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Abstract 

Host genetic susceptibility is a key risk factor for severe illness associated with COVID-19. 

Despite numerous studies of COVID-19 host genetics, our knowledge of COVID-19-associated 

variants is still limited, and there is no resource comprising all the published variants and 

categorizing them based on their confidence level. Also, there are currently no computational 

tools available to predict novel COVID-19 severity variants. Therefore, we collated 820 host 

genetic variants reported to affect COVID-19 susceptibility by means of a systematic literature 

search and confidence evaluation, and obtained 196 high-confidence variants. We then 

developed the first machine learning classifier of severe COVID-19 variants to perform a 

genome-wide prediction of COVID-19 severity for 82,468,698 missense variants in the human 

genome. We further evaluated the classifier’s predictions using feature importance analyses to 

investigate the biological properties of COVID-19 susceptibility variants, which identified 

conservation scores as the most impactful predictive features. The results of enrichment 

analyses revealed that genes carrying high-confidence COVID-19 susceptibility variants shared 

pathways, networks, diseases and biological functions, with the immune system and infectious 

disease being the most significant categories. Additionally, we investigated the pleiotropic 

effects of COVID-19-associated variants using phenome-wide association studies (PheWAS) in 

~40,000 BioMe BioBank genotyped individuals, revealing pre-existing conditions that could 

serve to increase the risk of severe COVID-19 such as chronic liver disease and 

thromboembolism. Lastly, we generated a web-based interface for exploring, downloading and 
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submitting genetic variants associated with COVID-19 susceptibility for use in both research and 

clinical settings (https://itanlab.shinyapps.io/COVID19webpage/). Taken together, our work 

provides the most comprehensive COVID-19 host genetics knowledgebase to date for the 

known and predicted genetic determinants of severe COVID-19, a resource that should further 

contribute to our understanding of the biology underlying COVID-19 susceptibility and facilitate 

the identification of individuals at high risk for severe COVID-19. 

 

Main 

Investigating host genetic variation has been instrumental for understanding the 

pathophysiological processes that lead to severe COVID-191-4. A substantial number of studies 

have explored the genetic factors underlying COVID-19 host susceptibility/severity using a 

variety of methods, including: (1) candidate gene approach and gene burden tests for identifying 

immune system disorders by means of whole-exome or whole-genome sequencing, or large-

scale genome-wide association studies (GWAS); (2) frequency calculations of risk variants in 

population-based sequencing cohorts; (3) functional studies; and (4) various in silico methods 

such as molecular docking studies and binding affinity predictions 2,5-9. Consequently, the 

number of identified COVID-19-associated host genetic susceptibility variants has rapidly 

increased. However, current resources (along with review articles) include a relatively small set 

of variants10-12 and are mostly derived from GWAS summary results4.  

COVID-19-associated variants have been identified by different methodologies, 

complicating the confidence assessment of these variants as pathogenic. Also, there is currently 

no comprehensive resource describing published COVID-19-associated variants, with no tools 

available to computationally predict novel COVID-19 severity variants other than general variant 

pathogenicity predictors. Generating an in-silico tool specifically tailored for predicting COVID-

19 severity variants would facilitate the discovery of novel variants and contribute to the 

research on the pathogenesis of severe COVID-19. 

To address the shortcomings in the research of COVID-19 host-genetics, we generated 

a comprehensive COVID-19 host genetics knowledgebase, presenting the first machine 

learning classifier of COVID-19 host genetic variants and precalculated predictions for all 

possible human missense variants based on a model that learned from a broad set of variant-, 

gene-, protein- and network-level features. We also explored the biological properties of the 

variants and genes implicated in COVID-19 susceptibility using feature importance, gene-set 

enrichment, pathway and network analyses and conducted PheWAS for identifying shared 

physiological processes of COVID-19 and diseases associated with severe COVID-19 (Fig. 1). 
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Finally, we generated the COVID-19 Host Genetic Variants webpage, a comprehensive 

resource for the known and predicted COVID-19-associated variants. 

