-infected patients (Nguyet
et al., 2013). In addition, if artificial mosquito blood feeding limits variation in blood composition and
promotes reproducibility, it does not necessary represent the native infectiousness of human-derived
arbovirus for mosquitoes. This is partly linked to host plasma factors level (IgM, IgG, low-density
lipoproteins or gamma-aminobutyric acid) while asymptomatic DENV cases are more infectious to
mosquitoes than symptomatic counterparts at a given dose suggesting a link between host immune
response and vector transmission (Nguyet et al., 2013; Duong et al., 2015; Wagadar et al., 2017; Zhu et al.,
2017). Moreover, for CHIKV ~85% infections are symptomatic with a median blood titer about 100-fold
higher compared to asymptomatic carriers, although this difference was not statistically significant
(Appassakij et al., 2013). Thus, improving epidemiological models by implementing the time-dependant
human host infectiousness to mosquitoes represents an interesting lead to better anticipate and prevent
CHIKV outbreaks. This notably prompts the need for viraemia monitoring over time in large groups of
patients infected by arboviruses, using standardized virus titration procedures to facilitate comparisons
and calibrate dose-response experiments in mosquitoes. This also requires other improvements of
modelling strategies to account for Ae. albopictus tendency to take several consecutive blood meals,
mosquito and human populations structure or eventual sanitary measures that could be implemented
(Delatte et al., 2010; Armstrong et al., 2019; Fikrig & Harrington, 2021). Although those limitations could
modulate the explosiveness of the outbreak and could be improved, our data support that CHIKV
transmission potential of local *Ae. albopictus* is not a limiting factor for local CHIKV emergence and spread.

Finally, such an experimental design can be used to investigate the impact of several (a)biotic factors on
VComp, as exemplified here with virus dose that showed a major effect on intra-vector dynamics and
consequently on virus propagation. In conclusion, we underline the importance of testing multiple pairs of
mosquito and virus genotypes to assess VComp in a dynamic manner, under a standardized procedure and
coupled to modelling tools in order to get the most of vector competence assays. Together, this work can
help to improve vector control strategies and case management by health authorities.

Appendices

FigS1 - CHIKV infectious titer is stable upon a one hour incubation at 37°C in human erythrocytes
suspension. Refers to raw data table “blood_titration_FFU.txt” (see data availability section).

FigS2 - Rescaled mosquito transmission dynamics. Refers to raw data table
“Data_titer_EIPdyna_final.txt” (see data availability section).

FigS3 - Time-course of CHIKV load in mosquito saliva. Refers to raw data table
“Data_CHIKV_RNA_load_saliva.txt” (see data availability section).

TabS1 - Proportion of infected, disseminated and infectious mosquitoes over time according to the
dose of CHIKV in the blood meal. Refers to raw data table “Raw_data_viginier_et_al2023” (see data
availability section).

Acknowledgements

This project was funded by the scientific breakthrough project Micro-Be-Have (Microbial impact on
insect behavior) of the Université de Lyon within the program Investissements d’Avenir (ANR-11-IDEX-
0007; ANR-16-IDEX-0005). We thank the Equipex InfectioTron program and its project manager Isabelle
Weiss. We also thank all the members of the Micro-Be-Have consortium for insightful discussions. We
thank Anna-Bella Failloux and Patrick Mavingui for the CHIKV 06.21 isolate. We acknowledge the
contribution of SFR Biosciences (UAR3444/CNRS, US8/Inserm, ENS de Lyon, UCBL) AniRa biosafety level 3
platform (Marie-Pierre Confort) and plateau Analyse Génétique et Cellulaire (Bariza Blanquier) facilities in
Lyon.

Data, scripts, code, and supplementary information availability

Data, R scripts, supplementary information and main figures in full size are available online:
https://doi.org/10.5281/zenodo.8033668

Conflict of interest disclosure

The authors declare that they comply with the PCI rule of having no financial conflicts of interest in
relation to the content of the article.

Sebastian Lequime is a recommender for PCI infections.

Author contributions

BV: Investigation; Data curation; Validation
LC: Investigation; Data curation; Validation
CG: Investigation; Data curation; Validation
EM: Resources
CM: Resources
CVM: Funding acquisition; Resources; Supervision; Writing – review and editing
GM: Funding acquisition; Writing – review and editing
AF: Data curation; Formal analysis; Software; Visualization; Methodology; Writing – review and editing
SL: Data curation; Formal analysis; Software; Visualization; Methodology; Writing – review and editing
MR: Funding acquisition; Supervision; Writing – review and editing
FA: Funding acquisition; Project administration; Supervision; Writing – review and editing
VR: Conceptualization; Investigation; Formal analysis; Data curation; Methodology; Investigation; Project administration; Supervision; Validation; Visualization; Writing – original draft; Writing – review and editing

Funding

Micro-Be-Have (Microbial impact on insect behavior) of the Université de Lyon within the program Investissements d’Avenir (ANR-11-IDEX-0007; ANR-16-IDEX-0005).

References

Chowdhury A, Modahl CM, Missé D, Kini RM, Pompon J (2021) High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Scientific Reports, 11, 23696. https://doi.org/10.1038/s41598-021-03211-0

RCoreTeam (2022) R Core Team (2021) R: A Language and Environment for Statistical Computing.

