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ABSTRACT 

Background. Preterm birth complications are the leading causes of death among children under 

five years. A key practical challenge, however, is the inability to accurately identify pregnancies 

that are at high risk of preterm delivery, especially in resource-limited settings where there is 

limited availability of biomarkers assessment. 

Methods. We evaluated whether risk of preterm delivery can be predicted using available data 

from a pregnancy and birth cohort in Amhara region, Ethiopia. All participants were enrolled in 

the cohort between December 2018 and March 2020. The study outcome was preterm delivery, 

defined as any delivery occurring before week 37 of gestation regardless of vital status of the 

fetus or neonate. A range of sociodemographic, clinical, environmental, and pregnancy-related 

factors were considered as potential inputs. Cox and accelerated failure time models, and 

decision tree ensembles were used to predict risk of preterm delivery. Model discrimination was 

estimated using the area-under-the-curve (AUC). Additionally, the conditional distributions of 

cervical length (CL) and fetal fibronectin (FFN) were simulated to ascertain whether those 

factors could improve model performance. 

Results. A total of 2493 pregnancies were included. Of those, 138 women were censored due to 

loss-to-follow-up before delivery. Overall, predictive performance of models was poor. The 

AUC was highest for the tree ensemble classifier (0.60, 95%CI [0.57, 0.63]). When models were 

calibrated so that 90% of women who experienced a preterm delivery were classified as high 

risk, at least 75% of those classified as high risk did not experience the outcome. The simulation 

of CL and FFN distributions did not significantly improve models’ performance. 

Conclusions. Prediction of preterm delivery remains a major challenge. In resource-limited 

settings, predicting high-risk deliveries would not only save lives, but also inform resource 

allocation.  It may not be possible to accurately predict risk of preterm delivery without investing 

in novel technologies to identify genetic factors, immunological biomarkers or the expression of 

specific proteins. 
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INTRODUCTION 

Globally, almost 15 million babies are born preterm before 37 weeks of gestation each year [1]. 

A variety of factors are known to be associated with risk of preterm birth, including obstetrics 

history, anthropometric measurements, infections, ultrasound measurements and biological and 

genetic markers [2,3]. Accurate prediction tools to identify women at an increased risk of 

preterm delivery would allow policy makers, practitioners and researchers to target interventions 

designed to reduce preterm deliveries. Some studies conducted in high income settings 

developed predictive models to classify women based on their risk for preterm birth considering 

multiple maternal characteristics [4,5]. Their discriminative performance was modest (area under 

the receiving operator characteristic curve (AUC) from 0.62 to 0.70), with generally lower 

performance when performing external validation [5]. 

Targeting interventions to high-risk pregnancies is a critical challenge because of the lack of 

accurate prediction tools. Some published models were developed for women with a priori 

known risk factors like preterm labor or multiple pregnancy [6-8]. Other models used predictors 

that are not readily available in resource-limited settings such as cervical length (CL), bacterial 

vaginosis, fetal fibronectin (FFN), cytokine concentration and other biomarkers [9-11]. 

Additionally, to our knowledge, no published model handled competing risks of stillbirth, or 

considered a combined outcome of preterm delivery regardless of vital status of the fetus or 

neonate.  However, preterm and stillbirth share common causes and risk factors, and it is likely 

that the biological mechanisms that trigger preterm labor or rupture of membranes may lead to 

the delivery of a preterm stillborn in extreme cases [12,13]. Overall, there is a gap in the 

development of prediction tools that are accurate and applicable to the general population, with 

and without a priori risk, especially in low-resource countries where data on biomarkers that 

could contribute to improve model performance are not commonly available.  