 

Results 

Curation and categorization of COVID-19 host genetic variants 

Through text mining 1,977 publications related to host genetic factors associated with COVID-

19 susceptibility/severity and systematic manual curation of 222 eligible studies, we obtained a 

list of 820 COVID-19-associated host genetic variants of which 719 were located in 295 different 

genes whilst 101 were located within intergenic regions (Fig. 1, Methods). We categorized the 

COVID-19-associated variants into four groups: (1) protective, variants associated with 

asymptomatic or milder disease; (2) risk factor, variants suggested to increase the risk of 

symptomatic COVID-19; (3) variants known to be associated with a severe form of disease, 

e.g., admission to an intensive care unit and critical COVID-19 pneumonia; and (4) other effects, 

e.g., variants which destabilize the structure of proteins related to COVID-19 susceptibility even 

if their impact on the course of the disease is unknown. To obtain a list of high-confidence 

COVID-19-associated variants, variants were also categorized into five confidence levels based 

on the published evidence (Fig. 1 and Table 1). These categories include (1) COVID-19-

associated variants with functional evidence (CAV-FE): variants identified through association 

studies or a candidate gene approach and where supporting functional data are available (e.g., 

gene expression, cell-based assay data), (2) COVID-19-associated variants (CAV): variants 

identified through association studies or a candidate gene approach, (3) Allele frequency - 

COVID-19 prevalence correlation (FCP): variants identified in studies that have investigated the 

relationship of the frequency of potential COVID-19-associated variants and COVID-19 

prevalence in different populations. (4) In silico prediction (IP): variants that were identified as 

being deleterious in studies that used only in silico methods to predict the effect of amino acid 

exchange on COVID-19 susceptibility (e.g., docking, binding affinity predictions, structural 

modeling). (5) Allele frequency - COVID-19 prevalence correlation plus in silico prediction (FCP 

+ IP): variants that fall into both FCP and IP categories. 

 

Machine learning classifier and genome-wide prediction of novel COVID-19 variants  

Variants in the category with the highest level of confidence, CAV-FE, were used to generate a 

machine learning classifier for severe COVID-19 variants. We selected a set of putatively 

neutral variants from gnomAD v2.113 and a set of known disease-causing pathological 

mutations from the Human Gene Mutation Database (HGMD®)14 for training the classifier 
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(Methods). To avoid selecting pathogenic variants that might also be associated with COVID-19 

severity, non-COVID-19 pathogenic variants with Human Phenotype Ontology (HPO)15 terms 

related to abnormalities of the immune system, respiratory system, systemic blood pressure, or 

increased weight and diabetes, were excluded. Variants were annotated with 422 features at 

the variant, protein, gene and network level (Supplementary Table 1). The dataset was split into 

training and testing sets comprising 90 and 10 percent of the data respectively, and stratified by 

gene, such that genes represented by variants in the training set were not represented by 

variants in the testing set. We performed model selection and hyperparameter tuning using 

nested cross-validation with 5-fold outer and 5-fold inner validation loops with folds stratified by 

gene. RandomForest16 achieved the highest accuracy and Matthew’s correlation coefficient with 

the lowest variance across outer folds, and was selected as the final model (Extended Data Fig. 

1). We subsequently performed hyperparameter tuning with RandomForest on the entire 

training dataset with 5-fold cross-validation for 500 iterations. The final RandomForest model 

successfully learned to discriminate between neutral/benign, non-COVID-19 pathogenic, and 

CAV-FE variants, achieving a macro-averaged ROC area under the curve (AUC) of 0.78 and an 

average precision (AP) of 0.74 (Fig. 2a,b). We further annotated all possible missense variants 

in the human genome (n = 82,468,698) and the COVID-19 severity computed predictions for 

these variants are available at https://itanlab.shinyapps.io/COVID19webpage/. 

 

Evaluation of feature importance 

We calculated Shapley-value-based explanations17 (SHAP), a unified framework for the 

evaluation of feature importance, to investigate the contributions of individual features to the 

model’s predictions. SHAP revealed that the number of frequent (minor allele frequency, MAF > 

0.05) BRAVO18 single nucleotide variants (SNV) in the 100 bp window surrounding a variant, 

variant conservation scores, and gene-level evolutionary pressure to be among the most 

impactful features of the model (Fig. 2c). Of the top twenty features identified by SHAP, six 

relate to the relative conservation of the variant site (Fig. 2c). Notably, we found that CAV-FE 

were consistently predicted to occur at significantly less conserved sites than the non-COVID-19 

pathogenic variants and, in the case of the Primate PhastCons score19, significantly less 

conserved sites than neutral variants as well (Fig. 2d, Supplementary Table 2). In similar vein, 

CAV-FE were significantly more likely to have a higher number of frequent (MAF > 0.05) 

