Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, View ORCID ProfileHideyuki Shimizu
doi: https://doi.org/10.1101/2022.11.02.22281835
Hideki Hozumi
1Keio University School of Medicine, Tokyo 160-8582, Japan
Hideyuki Shimizu
2Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan

- Supplemental Figures 1 and 2.[supplements/281835_file03.pdf]
Posted November 04, 2022.
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, Hideyuki Shimizu
medRxiv 2022.11.02.22281835; doi: https://doi.org/10.1101/2022.11.02.22281835
Subject Area
Subject Areas
- Addiction Medicine (214)
- Allergy and Immunology (495)
- Anesthesia (106)
- Cardiovascular Medicine (1090)
- Dermatology (141)
- Emergency Medicine (274)
- Epidemiology (9744)
- Gastroenterology (480)
- Genetic and Genomic Medicine (2298)
- Geriatric Medicine (221)
- Health Economics (461)
- Health Informatics (1548)
- Health Policy (729)
- Hematology (236)
- HIV/AIDS (500)
- Medical Education (236)
- Medical Ethics (67)
- Nephrology (256)
- Neurology (2136)
- Nursing (133)
- Nutrition (332)
- Oncology (1171)
- Ophthalmology (363)
- Orthopedics (128)
- Otolaryngology (220)
- Pain Medicine (144)
- Palliative Medicine (50)
- Pathology (308)
- Pediatrics (692)
- Primary Care Research (265)
- Public and Global Health (4640)
- Radiology and Imaging (775)
- Respiratory Medicine (621)
- Rheumatology (273)
- Sports Medicine (208)
- Surgery (250)
- Toxicology (42)
- Transplantation (120)
- Urology (94)