Most preterm birth cases occur among women without known risk factors [14,15]. Limited 

availability of promising biomarkers to predict preterm birth in low-resource settings make it 

critical to develop context-specific predictive tools. We use large datasets from the Birhan 

pregnancy cohort [16], to test whether it is possible to predict risk of preterm delivery in rural 

Ethiopia. Additionally, we aim to ascertain whether it would be effective to invest in the 
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collection of known key predictors such as CL or FFN to improve accuracy of predictions by 

simulating the conditional distribution of those two factors.  

 

METHODS 

Study design and setting 

We conducted a cohort study in the Birhan field site, including 16 villages in Amhara region, 

Ethiopia, covering a population of 77,766, to estimate morbidity and mortality outcomes among 

17,108 women of reproductive age and 8,554 children under-five with house-to-house 

surveillance every three months. The site is a platform for community and facility-based research 

and training that was established in 2018, with a focus on maternal and child health [17]. Nested 

in the site is an open pregnancy and birth cohort that enrolls approximately 2,000 pregnant 

women and their newborns per year with rigorous longitudinal follow-up over the first two years 

of life and household data linked with health facility information [16]. The catchment area is 

rural and semi-urban, covers both highland and lowland areas, and includes two different 

districts, Angolela Tera, and Kewet/Shewa Robit. 

We used data from the Birhan Health and Demographic Surveillance System (HDSS) and the 

nested pregnancy and birth cohort, Birhan Maternal and Child Health (MCH) cohort to develop a 

series of risk prediction models for preterm delivery [16,17]. The HDSS provides estimates and 

trends of health and demographic outcomes including morbidity among women of reproductive 

age and children under two years and births, deaths, marriages, and migration in the entire 

population [17]. The pregnancy and birth cohort, generates evidence on pregnancy, birth, and 

child outcomes using clinical and epidemiological data at both the community and health facility 

level  [16]. 

Study participants 

The sample for this study included women enrolled during pregnancy in the MCH cohort 

between December 2018 and March 2020. They were followed-up in home and facility visits 

through delivery. Women who were enrolled during pregnancy and were followed up beyond 28 

weeks of gestation were included in the study. This gestational age cut-off was used because in 
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Ethiopia stillbirths are considered ≥28 weeks. We excluded newborns with implausible 

gestational ages at birth: <28 weeks due to the definition of stillbirth, and ≥46 weeks. 

Study variables and definitions 

The outcome of this study was preterm delivery, a composite indicator defined as any delivery 

occurring before 37 completed weeks of gestation, regardless of vital status of the fetus or 

neonate. This includes both preterm births (live birth prior to completion of week 37 of 

gestation) [18], as well as stillbirths (any fetal death after 28 completed weeks of gestation) [19] 

which occurred before 37 weeks of gestation. 

Gestational age was estimated using the best available method from ultrasound measurements, 

reported date of last menstrual period, fundal height or maternal recall of gestational age in 

months. Detailed information on these estimations can be found elsewhere [20]. 

The selection of potential predictors was guided by literature review and expert knowledge from 

study obstetricians and pediatricians. Predictors with low prevalence rates in the sample (rare 

events with ≤ 5 cases) were dropped. Over 70 socio-demographic, biological, environmental and 

pregnancy-related predictors were included in the initial models. The complete list of assessed 

predictors can be found in Table S1 (Online Supplementary Document 1). Dummy variables 

indicating missingness for each predictor were included as additional variables, an approach that 

is justified for predictive models because it reflects the complete state of knowledge available at 

the time of prediction.  

Analysis 

Descriptive statistics 

A descriptive analysis of the background characteristics of women who experienced term 

compared to preterm delivery was performed using t-test for continuous variables, chi-square test 

for most of the binary variables and Fisher’s exact test for multiple gestations, to test for 

statistically significant differences between groups.  

Prediction models 

Five models were fit to predict risk of preterm delivery, including linear models and nonlinear 

decision tree approaches. All five strategies were designed to predict the outcome of preterm 
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delivery using information available at 28 weeks of gestation. The first four models were time-

to-event methods which modelled the time until delivery from the 28th week gestation mark, 

accounting for left truncation and right censoring of person-time. Left truncation arises when 

women are enrolled beyond 28 weeks of gestation while right censoring arises when follow-up 

ceases prior to observation of the event of interest (e.g. due to outmigration or loss-to-follow-up). 