BRAVO variants occurring within 100 and 1000 base-pair windows than both non-COVID-19 

pathogenic and neutral variants (Fig. 2e, Supplementary Table 3). Other impactful features 

included predictions of disordered protein binding residues20, the de novo mutation excess 
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rate21, the indispensability score (which estimates gene essentiality based on a gene’s network 

and its evolutionary properties22), the maximum ENCODE H3K36me3 level from 10 cell lines23, 

gene haploinsufficiency24, among others (Fig. 2c). We also assessed these features in the three 

groups of variants using Benjamini-Hochberg (B-H)-adjusted pairwise t-tests. Disordered 

residues in protein structure provide high conformational flexibility, which enables binding to 

diverse interaction partners. These residues contribute to the activation of signaling processes 

through their context-dependent folding ability25. Compared to the non-COVID-19 pathogenic 

variants and neutral variants, CAV-FE variants were less likely to be associated with a 

disordered segment (p = 6 x 10-6 and 0.049, respectively). Consistent with their low level of 

conservation, CAV-FE displayed a lower de novo mutation excess rate and indispensability 

score than non-COVID-19 pathogenic variants (p = 3.6 x 10-16 and 1.57 x 10-13, respectively) 

whereas there was no statistically significant difference between CAV-FE and neutral variants in 

relation to these features (p = 0.248 and 0.201). Histone H3 trimethylation at lysine 36 is 

associated with actively transcribed regions and also plays an important role in heterochromatin 

composition26. CAV-FE had lower H3K36me3 levels than the neutral variants (p = 0.009) 

whereas no statistically significant difference was detected between non-COVID-19 pathogenic 

and CAV-FE variants (p = 0.056). Lastly, the haploinsufficiency score is a measure of the 

ability/inability of a gene carrying a single copy of a loss of function mutation to continue to 

function properly24. Genes carrying CAV-FE variants were more tolerant of haploinsufficiency as 

compared to those with non-COVID-19 pathogenic variants (p = 8.5 x 10-5) whereas the scores 

of CAV-FE and neutral variants were similar (p = 0.212). 

 

Gene-set and pathway enrichment analyses 

We then performed gene enrichment and pathway analyses to gain further insight into the 

biological functions of the 68 genes harboring CAV-FE variants (Supplementary Table 4). 

InnateDB pathway analysis27 revealed 117 significantly over-represented pathways (B-H-

adjusted p < 0.05), the majority of which function in innate and adaptive immune responses 

(Supplementary Table 5). The most significant pathways from the KEGG database28 were toll-

like receptor signaling pathway (p = 2.06 x 10-10), hepatitis C (p = 3.62 x 10-10), cytokine-cytokine 

receptor interaction (p = 1.34 x 10-6) and natural killer cell-mediated cytotoxicity (p = 4.20 x 10-5) 

whilst interferon alpha/beta signaling (p = 6.22 x 10-10), toll-like receptor cascades (p = 6.48 x 

10-8), activation of IRF3/IRF7 mediated by TBK1/IKK epsilon (p = 6.11 x 10-7) and activated 

TLR4 signaling (p = 1.72 x 10-6) were the most significantly over-represented pathways from 

Reactome29 (Fig. 3a). The canonical pathway analyses using Ingenuity Pathway Analysis (IPA) 
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software (QIAGEN Inc., http://www.qiagen.com/ingenuity) supported the results of InnateDB by 

returning 88 significantly enriched pathways, most of which were related to the immune system 

and infection (Supplementary Table 6). Further, the results of IPA revealed that 

hypercytokinemia/hyperchemokinemia in the pathogenesis of influenza (p = 1.99 x 10-19), the 

coronavirus pathogenesis pathway (p = 6.31 x 10-19), the neuroinflammation signaling pathway 

(p = 3.09 x 10-10) and the pathogen-induced cytokine storm signaling pathway (p = 8.32 x 10-10) 

were the most significant pathways (Fig. 3a). We then evaluated significantly enriched GO 

terms in our high-confidence COVID-19 gene set using InnateDB GO analysis. The top results 

included defense response to virus (p = 6.33 x 10-13), type I interferon signaling pathway (p = 

2.21 x 10-12), innate immune response (p = 3.43 x 10-10), response to virus (p = 3.30 x 10-10) and 

cytokine-mediated signaling pathway (p = 3.48 x 10-9) (Extended Data Fig. 2, Supplementary 

Table 7). 