The first model was a Cox proportional hazards model, fit using the R package survival [21]. 

Second, an accelerated failure time model was fit with a log-logistic distribution using the R 

package flexsurv [22]. Third, a decision tree was fit using the R package LTRtrees that extends 

previous uses of a decision tree in survival analysis to account for left truncation and right 

censoring (LTRCART, left truncation right censoring classification and regression trees) [23]. 

Fourth, a decision tree ensemble was implemented using the eXtreme Gradient Boosting (XGB) 

R package which uses a Poisson likelihood function proposed by Fu and Simonoff (2017) to 

account for right censoring and left truncation [23,24]. Finally, a fifth analysis based on a XGB 

classification model was fit using a binary outcome (i.e. whether delivery was preterm or not) 

instead of the time-to-event. During fitting this last model, data which was either right censored 

or left truncated was excluded.  

Models were fit and evaluated using 5-fold cross validation due to the need to evaluate models 

on out-of-sample data while reserving as much data as possible for fitting [25]. All models were 

evaluated on the same held-out dataset within each fold, regardless of which data or methods 

were used while fitting the model. Model performance was assessed using the AUC to assess 

accuracy at binary classification, and the c-index to assess the fraction of pairs for which 

predicted risk was concordant with delivery time. For both metrics, a value of 0.5 represents a 

random prediction which is uncorrelated with the true outcome. Larger values indicate more 

accurate predictions, and a value of 1 represents predictions which are perfectly concordant with 

the true outcome.  

Simulation of cervical length and fetal fibronectin 

A final analysis was performed to simulate the potential impact of including CL and FFN as 

predictors. These two variables were found in past work to be significantly associated with 

preterm birth [26-28]. Since they are not regularly collected in the study region, we used 

simulation to assess the potential gain from collecting them. The simulation used data from the 
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MFMU PREDS study [29], a study which screened 2929 women for risk factors for preterm 

birth in the United States. PREDS study identified CL and FFN as key predictors for preterm 

birth [30,31]. Details on the simulation model and comparison between the simulated and real 

measurements can be found in the Supplemental Methods and Results (Online Supplementary 

Document 1).  

 

RESULTS 

The sample composed 2834 pregnancies. Among those we excluded 75 (2.6%) records with 

gestational age at delivery <28 and ≥46 weeks, and a further 266 (9.4%) pregnancies whose 

follow-up did not go beyond 28th gestational week. A total of 2493 pregnancies were included in 

the study. Of those, 138 (5.5%) women were lost to follow-up before delivery or did not have a 

recorded gestational age at delivery, so they were treated as censored observations in the time-to-

event models and excluded from the binary classification model. A total of 968 (38.8%) women 

were enrolled in the cohort after 28 weeks of gestation (left-truncation), thus, time-varying 

predictors were considered missing for them since no information on those factors was available 

at the time of prediction. These women were also excluded from the binary classification model. 

Among the 2355 women who were included in the study and followed until delivery, 14% had a 

preterm delivery. There was no difference in some background characteristics like age, body 

mass index, parity or history of previous preterm births among women with term deliveries 

compared to women with preterm deliveries (Table 1). However, the two groups showed 

significant differences in literacy (43.3% of women with term delivery were illiterate, compared 

to 50.5% of those who delivered prematurely), geographic location (42.8% of term deliveries 

occurred in the highland district within Birhan field site, compared to 52.4% of preterm 

deliveries), and multiple gestation (1.1% of term deliveries were multiple, compared to 3.4% of 

preterm deliveries). 