Next, we explored biological networks to obtain a deeper understanding of the 

interactions between the high-confidence COVID-19 genes and biomolecules. IPA network 

analysis returned a network with a p value of 10-57, which included 35 genes harboring CAV-FE 

variants (Fig. 3b). Interestingly, the top diseases and functions associated with this network 

were antimicrobial response, cellular development and inflammatory response (Supplementary 

Table 8). We also used the NetworkAnalyst tool to investigate protein-protein interaction (PPI) 

networks within high-confidence COVID-19 genes (Supplementary Table 9). The subnetwork 

that was generated based on the STRING interactome30 included 25 genes all of which were 

also identified by the IPA network analysis (Extended Data Fig. 3). The difference between the 

two networks likely arose from the involvement of both direct and indirect relationships in the 

IPA network analysis as opposed to STRING, which uses only direct PPIs. We then analyzed 

the significantly enriched diseases and biological functions in the high-confidence COVID-19 

gene set. The results obtained indicated viral infections including COVID-19 and antiviral 

response, and also inflammatory and auto-inflammatory diseases such as systemic lupus 

erythematosus (SLE), inflammatory demyelinating disease and multiple sclerosis (Fig. 4a, 

Supplementary Table 10). Consistent with the results of IPA, Enrichr HPO analysis revealed 

recurrent viral infections (HP:0004429, p = 4.21 x 10-4) as the most significantly enriched HPO 

term15,31 (Supplementary Table 11).  

 

PheWAS in the Mount Sinai BioMe BioBank 

We performed PheWAS using genotypes and electronic health records (EHR) of 39,386 study 

participants with African American (AA), European American (EA) and Hispanic American (HA) 
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ancestries from the Mount Sinai BioMe BioBank. We clustered known COVID-19 variants 

according to linkage disequilibrium (LD) in order to obtain a list of independent variants 

associated with COVID-19 (Methods). The number of independent variants based on LD was 

285 in AA, 286 in EA and 288 in HA cohorts across 458, 466 and 629 phenotypes, respectively. 

PheWAS in AA and EA groups revealed a significant association of the rs9271609-C allele at 

the HLA-DQA1 locus with type 1 diabetes mellitus (DM) (Extended Data Fig. 4a, b and 

Supplementary Tables 12 and 13). Associations of rs738409-G in PNPLA3 with chronic 

nonalcoholic liver disease and cirrhosis were noted in PheWAS of individuals with EA and HA 

ancestry (Extended Data Fig. 4b, c and Supplementary Tables 13 and 14). Moreover, rs738409-

G was significantly associated with abnormal results of liver function studies and the detection 

of abnormal serum enzyme levels in the PheWAS of the HA cohort. The other significant finding 

from PheWAS in the HA cohort was the association of rs35705950 in the proximity of MUC5B 

with alveolar or parietoalveolar pneumonitis. Our findings support the results of previous studies 

that showed the rs35705950-T allele being associated with idiopathic pulmonary fibrosis while 

being a protective variant for COVID-1932. Finally, PheWAS in the HA cohort also revealed an 

association of the rs12979860-T allele in IFNL4 with viral hepatitis and cirrhosis. The results of 

the transethnic meta-analysis highlighted another well-known genetic association, the 

association of the ABO locus (rs8176719-TC) with a hypercoagulable state and deep vein 

thrombosis33. The remainder of the meta-analysis results yielded comparable findings to the 

ancestry-specific PheWAS (Fig. 4b, Supplementary Table 15).  

 

The web-based interface of the COVID-19 Host Genetic Variants 

Finally, we generated a web-based interface allowing users to search and download published 

and predicted COVID-19-associated variants, which are publicly available at 

https://itanlab.shinyapps.io/COVID19webpage/ (Fig. 1). The website contains genomic positions 

based on genome assembly hg38, Ensembl annotations and HGVS nomenclature for the 820 

known COVID-19 susceptibility host genetic variants, as well as their effects on COVID-19 

phenotype, accession numbers of the respective studies and assigned categories based on the 

confidence level. Further, users can submit additional host genetic variants associated with 

COVID-19 susceptibility using the submission form on the website. We have also made 

accessible the PheWAS results for the known COVID-19 variants on a separate tab. The 

precomputed COVID-19 predictions for all possible missense variants are also provided on the 

website for exploration and downloading. The web server will be updated by regularly screening 

new publications and user submissions. 
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Discussion 

Identification of the genetic risk factors that contribute to human disease is an essential 

component of precision medicine and genomics. These data-driven approaches require the 

consolidation of disparate data sources and leveraging the data by developing proper analytical 

methods for the discovery of novel findings. By systematic evaluation of the host genetic 

variants involved in COVID-19 susceptibility, we determined 820 variants, of which 196 

belonged to the category with the highest confidence level. The majority of the variants 