Some predictors had high levels of missing data, particularly where our study relied on facility 

visits. Approximately 25% of participants did not attend any antenatal care visit in the study 

health facilities after being enrolled in the cohort, thus, variables collected at antenatal care 

visits, such as current infections or concomitant diseases were missing for these women. Further, 
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over 70% of women who attended at least one antenatal care visit had missing data on lab and 

point-of-care results such as white blood cell counts, proteinuria or bacteriuria. 

The predictive performance of all models was generally poor (Table 2). The c-statistic and AUC 

were highest for the XGB classification model, with an AUC of 0.60. The receiver operating 

characteristic curves (ROC) depict the trade-off between the false and true positive rates 

achieved by varying the threshold for classifying delivery as preterm or term (Figure 1). As an 

example, at the point on this curve corresponding to a 90% true positive rate, all models had a 

false positive rate of at least 75%, indicating a lack of specificity in picking out women who are 

truly at higher risk. 

There was substantial heterogeneity in the factors that were ultimately retained in the five models 

(Table 3). Both biological and socio-demographic factors were among the top contributors of 

standard time-to-event models. Regarding decision tree models, the top five predictors are 

mainly biological, with neonatal sex being the predictor with the greatest importance. 

The performance of several individual models improved when simulated measurements of CL 

and FFN were included as features for each individual, particularly the accelerated failure time 

and LTRCART decision tree models (Table 4). However, no model exceeded an estimated AUC 

of 0.60 indicating that the overall predictability of preterm delivery did not change substantially 

from the inclusion of these additional predictors.  

 

DISCUSSION 

Our study shows that risk prediction of preterm delivery remains a challenge in the absence of 

data on biomarkers. Despite using a wide range of methodological approaches to adjust for 

missing data, competing risk of stillbirths, and late cohort enrollments, both traditional 

epidemiological and machine learning models performed poorly and had low specificity in 

identifying women who delivered before 37 weeks of gestation. This low predictive performance 

differs with existing models with higher predictive ability that were designed to predict preterm 

birth among women at an already high risk due to obstetric conditions such as twin pregnancy 

[7,8], short cervix, cervical insufficiency [10,32], or hospital admission due to preterm labor 

[6,33,34]. Other higher performing algorithms used predictors that were not available or 
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applicable in low-resource settings such as amniotic and cervical fluids [33], inflammatory 

markers [35], or method of conception [5,8]. Lack of a fixed prediction time point and competing 

risk of stillbirth are methodological gaps of most published studies. 

To our knowledge, our study is among the few in developing risk prediction models in a low-

resource setting. Only one published study presented the development of a model for preterm 

birth prediction in Ethiopia [36]. Despite reporting good model performance, this study presents 

an important limitation; it predicts preterm birth retrospectively using all information available in 

hindsight (e.g. events such as premature rupture of membranes), while our aim is to assess 

whether early prediction is possible to inform preventive interventions, leading us to fix a time 

point for prediction (28 weeks of gestation). Moreover, their study was conducted using data 

from a hospital-based cohort, likely to be composed of women at higher a priori risk of adverse 

outcomes. 

Studies carried out in Ethiopia identified risk factors for preterm delivery including obstetric 

conditions, socio-demographic characteristics, urinary and vaginal infections, and hypertensive 

disorders [37,38]. We included all these factors to build the most accurate models with the 

available data. Among all predictors, neonatal sex was assigned high importance in the decision 

tree models despite the small difference in prevalence between boys and girls. This is consistent 

with higher rates of preterm birth for male fetuses in other studies [39,40]. Nevertheless, 

prediction studies like this aim to characterize prognosis and to anticipate or forecast an 

outcome. 