(91.33%) in the CAV-FE category have been suggested to be risk factors or associated with 

severe COVID-19 whereas the rest have been reported as protective variants. The machine 

learning classifier that we developed using CAV-FE variants in the severity and risk factor 

categories successfully distinguished CAV-FE variants from non-COVID-19 pathogenic and 

neutral variants. The model enabled us to estimate the prediction scores for all possible human 

missense variants. The assessment of the variant-level features that contributed to the model 

set forth lower conservation levels of CAV-FE variants compared to non-COVID-19 pathogenic 

and neutral variants. It is important to note that the degree of conservation of a sequence does 

not always correlate with its functionality, which can be exemplified by the positive selection 

events elevating the frequency of functional variants34. Therefore, further investigation of the 

variant constraints is required to understand if COVID-19-associated variants are subject to 

evolutionary pressure. With respect to the gene-level interpretation, we expected to obtain 

comparable scores with CAV-FE and neutral variants for both the de novo mutation excess rate 

and indispensability score, since we selected neutral variants from the same set of genes that 

CAV-FE occurred in (Methods). 

Pathway and GO enrichment analyses in genes harboring CAV-FE variants revealed 

interferon signaling, toll-like receptor pathway and cytokine-mediated signaling, all of which 

were implicated in the pathogenesis of severe COVID-191,4-6. The most significant network 

identified by IPA contained about half of the genes carrying CAV-FE variants. The molecules 

identified in the network were found to be associated with antimicrobial response, cellular 

development, and inflammatory response consistent with their biological functions. Interactions 

between the focus molecules and the other components of the network, such as the coagulation 

factor, support the previous studies on the pathogenesis of severe COVID-1935. Therefore, the 

rest of the molecules in this network can be prioritized as candidates for future investigations in 

the pathogenesis of COVID-19 and for the discovery of druggable targets. Similarly, the 

significantly enriched diseases and functions included COVID-19, several other viral infections 
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and immunodeficiency, as well as autoimmune diseases including SLE. These results support 

the previous studies suggesting that TYK2 has opposing associations with COVID-19 

susceptibility and predisposition to autoimmune conditions32,36. Notably, the results of all gene-

set enrichment and pathway analyses are indicative of a role for COVID-19-associated genes in 

essential immune processes, thereby emphasizing the likely importance of underlying genetic 

variation on the impaired host immune response to COVID-191,3. 

The availability of a large set of COVID-19-associated variants provided us with an 

unparalleled opportunity to examine the genetic factors shared between COVID-19 

susceptibility/severity and comorbidities that might represent risk factors for worse outcomes in 

COVID-19 disease. PheWAS of individuals with AA and EA ancestries revealed the association 

of the rs9271609-T allele in HLA-DQA1 with Type 1 DM. The rs9271609-T allele has been 

implicated in COVID-19 severity35. Polymorphisms in class II HLA genes, HLA-DQ and HLA-DR, 

are well-established determinants for Type 1 DM susceptibility37. Although previous reports 

have proposed an increased risk of severe COVID-19 for patients with Type 1 DM, the opposite 

association noted in the current results provides some support for those studies that have 

argued for a relationship between autoimmune conditions and a reduced risk of severe COVID-

1932,36. The ancestry-specific PheWAS results reflect the well-validated association of the 

rs738409-G allele with various types of chronic liver disease38, which is known to be especially 

prominent in the Hispanic population39. Individuals with established liver disease have been 

shown to have an increased risk of hospitalization due to COVID-19 in a previous study40, 

although there is no consensus as to the effect of chronic liver disease and cirrhosis on COVID-

19 severity40. There are nevertheless conflicting interpretations regarding the impact of 

rs738409 on the course of COVID-19. GG genotype for rs738409 has been shown to increase 

the risk of severe disease in patients younger than 65 years41 whilst the rs738409-G allele has 

been reported to be associated with a reduced risk of hospitalization and mortality in another 

investigation42. Also, the association of the rs12979860-T allele in IFNL4 with viral hepatitis and 

cirrhosis was significant in the HA group. Carriers of the rs12979860-T allele have been 

previously shown to experience persistent hepatitis C virus (HCV) infection due to a weaker 

host immune response against HCV43,44. In addition, the minor allele, rs12979860-T, has been 

proposed as a risk factor for severe COVID-1945 whereas the CC genotype for the major allele, 

rs12979860-C, has been reported to occur with a higher incidence in COVID-19 patients 

compared to healthy controls46.  

Hypercoagulable state and deep vein thrombosis were found to be associated with 

rs8176719 in the transethnic meta-PheWAS. The role of genetic variants at the ABO locus in 
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COVID-19 susceptibility and severity is well-established47,48. The prevalence of severe disease 

is higher in patients with blood group A whereas blood group O is associated with a lower risk 

for severe COVID-1948. Following a similar approach to that of the current study, two previous 

studies on the Million Veterans Program and UK BioBank datasets respectively, evaluated the 

pleiotropic effects of a set of severe COVID-19-associated variants32,36. Both studies performed 

their analyses using a larger cohort and identified a number of significant phenotypes, which 

included pre-existing conditions that increase the risk of having severe illness from COVID-19, 

such as thromboembolism, type 2 DM and hypercholesterolemia. Overall, our PheWAS results 

support previously reported disease associations, but also revealed new associations pertaining 

to a shared genetic etiology between COVID-19 susceptibility and various other pre-existing 

conditions. 

In summary, this study provides the scientific community with a knowledgebase of the 

known genetic determinants of COVID-19 susceptibility and severity, along with biological 

insights into immune system-related functions of genes implicated in COVID-19 pathogenesis 

and phenotype associations revealing the pleiotropic effects of COVID-19 susceptibility variants 

on underlying risk factors for COVID-19 severity. The categorization of a comprehensive set of 

previously published variants based on evidence level will enable rapid evaluation of these 

variants by researchers. By employing the first available machine learning classifier for the 

prediction of COVID-19 host genetic variants, our work also provides genome-wide predictions 

for all possible human missense variants which should facilitate the discovery of novel genetic 

risk factors for severe COVID-19. 

 

Methods 

Curation and categorization of COVID-19-associated variants. The literature search in 

PubMed was conducted in order to identify studies that have investigated host genetic variants 

associated with COVID-19 susceptibility/severity. The combinations ‘COVID19,’ ‘coronavirus’, 

‘SARS’ and ‘COVID-19’ with ‘genetics’, ‘GWAS’, ‘genetic factor’, ‘genetic susceptibility’, ‘genetic 

association’, ‘genetic resistance’, ‘genetic variant’, ‘genetic variation’, ‘genotype’, ‘host factor’ or 

‘human genome’ were used as search terms. The search for publications up until August 5, 

2022 yielded 1,977 records. 222 publications remained after the review of titles and abstracts 

led to the exclusion of studies that did not contain data pertaining to COVID-19-associated host 

genetic variants. The second round of review comprised the careful manual curation of variants, 

as well as the gathering of information about study type, analytical methods and study 

population from the main text and supplementary material of publications. The final list of 820 
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COVID-19-associated variants were converted to genomic positions based on human genome 

assembly hg38. The effect of variants on disease phenotype was ascertained as 'Risk factor', 

'Severity', 'Protective' and ‘Other’ according to the findings in the respective studies. Variants 

were further categorized into five levels of confidence based on the published evidence from the 

highest level of confidence to the lowest as follows: CAV-FE, CAV, FCP + IP, FCP and IP. 

Where multiple studies identified the same variant, the combined level of evidence was used for 

categorization of the variant. 

 

Machine learning classifier. To develop the classifier of COVID-19 severity-associated 

variants, we collected putatively neutral variants from gnomAD v2.1 after removing those 

variants categorized as disease-causing mutations (DM) in the Human Gene Mutation Database 

(HGMD) 2022.2 Professional release, making the assumption that the majority of the remaining 

gnomAD variants are benign. Additionally, we selected a set of non-COVID-19 pathogenic 

variants from the DM category of the HGMD. To avoid selecting pathogenic variants that might 

also be associated with COVID-19 severity, we filtered the HGMD dataset such that all variants 

resulting in HPO15 phenotypes related to abnormalities of the immune system (HP:0002715), 

respiratory system (HP:0002086), systemic blood pressure (HP:0030972), increased weight 

(HP:0004324), and diabetes (HP:0000819) were removed. 134 non-COVID-19 pathogenic 

variants were then randomly selected from the genes in which the CAV-FE occurred, matching 

the number of CAV-FE per gene wherever possible. An additional 23 non-COVID-19 pathogenic 

regulatory variants were selected to match the 23 non-genic CAV-FE. 134 gnomAD variants 

were similarly randomly selected from the genes in which CAV-FE variants occurred matching 

the number of CAV-FE per gene where possible. 23 non-genic gnomAD variants were selected 

to match the 23 non-genic CAV-FE. The full dataset was split such that variant genes did not 

overlap between the training and testing sets. The training set consisted of 138 non-COVID 

pathogenic variants, 137 CAV-FE, and 137 neutral variants, whilst the testing set comprised 19 

non-COVID pathogenic variants, 20 CAV-FE and 20 neutral variants. 