We simulated the conditional distribution of CL and FFN to test whether access to these 

measurements may improve models’ predictive ability. However, the improvement of the models 

was negligible, indicating that women who are identified as high-risk via CL or FFN could also 

be identified as high risk via other predictors. Although both CL and FFN are among the most 

used indicators to identify high risk pregnancies for preterm delivery in clinical practice, their 

measurement is not always recommended in a priori low-risk populations [15,41]. Our results do 

not support the allocation of resources to CL and FFN measurement in low-resource settings to 

predict risk of preterm birth. Similarly, other studies observed a poor predictive power of CL and 

FFN in the absence of additional maternal predictors [42]. 
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The results of this study have important research-related and public health implications. Given 

the poor performance of all available predictive models, it is fundamental to continue research on 

the underlying causes of preterm delivery, better understanding the pathways between different 

risk factors and preterm birth, in order to predict and prevent preterm births in the future. Most 

cases still occur among women without any known risk factor [14,15]. It is crucial to look for 

new indicators and biomarkers of preterm delivery. Genetic factors, immunological biomarkers 

and protein expression are showing promising results [43,44]. There may be value in exploring 

the use of ‘omics’ since no biomarkers predictive of preterm birth have yet been identified [45]. 

While all settings can benefit from such technologies, from an equity perspective it may be 

especially important to ensure availability in low-resource settings where the survival of preterm 

infants is lower and identifying high-risk women can enable targeted preventative interventions. 

Predictive algorithms with modest performance could be used to identify pregnancies at a very 

low risk of preterm delivery, thus excluding them from interventions. However, a large 

proportion of women at a low risk will still be targeted in those interventions due to the low 

specificity of the models. In Ethiopia, recommending pregnant women to stay in maternity 

waiting homes is part of the birth preparedness strategy, though it has not been demonstrated to 

improve pregnancy outcomes [46,47]. Targeting the recommendation of staying in maternity 

waiting homes to a reduced number of individuals would increase the cost-effectiveness of the 

intervention and improve the pregnancy experience of some women. 

Our findings should be interpreted considering some limitations. Similar to most longitudinal 

studies, there was study attrition. To address loss to follow-up, we adjusted time-to-event models 

for censoring and created a “missing” category for all predictors with missing data. The use of a 

composite outcome that included all preterm deliveries regardless of vital status of the fetus or 

neonate did not enable the models to separately predict the risk of having a live preterm baby 

from the risk of having a preterm stillbirth. However, the use of a combined outcome allows us 

to address competing risks of preterm stillbirths, a common limitation of other available 

prediction models. Despite these limitations, our study fills an evidence gap by exploring 

prediction of preterm delivery during the first 28 weeks of gestation in a resource-limited setting 

with important restrictions in data availability. We considered a comprehensive selection of >70 

predictors and tested five different algorithms: Accelerated Failure Time, Cox, LTRCART and 

two decision tree ensembles. We acknowledge that the classification tree ensemble is not 
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recommended for data with censoring or truncation. However, we fit this model together with the 

other four algorithms for the purpose of being fully exhaustive in our effort to explore all 

potential methodological options to achieve our study aim of developing an accurate algorithm. 

The results of all of them show that the difficulty of predicting preterm delivery is robust to 

potential variation in the process of constructing risk models. 

In settings with low coverage of antenatal care and limited resources to perform ultrasound and 

biomarker measurements, predicting risk of preterm delivery remains a major challenge. New 

indicators of preterm delivery may be necessary to enable targeted interventions. 
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TABLES 

 

Table 1. Characteristics of the study sample 

Variables Total* Term delivery Preterm delivery  
 N mean SD N mean SD N mean SD p-value 

Maternal age (years) 2487 27.3 6.1 2030 27.3 6 319 27.2 6.4 0.69 
Body mass index 
(preconception) 

1108 22.0 3.1 930 22.0 3.2 138 21.9 2.6 0.60 

 N n % N n % N n % p-value 
Illiterate 2488 1105 44.4 2031 880 43.3 319 161 50.5 0.02 
Location: highland 
district (Angolela 
Tera) 

2489 1075 43.2 2032 870 42.8 319 167 52.4 <0.01 

Primiparous 2493 793 31.8 2034 627 30.8 321 108 33.6 0.34 
History of a previous 
preterm birth 