To estimate the performance and variance associated with our data preprocessing, model 

architecture and model hyperparameter selection pipeline, we employed 5-fold outer, 5-fold 

inner nested cross-validation. Folds were stratified by variant gene such that training and testing 

folds did not contain variants from the same genes. Model performance was assessed by 

means of the Matthew’s correlation coefficient, macro averaged F1-score, and accuracy. We 

then applied 5-fold cross-validation on all the training data with the best model to determine the 

final preprocessing and model hyperparameters. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2022. ; https://doi.org/10.1101/2022.11.03.22281867doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.03.22281867
http://creativecommons.org/licenses/by-nc-nd/4.0/


Feature importance. SHAP values were generated for the model’s predictions for all variants in 

the testing set with the SHAP python library’s TreeExplainer using default parameters. For the 

statistical analysis of features, we performed two-sample, one-sided t-tests comparing the mean 

of the CAV-FE variants to the mean of the non-COVID pathogenic and benign variants 

respectively. We employed B-H correction to control the false discovery rate at 0.05 

(Supplementary Tables 2, 3). 

 

Enrichment analyses. 68 genes harbored CAV-FE variants included in the enrichment 

analyses (Supplementary Table 4). Enrichment of the genes in pathways and GO terms was 

investigated with InnateDB version 5.427. Major pathway resources including KEGG28, 

Reactome29, NetPath49, INOH50 and PID51 are incorporated in the InnateDB pathway analysis 

for the exploration of over-represented biological pathways in a particular gene or protein set. 

Pathway enrichment analysis, network analysis and enrichment analysis of biological functions 

and diseases in the high-confidence COVID-19 gene set were performed using IPA software 

version 01-21-03 (http://www.qiagen.com/ingenuity) with default parameters except for selecting 

the number of molecules per network as 140 and restricting the analysis to ‘human’. The 

subnetworks of PPIs were evaluated using the NetworkAnalyst52 tool on the high-confidence 

STRING30 interactome with medium (400) to high (1000) confidence score and a minimum 

network option for displaying key connectivities. Enrichr31 web server was used for the gene set 

enrichment analysis of HPO15 terms. FDR adjustment was performed using B-H method for the 

p values in all analyses.  

 

PheWAS. Cohort. The Mount Sinai BioMe BioBank contains array genotyping data from 53,982 

individuals who were admitted to Mount Sinai primary care clinics. Since no phenotype-specific 

selection criteria were applied during the recruitment of participants, the BioMe BioBank may be 

considered to be a representative subset of the general population of New York City and its 

environs. The three major ancestries in the BioMe BioBank were AA (n = 9,616), EA (n = 

13,401) and HA (n = 16,369), which were included in the downstream analyses. 

Genotype data quality control (QC). The Mount Sinai BioMe BioBank comprises two different 

batches of array genotyping data that were produced using the Infinium Global Screening Array 

(GSA, 31,683 samples and 635,623 variants) and the Infinium Global Diversity Array (GDA, 

22,299 samples and 1,833,111 variants). First, individuals were stratified by ancestry. Then, 

duplicated samples (which were detected using KING53), samples with sex discrepancies, 

samples with a call rate < 95% or a heterozygosity rate that fell outside of three standard 
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deviations from the mean, were removed from each ancestral group. Variants with a call rate < 

95% and a Hardy-Weinberg equilibrium (HWE) p-value < 1e-8 were filtered out. We obtained a 

final combined dataset of 53,449 individuals and 335,682 variant sites, which were imputed 

using TOPMed18. The imputed dataset contained 60,491,206 variants with an imputation 

accuracy, R2 > 0.7. 

PCA. Variants with a HWE p-value < 5e-6 were filtered out and were pruned according to 

linkage disequilibrium (LD) using an r2 threshold of 0.5. Variants with a minor allele frequency ≥ 

1% were selected. PCA was performed with Plink v.1.954. 

Ancestry-specific and meta-PheWAS. COVID-19-associated host genetic variants were 

clumped together according to LD patterns. Variants were clustered using an r2 threshold of 0.1 

and 250 kb window size in the AA, EA and HA samples of the BioMe BioBank. Three ancestry-

specific PheWAS were performed using 285, 286 and 288 clustered variants in AA, EA and HA 

groups, respectively, for testing their associations with phenotypes extracted from the EHR 

data. ICD10-CM codes of the participants were mapped to phecodes using the R PheWAS 

package55. Phenotypes with at least 100 cases were retained, resulting in 458, 466 and 629 

tested phenotypes for AA, EA and HIS ancestries, respectively. Age, biological sex, sequencing 

batch and first 20 PCs were included in the analyses as covariates. A trans-ethnic meta-

analysis was performed using phewasMeta function and the results of PheWAS in three groups. 

B-H procedure was followed in order to control the false discovery rate (FDR) at 0.01. 

 

The web-based interface for COVID-19 Host Genetic Variants. The R-Shiny platform 

(https://CRAN.R-project.org/package=shiny) was used to generate the web-based interface for 

COVID-19 Host Genetic Variants. 

 

Data availability. The web-based interface for COVID-19 host genetic variants can be 

accessed publicly at https://itanlab.shinyapps.io/COVID19webpage/ and may be used for all 

non-commercial purposes. 
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Fig. 1: Overview of the study workflow. Panels depict the curation and categorization of 

COVID-19-associated host genetic variants (top), generation of a machine learning classifier of 

severe COVID-19 variants (middle left), pathway and gene-set enrichment analyses (middle 

center), PheWAS in the Mount Sinai BioMe BioBank (middle right), and the web-based interface 

of the COVID-19 Host Genetic Variants (bottom). 
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Fig. 2: Evaluation of severe COVID-19 variant classifier and feature importance. a, ROC 

curves and b, precision-recall (PR) curves displaying the performance of the classification for 

neutral, non-COVID pathogenic and CAV-FE variants. AUC and AP values are shown in the 

legend. c, Bar charts demonstrating the mean SHAP values of the neutral, non-COVID 

pathogenic and CAV-FE variants for the features with the highest impact on the model. d, 

PhastCons and e, PhyloP scores of the three groups of variants. Violin plots display the median 

(white dot), interquartile range (IQR, thick gray bar in the center), and 25th percentile * 1.5 inter 

IQR and 75th percentile * 1.5 IQR (whiskers). 
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Fig. 3: Pathway and IPA network analyses. a, Circos plot showing the top 15 pathways 

identified by InnateDB (KEGG and Reactome) and IPA. The order of pathways on the plot is 

according to their p values from most to least significant in each pathway database. b, 

Subnetwork associated with “microbial response, cellular development and inflammatory 

response” from IPA network analysis.  
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Fig. 4: IPA diseases/functions and PheWAS in the BioMe BioBank. a, Top 20 

diseases/functions associated with the genes harboring CAV-FE variants by IPA. Boxes on the 

left depict the genes, boxes in the middle represent their function, whereas the boxes on the 

right denote the disease/function annotations. b, Results of transethnic meta-PheWAS in 

individuals with AA, EA and HA ancestries (n = 39,386) using 288 clumped COVID-19 variants. 

The red line denotes the phenome-wide significance threshold calculated by means of the B-H 

procedure using an FDR of 0.01. Phenotypes significantly associated with COVID-19 variants 

are labeled. The direction of triangles represents the direction of effect. c, Heatmap displaying 

ORs of the significant associations. The x axis shows the variants and effect alleles used in 

PheWAS; the y axis displays various phenotype descriptions.  
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Extended Data Fig. 1: Model selection. Box plots displaying the measures of performance 

assessment for the LightGBM (Light), RandomForest (RF), XGBoost (XGB) and Neural Network 

(Neural) algorithms. 
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Extended Data Fig. 2: InnateDB GO analysis. Circos plot depicting the most significantly 

over-represented GO terms (B-H-adjusted p < 0.01)  in the high-confidence COVID-19 gene 

set. The child terms were combined under their parents, if the parent term was also in the list of 

top terms. BP: biological process, CC: cellular component, MF: molecular function. 
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Extended Data Fig. 3: STRING PPI subnetwork identified by the NetworkAnalyst tool. The red 

nodes display genes carrying CAV-FE variants. 
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Extended Data Fig. 4: Ancestry-specific PheWAS.  Results of PheWAS in a, the AA ancestry 

(n = 9,616) using 285 clumped COVID-19 variants. b, the EA ancestry (n = 13,401) using 286 

clumped COVID-19 variants c, the HA ancestry (n = 16,369) using 288 clumped COVID-19 

variants. Red lines denote the phenome-wide significance thresholds calculated by means of 

the B-H procedure using an FDR of 0.01. Phenotypes significantly associated with COVID-19 

variants are labeled. The direction of triangles represents the direction of effect. 
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Table 1. Categorization of COVID-19-associated susceptibility variants 

  Protective Risk factor Severity Other 

CAV-FE 16 42 137 1 

CAV 38 87 371 4 

FCP + IP 37 29 4 70 

FCP 3 6 16 0 

IP 15 6 6 0 

Total 109 170 534 75 

Variant categories were generated based on the presumed effect and evidence level (Methods). 
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