2493 47 1.9 2034 38 1.9 321 7 2.2 0.87 

Multiple gestation 2408 35 1.5 2034 23 1.1 321 11 3.4 <0.01 
Neonatal sex: female 2355 1144 48.6 2034 993 48.8 321 151 47.0 0.59 

*Total counts include censored study participants with unknown pregnancy outcome or date of delivery 

SD – Standard Deviation 

 

 

 

Table 2. Performance metrics of the different predictive models 

Model AUC (95%CI) c statistic (95% CI) 
Accelerated failure time 0.57 (0.54, 0.61) 0.53 (0.52, 0.55) 
Cox 0.51 (0.47, 0.54) 0.52 (0.50, 0.53) 
LTRCART 0.54 (0.51, 0.58) 0.53 (0.51, 0.55) 
XGBoost (classification) 0.60 (0.57, 0.63) 0.54 (0.52, 0.55) 
XGBoost (survival) 0.52 (0.49, 0.56) 0.52 (0.50, 0.53) 

AUC – Area Under the receiver operating characteristic Curve; CI – Confidence Interval;  
LTRCART – Left Truncation Right Censoring Classification And Regression Trees; XGBoost – eXtreme 
Gradient Boosting 
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Table 3. Top 5 predictors for each model: model coefficients and feature importance scores 

Model Top predictors 
 1 2 3 4 5 
Accelerated 
failure time: 
Accelerator 
factor 

Multiple 
gestation 

Lymphocyte % 
= NA 

Vaginal 
bleeding 

History of 
pre-

eclampsia 

Maternal age = 
NA 

 0.74 1.26 1.22 0.83 0.83 
Cox: 
Hazard ratio 
(95%CI) 

Multiple 
gestation 

History of 
diabetes 

Maternal age 
= NA 

Lymphocyte 
% = NA 

History of pre-
eclampsia 

 3.15 (0.61, 
16.21) 

0.33 (0.03, 
3.61) 

2.79 (1.72, 
4.55) 

2.68 (0.10, 
1.63) 

2.29 (1.44, 3.62) 

LTRCART:  
Split level 

Neonatal sex Multiple 
gestation 

NA NA NA 

 1 2 - - - 
XGBoost 
classification: 

Location 
(district) 

Parity Family size = 
top quintile 

Neonatal 
sex 

Systolic blood 
pressure 

Gain 0.11 0.10 0.10 0.09 0.08 
XGBoost 
survival: 

Neonatal sex NA NA NA NA 

Gain 1.00 - - - - 

LTRCART – Left Truncation Right Censoring Classification And Regression Trees; NA – Not 
Applicable/missing data; XGBoost – eXtreme Gradient Boosting 

 

 

 

Table 4. Performance metrics of the models with simulated measurements 

Model AUC (95%CI) c statistic (95% CI) 
Accelerated failure time 0.60 (0.56, 0.63) 0.55 (0.53, 0.57) 
Cox 0.55 (0.52, 0.59) 0.53 (0.50, 0.55) 
LTRCART 0.60 (0.56, 0.64) 0.55 (0.52, 0.57) 
XGBoost (classification) 0.60 (0.56, 0.64) 0.55 (0.52, 0.56) 
XGBoost (survival) 0.48 (0.45, 0.51) 0.50 (0.48, 0.51) 

AUC – Area Under the receiver operating characteristic Curve; CI – Confidence Interval;  
LTRCART – Left Truncation Right Censoring Classification And Regression Trees; XGBoost – eXtreme 
Gradient Boosting 
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FIGURES 

 

Figure 1. ROC curves for each model. 

AFT – Accelerated Failure Time; LTRCART – Left Truncation Right Censoring Classification And 
Regression Trees; ROC - Receiver Operating Characteristic Curve; XGB – eXtreme Gradient Boosting 
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